Method and apparatus for penetrating tissue

Information

  • Patent Grant
  • 8403864
  • Patent Number
    8,403,864
  • Date Filed
    Monday, May 1, 2006
    18 years ago
  • Date Issued
    Tuesday, March 26, 2013
    11 years ago
Abstract
A tissue penetrating system has a housing member. A plurality of penetrating members are positioned in the housing member. A tissue stabilizing member is coupled to the housing. A penetrating member sensor is coupled to the plurality of penetrating members. The penetrating member sensor is configured to provide information relative to a depth of penetration of a penetrating member through a skin surface.
Description
BACKGROUND OF THE INVENTION

Lancing devices are known in the medical health-care products industry for piercing the skin to produce blood for analysis. Typically, a drop of blood for this type of analysis is obtained by making a small incision in the fingertip, creating a small wound, which generates a small blood droplet on the surface of the skin.


Early methods of lancing included piercing or slicing the skin with a needle or razor. Current methods utilize lancing devices that contain a multitude of spring, cam and mass actuators to drive the lancet. These include cantilever springs, diaphragms, coil springs, as well as gravity plumbs used to drive the lancet. The device may be held against the skin and mechanically triggered to ballistically launch the lancet. Unfortunately, the pain associated with each lancing event using known technology discourages patients from testing. In addition to vibratory stimulation of the skin as the driver impacts the end of a launcher stop, known spring based devices have the possibility of harmonically oscillating against the patient tissue, causing multiple strikes due to recoil. This recoil and multiple strikes of the lancet against the patient is one major impediment to patient compliance with a structured glucose monitoring regime.


Another impediment to patient compliance is the lack of spontaneous blood flow generated by known lancing technology. In addition to the pain as discussed above, a patient may need more than one lancing event to obtain a blood sample since spontaneous blood generation is unreliable using known lancing technology. Thus the pain is multiplied by the number of tries it takes to successfully generate spontaneous blood flow. Different skin thickness may yield different results in terms of pain perception, blood yield and success rate of obtaining blood between different users of the lancing device. Known devices poorly account for these skin thickness variations.


A still further impediment to improved compliance with glucose monitoring are the many steps and hassle associated with each lancing event. Many diabetic patients that are insulin dependent may need to self-test for blood glucose levels five to six times daily. The large number of steps required in traditional methods of glucose testing, ranging from lancing, to milking of blood, applying blood to the test strip, and getting the measurements from the test strip, discourages many diabetic patients from testing their blood glucose levels as often as recommended. Older patients and those with deteriorating motor skills encounter difficulty loading lancets into launcher devices, transferring blood onto a test strip, or inserting thin test strips into slots on glucose measurement meters. Additionally, the wound channel left on the patient by known systems may also be of a size that discourages those who are active with their hands or who are worried about healing of those wound channels from testing their glucose levels.


SUMMARY OF THE INVENTION

Accordingly, an object of the present invention is to provide improved tissue penetrating systems, and their methods of use.


Another object of the present invention is to provide tissue penetrating systems, and their methods of use, that provide reduced pain when penetrating a target tissue.


Yet another object of the present invention is to provide tissue penetrating systems, and their methods of use, that provide controlled depth of penetration.


Still a further object of the present invention is to provide tissue penetrating systems, and their methods of use, that provide controlled velocities into and out of target tissue.


A further object of the present invention is to provide tissue penetrating systems, and their methods of use, that provide stimulation to a target tissue.


Another object of the present invention is to provide tissue penetrating systems, and their methods of use, that apply a pressure to a target tissue.


Yet another object of the present invention is to provide tissue penetrating systems, and their methods of use, with penetrating members that remain in sterile environments prior to launch.


Still another object of the present invention is to provide tissue penetrating systems, and their methods of use, with penetrating members that remain in sterile environments prior to launch, and the penetrating members are not used to breach the sterile environment.


A further object of the present invention is to provide improved tissue penetrating systems, and their methods of use, that have user interfaces.


Another object of the present invention is to provide improved tissue penetrating systems, and their methods of use, that have human interfaces.


Yet another object of the present invention is to provide tissue penetrating systems, and their methods of use, that have low volume sample chambers.


Still another object of the present invention is to provide tissue penetrating systems, and their methods of use, that have sample chambers with volumes that do not exceed 1 μL.


Another object of the present invention is to provide tissue penetrating systems, and their methods of use, that have multiple penetrating members housed in a cartridge.


These and other objects of the present invention are achieved in a tissue penetrating system with a housing member. A plurality of penetrating members are positioned in the housing member. A tissue stabilizing member is coupled to the housing. A penetrating member sensor is coupled to the plurality of penetrating members. The penetrating member sensor is configured to provide information relative to a depth of penetration of a penetrating member through a skin surface.


In another embodiment of the present invention, a tissue penetrating system includes a housing member and a plurality of penetrating members. A stimulating member is coupled to the housing member and configured to increase blood circulation at a skin surface.


In another embodiment of the present invention, a tissue penetrating system includes a housing member and a plurality of penetrating members. A stimulating vibratory member is coupled to the housing member and configured to apply a vibratory motion to a skin surface.


In another embodiment of the present invention, a method of obtaining a sample of capillary whole blood from a target tissue provides a penetrating system that includes a tissue stabilizing member. Skin stimulation is applied to a skin surface site with the tissue stabilizing member. A penetrating member is introduced through the skin surface site to form an incision. Blood is collected from the incision in the penetrating system.


In another embodiment of the present invention, a tissue penetrating system includes an electromechanical penetrating member driver. A plurality of penetrating members each have a sharpened distal tip. A plurality of cartridges are each associated with a penetrating member and coupled to the penetrating member driver. Each cartridge has a plurality of seals for maintaining the distal tip of the penetrating member in a sterile condition prior to launch. A tissue stabilizing member is coupled to at least one of the cartridges.


In another embodiment of the present invention, a tissue penetrating system includes a penetrating member driver with penetrating member position feedback control. A plurality of penetrating members each have a sharpened distal tip. A plurality of cartridges are each associated with a penetrating member and coupled to the penetrating member driver. Each cartridge has a plurality of seals for maintaining the distal tip of the penetrating member in a sterile condition prior to lancing. A tissue stabilizing member is coupled to at least one of the cartridges.


