Claims
- 1. A method of producing a low NOX oxy-fuel flame for heating a chamber to an elevated temperature comprising the steps of:
- producing an oxy-fuel flame of the type wherein a core of a fuel rich phase is surrounded by a sheath of a fuel lean phase by using a post mix concentric tube oxy-fuel burner to produce said flame by causing fuel to exit a central tube and oxygen to exit a concentric tube surrounding said central tube and controlling flow of oxygen and fuel to a maximum velocity of 600 feet per second as they exit the burner;
- confining and directing said flame in a precombustor having generally a cylindrical shaped passage wall extending for a distance from a point where said flame is generated to a point where said flame can be introduced into a heating device, said distance (length) being determined from the ratio of length of the passage wall of the precombustor to diameter of the passage wall being between 2 and 6 and at a rate of heat generation between 0.25 and 40 million Btu/hour; and
- fixing said maximum velocity and ratio so that only an oxy-fuel flame of the type wherein a core of a fuel-rich phase surrounded by an oxygen-rich sheath is created and extends throughout the length of said precombustor without combustion occurring on the wall forming the precombustor.
- 2. A method according to claim 1 wherein said rate of heat generation is between 0.25 and 1.5 million Btu/hour, said ratio is between 3.4 and 5.1, said length is between 12 and 18 inches and said diameter is between 3.0 and 3.5 inches.
- 3. A method according to claim 1 wherein said rate of heat generation is between 1.0 and 3.0 million Btu/hour, said ratio is between 3.0 and 4.5, said length is between 12 and 18 inches and said diameter is between 3.5 and 4.0 inches.
- 4. A method according to claim 1 wherein said rate of heat generation is between 2.0 and 6.0 million Btu/hour, said ratio is between 2.8 and 4.0, said length is between 12 and 18 inches and said diameter is between 4.0 and 4.5 inches.
- 5. A method according to claim 1 wherein said rate of heat generation is between 4.0 and 20.0 million Btu/hour, said ratio is between 2.0 and 6.0, said length is between 16 and 48 inches and said diameter is between 4.0 and 8.0 inches.
- 6. A method according to claim 1 wherein said flame has a maximum convergence or divergence angle measure at the point where said flame enters said precombustor, said angle measured relative to the longitudinal axis of said precombustor.
Parent Case Info
This application is a division of application Ser. No. 07/860,652 filed Mar. 30, 1992 now U.S. Pat. No. 5,256,058.
US Referenced Citations (10)
Non-Patent Literature Citations (2)
Entry |
D. E. Shamp & D. H. Davis; Application of 100% Oxygen Firing at Parkersburg, W.V., pp. 218-239. |
D. E. Shamp & D. H. Davis; Oxygen Firing at . . . pp. 6-13 Dec. 1990 American Glass Review. |
Divisions (1)
|
Number |
Date |
Country |
Parent |
860652 |
Mar 1992 |
|