In another embodiment of the present invention, a tissue penetrating system includes a penetrating member driver with penetrating member position feedback control. A plurality of penetrating members each have a sharpened distal tip. A plurality of cartridges are each associated with a penetrating member and coupled to the penetrating member driver. Each cartridge has a plurality of seals for maintaining the distal tip of the penetrating member in a sterile condition prior to lancing. A cartridge transport device moves each of cartridge to a position to align the penetrating member with the penetrating member driver so that the penetrating member may be driven along a path into the tissue site. A tissue stabilizing member is coupled to at least one of the cartridges.


A further understanding of the nature and advantages of the invention will become apparent by reference to the remaining portions of the specification and drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an embodiment of a controllable force driver in the form of a cylindrical electric penetrating member driver using a coiled solenoid-type configuration.



FIG. 2A illustrates a displacement over time profile of a penetrating member driven by a harmonic spring/mass system.



FIG. 2B illustrates the velocity over time profile of a penetrating member driver by a harmonic spring/mass system.



FIG. 2C illustrates a displacement over time profile of an embodiment of a controllable force driver.



FIG. 2D illustrates a velocity over time profile of an embodiment of a controllable force driver.



FIG. 3 is a diagrammatic view illustrating a controlled feed-back loop.



FIG. 4 is a perspective view of a tissue penetration device having features of the invention.



FIG. 5 is an elevation view in partial longitudinal section of the tissue penetration device of FIG. 4.



FIGS. 6A-6C show a flowchart illustrating a penetrating member control method.



FIG. 7 is a diagrammatic view of a patient's finger and a penetrating member tip moving toward the skin of the finger.



FIG. 8 is a diagrammatic view of a patient's finger and the penetrating member tip making contact with the skin of a patient's finger.



FIG. 9 is a diagrammatic view of the penetrating member tip depressing the skin of a patient's finger.



FIG. 10 is a diagrammatic view of the penetrating member tip further depressing the skin of a patient's finger.



FIG. 11 is a diagrammatic view of the penetrating member tip penetrating the skin of a patient's finger.



FIG. 12 is a diagrammatic view of the penetrating member tip penetrating the skin of a patient's finger to a desired depth.



FIG. 13 is a diagrammatic view of the penetrating member tip withdrawing from the skin of a patient's finger.



FIGS. 14-18 illustrate a method of tissue penetration that may measure elastic recoil of the skin.



FIG. 19 is a perspective view in partial section of a tissue penetration sampling device with a cartridge of sampling modules.



FIG. 20 is a perspective view of a sampling module cartridge with the sampling modules arranged in a ring configuration.



FIG. 21 illustrate an embodiment of a cartridge for use in sampling having a sampling cartridge body and a penetrating member cartridge body.



FIG. 22A shows a device for use on a tissue site having a plurality of penetrating members.



FIG. 22B shows rear view of a device for use on a tissue site having a plurality of penetrating members.



FIG. 22C shows a schematic of a device for use on a tissue site with a feedback loop and optionally a damper.



FIG. 23A shows an embodiment of a device with a user interface.



FIG. 23B shows an outer view of a device with a user interface.



FIG. 24 is a cut away view of a system for sampling body fluid.



FIG. 25 is an exploded view of a cartridge for use with a system for sampling body fluid.



FIG. 26 is an exploded view of a cartridge having multiple penetrating members for use with a system for sampling body fluid.



FIGS. 27-28 show cartridges for use with a system for sampling body fluid.



FIG. 29 shows a cutaway view of another embodiment of a system for sampling body fluid.



FIG. 30 shows the density associated with a cartridge according to the present invention.



FIG. 31 shows a cutaway view of another embodiment of a system for sampling body fluid.



FIG. 32 is a cut away view of a cartridge according to the present invention.



FIGS. 33-34 show views of a body sampling system using multiple cartridges.



FIG. 35 shows an embodiment of the present invention with a tissue stabilizing member.



FIG. 36 shows a cartridge according to the present invention with a tissue stabilizing member.



FIG. 37 shows a system according to the present invention with a moveable cartridge.





DESCRIPTION OF THE SPECIFIC EMBODIMENTS

The present invention provides a solution for body fluid sampling. Specifically, some embodiments of the present invention provides a penetrating member device for consistently creating a wound with spontaneous body fluid flow from a patient. The invention may be a multiple penetrating member device with an optional high density design. It may use penetrating members of smaller size than known penetrating members. The device may be used for multiple lancing events without having to remove a disposable from the device or for the user to handle sharps. The invention may provide improved sensing capabilities. At least some of these and other objectives described herein will be met by embodiments of the present invention.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. It should be noted that, as used in the specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a material” may include mixtures of materials, reference to “a chamber” may include multiple chambers, and the like. References cited herein are hereby incorporated by reference in their entirety, except to the extent that they conflict with teachings explicitly set forth in this specification.


In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings:


“Optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not. For example, if a device optionally contains a feature for analyzing a blood sample, this means that the analysis feature may or may not be present, and, thus, the description includes structures wherein a device possesses the analysis feature and structures wherein the analysis feature is not present.


“Analyte detecting member” refers to any use, singly or in combination, of chemical test reagents and methods, electrical test circuits and methods, physical test components and methods, optical test components and methods, and biological test reagents and methods to yield information about a blood sample. Such methods are well known in the art and may be based on teachings of, e.g. Tietz Textbook of Clinical Chemistry, 3d Ed., Sec. V, pp. 776-78 (Burtis & Ashwood, Eds., W.B. Saunders Company, Philadelphia, 1999); U.S. Pat. No. 5,997,817 to Chrismore et al. (Dec. 7, 1999); U.S. Pat. No. 5,059,394 to Phillips et al. (Oct. 22, 1991); U.S. Pat. No. 5,001,054 to Wagner et al. (Mar. 19, 1991); and U.S. Pat. No. 4,392,933 to Nakamura et al. (Jul. 12, 1983), the teachings of which are hereby incorporated by reference, as well as others. Analyte detecting member may include tests in the sample test chamber that test electrochemical properties of the blood, or they may include optical means for sensing optical properties of the blood (e.g. oxygen saturation level), or they may include biochemical reagents (e.g. antibodies) to sense properties (e.g. presence of antigens) of the blood. The analyte detecting member may comprise biosensing or reagent material that will react with an analyte in blood (e.g. glucose) or other body fluid so that an appropriate signal correlating with the presence of the analyte is generated and can be read by the reader apparatus. By way of example and not limitation, analyte detecting member may “associated with”, “mounted within”, or “coupled to” a chamber or other structure when the analyte detecting member participates in the function of providing an appropriate signal about the blood sample to the reader device. Analyte detecting member may also include nanowire analyte detecting members as described herein. Analyte detecting member may use potentiometric, coulometric, or other method useful for detection of analyte levels.


The present invention may be used with a variety of different penetrating member drivers. It is contemplated that these penetrating member drivers may be spring based, solenoid based, magnetic driver based, nanomuscle based, or based on any other mechanism useful in moving a penetrating member along a path into tissue. It should be noted that the present invention is not limited by the type of driver used with the penetrating member feed mechanism. One suitable penetrating member driver for use with the present invention is shown in FIG. 1. This is an embodiment of a solenoid type electromagnetic driver that is capable of driving an iron core or slug mounted to the penetrating member assembly using a direct current (DC) power supply. The electromagnetic driver includes a driver coil pack that is divided into three separate coils along the path of the penetrating member, two end coils and a middle coil. Direct current is alternated to the coils to advance and retract the penetrating member. Although the driver coil pack is shown with three coils, any suitable number of coils may be used, for example, 4, 5, 6, 7 or more coils may be used.


Referring to the embodiment of FIG. 1, the stationary iron housing 10 may contain the driver coil pack with a first coil 12 flanked by iron spacers 14 which concentrate the magnetic flux at the inner diameter creating magnetic poles. The inner insulating housing 16 isolates the penetrating member 18 and iron core 20 from the coils and provides a smooth, low friction guide surface. The penetrating member guide 22 further centers the penetrating member 18 and iron core 20. The penetrating member 18 is protracted and retracted by alternating the current between the first coil 12, the middle coil, and the third coil to attract the iron core 20. Reversing the coil sequence and attracting the core and penetrating member back into the housing retracts the penetrating member. The penetrating member guide 22 also serves as a stop for the iron core 20 mounted to the penetrating member 18.


As discussed above, tissue penetration devices which employ spring or cam driving methods have a symmetrical or nearly symmetrical actuation displacement and velocity profiles on the advancement and retraction of the penetrating member as shown in FIGS. 2 and 3. In most of the available lancet devices, once the launch is initiated, the stored energy determines the velocity profile until the energy is dissipated. Controlling impact, retraction velocity, and dwell time of the penetrating member within the tissue can be useful in order to achieve a high success rate while accommodating variations in skin properties and minimize pain. Advantages can be achieved by taking into account of the fact that tissue dwell time is related to the amount of skin deformation as the penetrating member tries to puncture the surface of the skin and variance in skin deformation from patient to patient based on skin hydration.


In this embodiment, the ability to control velocity and depth of penetration may be achieved by use of a controllable force driver where feedback is an integral part of driver control. Such drivers can control either metal or polymeric penetrating members or any other type of tissue penetration element. The dynamic control of such a driver is illustrated in FIG. 2C which illustrates an embodiment of a controlled displacement profile and FIG. 2D which illustrates an embodiment of a the controlled velocity profile. These are compared to FIGS. 2A and 2B, which illustrate embodiments of displacement and velocity profiles, respectively, of a harmonic spring/mass powered driver. Reduced pain can be achieved by using impact velocities of greater than about 2 m/s entry of a tissue penetrating element, such as a lancet, into tissue. Other suitable embodiments of the penetrating member driver are described in commonly assigned, copending U.S. patent application Ser. No. 10/127,395, filed Apr. 19, 2002 and previously incorporated herein.



FIG. 3 illustrates the operation of a feedback loop using a processor 60. The processor 60 stores profiles 62 in non-volatile memory. A user inputs information 64 about the desired circumstances or parameters for a lancing event. The processor 60 selects a driver profile 62 from a set of alternative driver profiles that have been preprogrammed in the processor 60 based on typical or desired tissue penetration device performance determined through testing at the factory or as programmed in by the operator. The processor 60 may customize by either scaling or modifying the profile based on additional user input information 64. Once the processor has chosen and customized the profile, the processor 60 is ready to modulate the power from the power supply 66 to, the penetrating member driver 68 through an amplifier 70. The processor 60 may measure the location of the penetrating member 72 using a position sensing mechanism 74 through an analog to digital converter 76 linear encoder or other such transducer. Examples of position sensing mechanisms have been described in the embodiments above and may be found in the specification for commonly assigned, copending U.S. patent application Ser. No. 10/127,395, filed Apr. 19, 2002 and previously incorporated herein. The processor 60 calculates the movement of the penetrating member by comparing the actual profile of the penetrating member to the predetermined profile. The processor 60 modulates the power to the penetrating member driver 68 through a signal generator 78, which may control the amplifier 70 so that the actual velocity profile of the penetrating member does not exceed the predetermined profile by more than a preset error limit. The error limit is the accuracy in the control of the penetrating member.


After the lancing event, the processor 60 can allow the user to rank the results of the lancing event. The processor 60 stores these results and constructs a database 80 for the individual user. Using the database 79, the processor 60 calculates the profile traits such as degree of painlessness, success rate, and blood volume for various profiles 62 depending on user input information 64 to optimize the profile to the individual user for subsequent lancing cycles. These profile traits depend on the characteristic phases of penetrating member advancement and retraction. The processor 60 uses these calculations to optimize profiles 62 for each user. In addition to user input information 64, an internal clock allows storage in the database 79 of information such as the time of day to generate a time stamp for the lancing event and the time between lancing events to anticipate the user's diurnal needs. The database stores information and statistics for each user and each profile that particular user uses.


In addition to varying the profiles, the processor 60 can be used to calculate the appropriate penetrating member diameter and geometry suitable to realize the blood volume required by the user. For example, if the user requires about 1-5 microliter volume of blood, the processor 60 may select a 200 micron diameter penetrating member to achieve these results. For each class of lancet, both diameter and lancet tip geometry, is stored in the processor 60 to correspond with upper and lower limits of attainable blood volume based on the predetermined displacement and velocity profiles.


The lancing device is capable of prompting the user for information at the beginning and the end of the lancing event to more adequately suit the user. The goal is to either change to a different profile or modify an existing profile. Once the profile is set, the force driving the penetrating member is varied during advancement and retraction to follow the profile. The method of lancing using the lancing device comprises selecting a profile, lancing according to the selected profile, determining lancing profile traits for each characteristic phase of the lancing cycle, and optimizing profile traits for subsequent lancing events.



FIG. 4 illustrates an embodiment of a tissue penetration device, more specifically, a lancing device 80 that includes a controllable driver 179 coupled to a tissue penetration element. The lancing device 80 has a proximal end 81 and a distal end 82. At the distal end 82 is the tissue penetration element in the form of a penetrating member 83, which is coupled to an elongate coupler shaft 84 by a drive coupler 85. The elongate coupler shaft 84 has a proximal end 86 and a distal end 87. A driver coil pack 88 is disposed about the elongate coupler shaft 84 proximal of the penetrating member 83. A position sensor 91 is disposed about a proximal portion 92 of the elongate coupler shaft 84 and an electrical conductor 94 electrically couples a processor 93 to the position sensor 91. The elongate coupler shaft 84 driven by the driver coil pack 88 controlled by the position sensor 91 and processor 93 form the controllable driver, specifically, a controllable electromagnetic driver.


Referring to FIG. 5, the lancing device 80 can be seen in more detail, in partial longitudinal section. The penetrating member 83 has a proximal end 95 and a distal end 96 with a sharpened point at the distal end 96 of the penetrating member 83 and a drive head 98 disposed at the proximal end 95 of the penetrating member 83. A penetrating member shaft 201 is disposed between the drive head 98 and the sharpened point 97. The penetrating member shaft 201 may be comprised of stainless steel, or any other suitable material or alloy and have a transverse dimension of about 0.1 to about 0.4 mm. The penetrating member shaft may have a length of about 3 mm to about 50 mm, specifically, about 15 mm to about 20 mm. The drive head 98 of the penetrating member 83 is an enlarged portion having a transverse dimension greater than a transverse dimension of the penetrating member shaft 201 distal of the drive head 98. This configuration allows the drive head 98 to be mechanically captured by the drive coupler 85. The drive head 98 may have a transverse dimension of about 0.5 to about 2 mm.


A magnetic member 102 is secured to the elongate coupler shaft 84 proximal of the drive coupler 85 on a distal portion 203 of the elongate coupler shaft 84. The magnetic member 102 is a substantially cylindrical piece of magnetic material having an axial lumen 204 extending the length of the magnetic member 102. The magnetic member 102 has an outer transverse dimension that allows the magnetic member 102 to slide easily within an axial lumen 105 of a low friction, possibly lubricious, polymer guide tube 105′ disposed within the driver coil pack 88. The magnetic member 102 may have an outer transverse dimension of about 1.0 to about 5.0 mm, specifically, about 2.3 to about 2.5 mm. The magnetic member 102 may have a length of about 3.0 to about 5.0 mm, specifically, about 4.7 to about 4.9 mm. The magnetic member 102 can be made from a variety of magnetic materials including ferrous metals such as ferrous steel, iron, ferrite, or the like. The magnetic member 102 may be secured to the distal portion 203 of the elongate coupler shaft 84 by a variety of methods including adhesive or epoxy bonding, welding, crimping or any other suitable method.


Proximal of the magnetic member 102, an optical encoder flag 206 is secured to the elongate coupler shaft 84. The optical encoder flag 206 is configured to move within a slot 107 in the position sensor 91. The slot 107 of the position sensor 91 is formed between a first body portion 108 and a second body portion 109 of the position sensor 91. The slot 107 may have separation width of about 1.5 to about 2.0 mm. The optical encoder flag 206 can have a length of about 14 to about 18 mm, a width of about 3 to about 5 mm and a thickness of about 0.04 to about 0.06 mm.


The optical encoder flag 206 interacts with various optical beams generated by LEDs disposed on or in the position sensor body portions 108 and 109 in a predetermined manner. The interaction of the optical beams generated by the LEDs of the position sensor 91 generates a signal that indicates the longitudinal position of the optical flag 206 relative to the position sensor 91 with a substantially high degree of resolution. The resolution of the position sensor 91 may be about 200 to about 400 cycles per inch, specifically, about 350 to about 370 cycles per inch. The position sensor 91 may have a speed response time (position/time resolution) of 0 to about 120,000 Hz, where one dark and light stripe of the flag constitutes one Hertz, or cycle per second. The position of the optical encoder flag 206 relative to the magnetic member 102, driver coil pack 88 and position sensor 91 is such that the optical encoder 91 can provide precise positional information about the penetrating member 83 over the entire length of the penetrating member's power stroke.


An optical encoder that is suitable for the position sensor 91 is a linear optical incremental encoder, model HEDS 9200, manufactured by Agilent Technologies. The model HEDS 9200 may have a length of about 20 to about 30 mm, a width of about 8 to about 12 mm, and a height of about 9 to about 11 mm. Although the position sensor 91 illustrated is a linear optical incremental encoder, other suitable position sensor embodiments could be used, provided they posses the requisite positional resolution and time response. The HEDS 9200 is a two channel device where the channels are 90 degrees out of phase with each other. This results in a resolution of four times the basic cycle of the flag. These quadrature outputs make it possible for the processor to determine the direction of penetrating member travel. Other suitable position sensors include capacitive encoders, analog reflective sensors, such as the reflective position sensor discussed above, and the like.


A coupler shaft guide 111 is disposed towards the proximal end 81 of the lancing device 80. The guide 111 has a guide lumen 112 disposed in the guide 111 to slidingly accept the proximal portion 92 of the elongate coupler shaft 84. The guide 111 keeps the elongate coupler shaft 84 centered horizontally and vertically in the slot 102 of the optical encoder 91.


The driver coil pack 88, position sensor 91 and coupler shaft guide 111 are all secured to a base 113. The base 113 is longitudinally coextensive with the driver coil pack 88, position sensor 91 and coupler shaft guide 111. The base 113 can take the form of a rectangular piece of metal or polymer, or may be a more elaborate housing with recesses, which are configured to accept the various components of the lancing device 80.


As discussed above, the magnetic member 102 is configured to slide within an axial lumen 105 of the driver coil pack 88. The driver coil pack 88 includes a most distal first coil 114, a second coil 115, which is axially disposed between the first coil 114 and a third coil 116, and a proximal-most fourth coil 117. Each of the first coil 114, second coil 115, third coil 116 and fourth coil 117 has an axial lumen. The axial lumens of the first through fourth coils are configured to be coaxial with the axial lumens of the other coils and together form the axial lumen 105 of the driver coil pack 88 as a whole. Axially adjacent each of the coils 114-117 is a magnetic disk or washer 118 that augments completion of the magnetic circuit of the coils 114-117 during a lancing cycle of the device 80. The magnetic washers 118 of the embodiment of FIG. 5 are made of ferrous steel but could be made of any other suitable magnetic material, such as iron or ferrite. The outer shell 89 of the driver coil pack 88 is also made of iron or steel to complete the magnetic path around the coils and between the washers 118. The magnetic washers 118 have an outer diameter commensurate with an outer diameter of the driver coil pack 88 of about 4.0 to about 8.0 mm. The magnetic washers 118 have an axial thickness of about 0.05, to about 0.4 mm, specifically, about 0.15 to about 0.25 mm.


Wrapping or winding an elongate electrical conductor 121 about an axial lumen until a sufficient number of windings have been achieved forms the coils 114-117. The elongate electrical conductor 121 is generally an insulated solid copper wire with a small outer transverse dimension of about 0.06 mm to about 0.88 mm, specifically, about 0.3 mm to about 0.5 mm. In one embodiment, 32 gauge copper wire is used for the coils 114-117. The number of windings for each of the coils 114-117 of the driver pack 88 may vary with the size of the coil, but for some embodiments each coil 114-117 may have about 30 to about 80 turns, specifically, about 50 to about 60 turns. Each coil 114-117 can have an axial length of about 1.0 to about 3.0 mm, specifically, about 1.8 to about 2.0 mm. Each coil 114-117 can have an outer transverse dimension or diameter of about 4.0, to about 2.0 mm, specifically, about 9.0 to about 12.0 mm. The axial lumen 105 can have a transverse dimension of about 1.0 to about 3.0 mm.


It may be advantageous in some driver coil 88 embodiments to replace one or more of the coils with permanent magnets, which produce a magnetic field similar to that of the coils when the coils are activated. In particular, it may be desirable in some embodiments to replace the second coil 115, the third coil 116 or both with permanent magnets. In addition, it may be advantageous to position a permanent magnet at or near the proximal end of the coil driver pack in order to provide fixed magnet zeroing function for the magnetic member (Adams magnetic Products 23A0002 flexible magnet material (800) 747-7543).



FIGS. 20 and 21 show a permanent bar magnet 119 disposed on the proximal end of the driver coil pack 88. As shown in FIG. 5, the bar magnet 119 is arranged so as to have one end disposed adjacent the travel path of the magnetic member 102 and has a polarity configured so as to attract the magnetic member 102 in a centered position with respect to the bar magnet 119. Note that the polymer guide tube 105′ can be configured to extend proximally to insulate the inward radial surface of the bar magnet 119 from an outer surface of the magnetic member 102. This arrangement allows the magnetic member 119 and thus the elongate coupler shaft 84 to be attracted to and held in a zero point or rest position without the consumption of electrical energy from the power supply 125.


Having a fixed zero or start point for the elongate coupler shaft 84 and penetrating member 83 may be useful to properly controlling the depth of penetration of the penetrating member 83 as well as other lancing parameters. This can be because some methods of depth penetration control for a controllable driver measure the acceleration and displacement of the elongate coupler shaft 84 and penetrating member 83 from a known start position. If the distance of the penetrating member tip 96 from the target tissue is known, acceleration and displacement of the penetrating member is known and the start position of the penetrating member is know, the time and position of tissue contact and depth of penetration can be determined by the processor 93.


Any number of configurations for a magnetic bar 119 can be used for the purposes discussed above. In particular, a second permanent bar magnet (not shown) could be added to the proximal end of the driver coil pack 88 with the magnetic fields of the two bar magnets configured to complement each other. In addition, a disc magnet 119′ could be used as illustrated in FIG. 22. Disc magnet 119′ is shown disposed at the proximal end of the driver coiled pack 88 with a polymer non-magnetic disc 119″ disposed between the proximal-most coil 117 and disc magnet 119′ and positions disc magnet 119′ away from the proximal end of the proximal-most coil 117. The polymer non-magnetic disc spacer 119″ is used so that the magnetic member 102 can be centered in a zero or start position slightly proximal of the proximal-most coil 117 of the driver coil pack 88. This allows the magnetic member to be attracted by the proximal-most coil 117 at the initiation of the lancing cycle instead of being passive in the forward drive portion of the lancing cycle.


An inner lumen of the polymer non-magnetic disc 119″ can be configured to allow the magnetic member 102 to pass axially there through while an inner lumen of the disc magnet 119′ can be configured to allow the elongate coupler shaft 84 to pass through but not large enough for the magnetic member 102 to pass through. This results in the magnetic member 102 being attracted to the disc magnet 119′ and coming to rest with the proximal surface of the magnetic member 102 against a distal surface of the disc magnet 119′. This arrangement provides for a positive and repeatable stop for the magnetic member, and hence the penetrating member. A similar configuration could also be used for the bar magnet 119 discussed above.


Typically, when the electrical current in the coils 114-117 of the driver coil pack 88 is off, a magnetic member 102 made of soft iron is attracted to the bar magnet 119 or disc magnet 119′. The magnetic field of the driver coil pack 88 and the bar magnet 119 or disc magnet 119′, or any other suitable magnet, can be configured such that when the electrical current in the coils 114-117 is turned on, the leakage magnetic field from the coils 114-117 has the same polarity as the bar magnet 119 or disc magnet 119′. This results in a magnetic force that repels the magnetic member 102 from the bar magnet 119 or disc magnet 119′ and attracts the magnetic member 102 to the activated coils 114-117. For this configuration, the bar magnet 119 or disc magnet thus act to facilitate acceleration of the magnetic member 102 as opposed to working against the acceleration.


Electrical conductors 122 couple the driver coil pack 88 with the processor 93 which can be configured or programmed to control the current flow in the coils 114-117 of the driver coil pack 88 based on position feedback from the position sensor 91, which is coupled to the processor 93 by electrical conductors 94. A power source 125 is electrically coupled to the processor 93 and provides electrical power to operate the processor 93 and power the coil driver pack 88. The power source 125 may be one or more batteries that provide direct current power to the 93 processor.


Referring to FIGS. 29A-29C, a flow diagram is shown that describes the operations performed by the processor 93 in controlling the penetrating member 83 of the lancing device 80 discussed above during an operating cycle. FIGS. 30-36 illustrate the interaction of the penetrating member 83 and skin 133 of the patient's finger 134 during an operation cycle of the penetrating member device 83. The processor 93 operates under control of programming steps that are stored in an associated memory. When the programming steps are executed, the processor 93 performs operations as described herein. Thus, the programming steps implement the functionality of the operations described with respect to the flow diagram of FIG. 29. The processor 93 can receive the programming steps from a program product stored in recordable media, including a direct access program product storage device such as a hard drive or flash ROM, a removable program product storage device such as a floppy disk, or in any other manner known to those of skill in the art. The processor 93 can also download the programming steps through a network connection or serial connection.


In the first operation, represented by the flow diagram box numbered 245 in FIG. 6A, the processor 93 initializes values that it stores in memory relating to control of the penetrating member, such as variables that it uses to keep track of the controllable driver 179 during movement. For example, the processor may set a clock value to zero and a penetrating member position value to zero or to some other initial value. The processor 93 may also cause power to be removed from the coil pack 88 for a period of time, such as for about 10 ms, to allow any residual flux to dissipate from the coils.


In the initialization operation, the processor 93 also causes the penetrating member to assume an initial stationary position. When in the initial stationary position, the penetrating member 83 is typically fully retracted such that the magnetic member 102 is positioned substantially adjacent the fourth coil 117 of the driver coil pack 88, shown in FIG. 5 above. The processor 93 can move the penetrating member 83 to the initial stationary position by pulsing an electrical current to the fourth coil 117 to thereby attract the magnetic member 102 on the penetrating member 83 to the fourth coil 117. Alternatively, the magnetic member can be positioned in the initial stationary position by virtue of a permanent magnet, such as bar magnet 119, disc magnet 119′ or any other suitable magnet as discussed above with regard to the tissue penetration device illustrated in FIGS. 20 and 21.


In the next operation, represented by the flow diagram box numbered 247, the processor 93 energizes one or more of the coils in the coil pack 88. This should cause the penetrating member 83 to begin to move (i.e., achieve a non-zero speed) toward the skin target 133. The processor 93 then determines whether or not the penetrating member is indeed moving, as represented by the decision box numbered 149. The processor 93 can determine whether the penetrating member 83 is moving by monitoring the position of the penetrating member 83 to determine whether the position changes over time. The processor 93 can monitor the position of the penetrating member 83 by keeping track of the position of the optical encoder flag 106 secured to the elongate coupler shaft 84 wherein the encoder 91 produces a signal coupled to the processor 93 that indicates the spatial position of the penetrating member 83.


If the processor 93 determines (via timeout without motion events) that the penetrating member 83 is not moving (a “No” result from the decision box 149), then the process proceeds to the operation represented by the flow diagram box numbered 153, where the processor deems that an error condition is present. This means that some error in the system is causing the penetrating member 83 not to move. The error may be mechanical, electrical, or software related. For example, the penetrating member 83 may be stuck in the stationary position because something is impeding its movement.


If the processor 93 determines that the penetrating member 83 is indeed moving (a “Yes” result from the decision box numbered 249), then the process proceeds to the operation represented by the flow diagram box numbered 257. In this operation, the processor 93 causes the penetrating member 83 to continue to accelerate and launch toward the skin target 133, as indicated by the arrow 135 in FIG. 7. The processor 93 can achieve acceleration of the penetrating member 83 by sending an electrical current to an appropriate coil 114-117 such that the coil 114-117 exerts an attractive magnetic launching force on the magnetic member 102 and causes the magnetic member 102 and the penetrating member 83 coupled thereto to move in a desired direction. For example, the processor 93 can cause an electrical current to be sent to the third coil 116 so that the third coil 116 attracts the magnetic member 102 and causes the magnetic member 102 to move from a position adjacent the fourth coil 117 toward the third coil 116. The processor preferably determines which coil 114-117 should be used to attract the magnetic member 102 based on the position of the magnetic member 102 relative to the coils 114-117. In this manner, the processor 93 provides a controlled force to the penetrating member that controls the movement of the penetrating member.


During this operation, the processor 93 periodically or continually monitors the position and/or velocity of the penetrating member 83. In keeping track of the velocity and position of the penetrating member 83 as the penetrating member 83 moves towards the patient's skin 133 or other tissue, the processor 93 also monitors and adjusts the electrical current to the coils 114-117. In some embodiments, the processor 93 applies current to an appropriate coil 114-117 such that the penetrating member 83 continues to move according to a desired direction and acceleration. In the instant case, the processor 93 applies current to the appropriate coil 114-117 that will cause the penetrating member 83 to continue to move in the direction of the patient's skin 133 or other tissue to be penetrated.


The processor 93 may successively transition the current between coils 114-117 so that as the magnetic member 102 moves past a particular coil 114-117, the processor 93 then shuts off current to that coil, 114-117 and then applies current to another coil 114-117 that will attract the magnetic member 102 and cause the magnetic member 102 to continue to move in the desired direction. In transitioning current between the coils 114-117, the processor 93 can take into account various factors, including the speed of the penetrating member 83, the position of the penetrating member 83 relative to the coils 114-117, the number of coils 114-117, and the level of current to be applied to the coils 114-117 to achieve a desired speed or acceleration.


In the next operation, the processor 93 determines whether the cutting or distal end tip 96 of the penetrating member 83 has contacted the patient's skin 133, as shown in FIG. 8 and as represented by the decision box numbered 165 in FIG. 6B. The processor 93 may determine whether the penetrating member 83 has made contact with the target tissue 133 by a variety of methods, including some that rely on parameters which are measured prior to initiation of a lancing cycle and other methods that are adaptable to use during a lancing cycle without any predetermined parameters.


In one embodiment, the processor 93 determines that the skin has been contacted when the end tip 96 of the penetrating member 83 has moved a predetermined distance with respect to its initial position. If the distance from the tip 261 of the penetrating member 83 to the target tissue 133 is known prior to initiation of penetrating member 83 movement, the initial position of the penetrating member 83 is fixed and known, and the movement and position of the penetrating member 83 can be accurately measured during a lancing cycle, then the position and time of penetrating member contact can be determined.


This method requires an accurate measurement of the distance between the penetrating member tip 96 and the patient's skin 133 when the penetrating member 83 is in the zero time or initial position. This can be accomplished in a number of ways. One way is to control all of the mechanical parameters that influence the distance from the penetrating member tip 96 to the patient's tissue or a surface of the lancing device 80 that will contact the patient's skin 133. This could include the start position of the magnetic member 102, magnetic path tolerance, magnetic member 102 dimensions, driver coil pack 88 location within the lancing device 80 as a whole, length of the elongate coupling shaft 84, placement of the magnetic member 102 on the elongate coupling shaft 84, length of the penetrating member 83 etc.


If all these parameters, as well as others can be suitably controlled in manufacturing with a tolerance stack-up that is acceptable, then the distance from the penetrating member tip 96 to the target tissue 133 can be determined at the time of manufacture of the lancing device 80. The distance could then be programmed into the memory of the processor 93. If an adjustable feature is added to the lancing device 80, such as an adjustable length elongate coupling shaft 84, this can accommodate variations in all of the parameters noted above, except length of the penetrating member 83. An electronic alternative to this mechanical approach would be to calibrate a stored memory contact point into the memory of the processor 93 during manufacture based on the mechanical parameters described above.


In another embodiment, moving the penetrating member tip 96 to the target tissue 133 very slowly and gently touching the skin 133 prior to actuation can accomplish the distance from the penetrating member tip 96 to the tissue 133. The position sensor can accurately measure the distance from the initialization point to the point of contact, where the resistance to advancement of the penetrating member 83 stops the penetrating member movement. The penetrating member 83 is then retracted to the initialization point having measured the distance to the target tissue 133 without creating any discomfort to the user.


In another embodiment, the processor 93 may use software to determine whether the penetrating member 83 has made contact with the patient's skin 133 by measuring for a sudden reduction in velocity of the penetrating member 83 due to friction or resistance imposed on the penetrating member 83 by the patient's skin 133. The optical encoder 91 measures displacement of the penetrating member 83. The position output data provides input to the interrupt input of the processor 93. The processor 93 also has a timer capable of measuring the time between interrupts. The distance between interrupts is known for the optical encoder 91, so the velocity of the penetrating member 83 can be calculated by dividing the distance between interrupts by the time between the interrupts.


This method requires that velocity losses to the penetrating member 83 and elongate coupler 84 assembly due to friction are known to an acceptable level so that these velocity losses and resulting deceleration can be accounted for when establishing a deceleration threshold above which contact between penetrating member tip 96 and target tissue 133 will be presumed. This same concept can be implemented in many ways. For example, rather than monitoring the velocity of the penetrating member 83, if the processor 93 is controlling the penetrating member driver in order to maintain a fixed velocity, the power to the driver 88 could be monitored. If an amount of power above a predetermined threshold is required in order to maintain a constant velocity, then contact between the tip of the penetrating member 96 and the skin 133 could be presumed.


In yet another embodiment, the processor 93 determines skin 133 contact by the penetrating member 83 by detection of an acoustic signal produced by the tip 96 of the penetrating member 83 as it strikes the patient's skin 133. Detection of the acoustic signal can be measured by an acoustic detector 136 placed in contact with the patient's skin 133 adjacent a penetrating member penetration site 137, as shown in FIG. 8. Suitable acoustic detectors 136 include piezo electric transducers, microphones and the like. The acoustic detector 136 transmits an electrical signal generated by the acoustic signal to the processor 93 via electrical conductors 138. In another embodiment, contact of the penetrating member 83 with the patient's skin 133 can be determined by measurement of electrical continuity in a circuit that includes the penetrating member 83, the patient's finger 134 and an electrical contact pad 240 that is disposed on the patient's skin 133 adjacent the contact site 137 of the penetrating member 83, as shown in FIG. 8. In this embodiment, as soon as the penetrating member 83 contacts the patient's skin 133, the circuit 139 is completed and current flows through the circuit 139. Completion of the circuit 139 can then be detected by the processor 93 to confirm skin 133 contact by the penetrating member 83.


If the penetrating member 83 has not contacted the target skin 133, then the process proceeds to a timeout operation, as represented by the decision box numbered 167 in FIG. 6B. In the timeout operation, the processor 93 waits a predetermined time period. If the timeout period has not yet elapsed (a “No” outcome from the decision box 167), then the processor continues to monitor whether the penetrating member has contacted the target skin 133. The processor 93 preferably continues to monitor the position and speed of the penetrating member 83, as well as the electrical current to the appropriate coil 114-117 to maintain the desired penetrating member 83 movement.


If the timeout period elapses without the penetrating member 83 contacting the skin (a “Yes” output from the decision box 167), then it is deemed that the penetrating member 83 will not contact the skin and the process proceeds to a withdraw phase, where the penetrating member is withdrawn away from the skin 133, as discussed more fully below. The penetrating member 83 may not have contacted the target skin 133 for a variety of reasons, such as if the patient removed the skin 133 from the lancing device or if something obstructed the penetrating member 83 prior to it contacting the skin.


The processor 93 may also proceed to the withdraw phase prior to skin contact for other reasons. For example, at some point after initiation of movement of the penetrating member 83, the processor 93 may determine that the forward acceleration of the penetrating member 83 towards the patient's skin 133 should be stopped or that current to all coils 114-117 should be shut down. This can occur, for example, if it is determined that the penetrating member 83 has achieved sufficient forward velocity, but has not yet contacted the skin 133. In one embodiment, the average penetration velocity of the penetrating member 83 from the point of contact with the skin to the point of maximum penetration may be about 2.0 to about 10.0 m/s, specifically, about 3.8 to about 4.2 m/s. In another embodiment, the average penetration velocity of the penetrating member may be from about 2 to about 8 meters per second, specifically, about 2 to about 4 m/s.


The processor 93 can also proceed to the withdraw phase if it is determined that the penetrating member 83 has fully extended to the end of the power stroke of the operation cycle of lancing procedure. In other words, the process may proceed to withdraw phase when an axial center 141 of the magnetic member 102 has moved distal of an axial center 142 of the first coil 114 as show in FIG. 5. In this situation, any continued power to any of the coils 114-117 of the driver coil pack 88 serves to decelerate the magnetic member 102 and thus the penetrating member 83. In this regard, the processor 93 considers the length of the penetrating member 83 (which can be stored in memory) the position of the penetrating member 83 relative to the magnetic member 102, as well as the distance that the penetrating member 83 has traveled.


With reference again to the decision box 165 in FIG. 6B, if the processor 93 determines that the penetrating member 83 has contacted the skin 133 (a “Yes” outcome from the decision box 165), then the processor 93 can adjust the speed of the penetrating member 83 or the power delivered to the penetrating member 83 for skin penetration to overcome any frictional forces on the penetrating member 83 in order to maintain a desired penetration velocity of the penetrating member. The flow diagram box numbered 167 represents this.


As the velocity of the penetrating member 83 is maintained after contact with the skin 133, the distal tip 96 of the penetrating member 83 will first begin to depress or tent the contacted skin 137 and the skin 133 adjacent the penetrating member 83 to form a tented portion 243 as shown in FIG. 9 and further shown in FIG. 10. As the penetrating member 83 continues to move in a distal direction or be driven in a distal direction against the patient's skin 133, the penetrating member 83 will eventually begin to penetrate the skin 133, as shown in FIG. 11. Once penetration of the skin 133 begins, the static force at the distal tip 96 of the penetrating member 83 from the skin 133 will become a dynamic cutting force, which is generally less than the static tip force. As a result in the reduction of force on the distal tip 96 of the penetrating member 83 upon initiation of cutting, the tented portion 243 of the skin 133 adjacent the distal tip 96 of the penetrating member 83 which had been depressed as shown in FIGS. 32 and 24 will spring back as shown in FIG. 11.


In the next operation, represented by the decision box numbered 171 in FIG. 6B, the processor 93 determines whether the distal end 96 of the penetrating member 83 has reached a brake depth. The brake depth is the skin penetration depth for which the processor 93 determines that deceleration of the penetrating member 83 is to be initiated in order to achieve a desired final penetration depth 144 of the penetrating member 83 as show in FIG. 12. The brake depth may be pre-determined and programmed into the processor's memory, or the processor 93 may dynamically determine the brake depth during the actuation. The amount of penetration of the penetrating member 83 in the skin 133 of the patient may be measured during the operation cycle of the penetrating member device 80. In addition, as discussed above, the penetration depth suitable for successfully obtaining a useable sample can depend on the amount of tenting of the skin 133 during the lancing cycle. The amount of tenting of the patient's skin 133 can in turn depend on the tissue characteristics of the patient such as elasticity, hydration etc. A method for determining these characteristics is discussed below with regard to skin 133 tenting measurements during the lancing cycle and illustrated in FIGS. 37-41.


Penetration measurement can be carried out by a variety of methods that are not dependent on measurement of tenting of the patient's skin. In one embodiment, the penetration depth of the penetrating member 83 in the patient's skin 133 is measured by monitoring the amount of capacitance between the penetrating member 83 and the patient's skin 133. In this embodiment, a circuit includes the penetrating member 83, the patient's finger 134, the processor 93 and electrical conductors connecting these elements. As the penetrating member 83 penetrates the patient's skin 133, the greater the amount of penetration, the greater the surface contact area between the penetrating member 83 and the patient's skin 133. As the contact area increases, so does the capacitance between the skin 133 and the penetrating member 83. The increased capacitance can be easily measured by the processor 93 using methods known in the art and penetration depth can then be correlated to the amount of capacitance. The same method can be used by measuring the electrical resistance between the penetrating member 83 and the patient's skin.


If the brake depth has not yet been reached, then a “No” results from the decision box 171 and the process proceeds to the timeout operation represented by the flow diagram box numbered 173. In the timeout operation, the processor 93 waits a predetermined time period. If the timeout period has not yet elapsed (a “No” outcome from the decision box 173), then the processor continues to monitor whether the brake depth has been reached. If the timeout period elapses without the penetrating member 83 achieving the brake depth (a “Yes” output from the decision box 173), then the processor 93 deems that the penetrating member 83 will not reach the brake depth and the process proceeds to the withdraw phase, which is discussed more fully below. This may occur, for example, if the penetrating member 83 is stuck at a certain depth.


With reference again to the decision box numbered 171 in FIG. 6B, if the penetrating member does reach the brake depth (a “Yes” result), then the process proceeds to the operation represented by the flow diagram box numbered 275. In this operation, the processor 93 causes a braking force to be applied to the penetrating member to thereby reduce the speed of the penetrating member 83 to achieve a desired amount of final skin penetration depth 144, as shown in FIG. 26. Note that FIGS. 32 and 33 illustrate the penetrating member making contact with the patient's skin and deforming or depressing the skin prior to any substantial penetration of the skin. The speed of the penetrating member 83 is preferably reduced to a value below a desired threshold and is ultimately reduced to zero. The processor 93 can reduce the speed of the penetrating member 83 by causing a current to be sent to a 114-117 coil that will exert an attractive braking force on the magnetic member 102 in a proximal direction away from the patient's tissue or skin 133, as indicated by the arrow 190 in FIG. 13. Such a negative force reduces the forward or distally oriented speed of the penetrating member 83. The processor 93 can determine which coil 114-117 to energize based upon the position of the magnetic member 102 with respect to the coils 114-117 of the driver coil pack 88, as indicated by the position sensor 91.


In the next operation, the process proceeds to the withdraw phase, as represented by the flow diagram box numbered 177. The withdraw phase begins with the operation represented by the flow diagram box numbered 178 in FIG. 6C. Here, the processor 93 allows the penetrating member 83 to settle at a position of maximum skin penetration 144, as shown in FIG. 12. In this regard, the processor 93 waits until any motion in the penetrating member 83 (due to vibration from impact and spring energy stored in the skin, etc.) has stopped by monitoring changes in position of the penetrating member 83. The processor 93 preferably waits until several milliseconds (ms), such as on the order of about 8 ms, have passed with no changes in position of the penetrating member 83. This is an indication that movement of the penetrating member 83 has ceased entirely. In some embodiments, the penetrating member may be allowed to settle for about 1 to about 2000 milliseconds, specifically, about 50 to about 200 milliseconds. For other embodiments, the settling time may be about 1 to about 200 milliseconds.


It is at this stage of the lancing cycle that a software method can be used to measure the amount of tenting of the patient's skin 133 and thus determine the skin 133 characteristics such as elasticity, hydration and others. Referring to FIGS. 37-41, a penetrating member 83 is illustrated in various phases of a lancing cycle with target tissue 133. FIG. 14 shows tip 96 of penetrating member 83 making initial contact with the skin 133 at the point of initial impact.



FIG. 15 illustrates an enlarged view of the penetrating member 83 making initial contact with the tissue 133 shown in FIG. 14. In FIG. 16, the penetrating member tip 96 has depressed or tented the skin 133 prior to penetration over a distance of X, as indicated by the arrow labeled X in FIG. 16. In FIG. 17, the penetrating member 83 has reached the full length of the cutting power stroke and is at maximum displacement. In this position, the penetrating member tip 96 has penetrated the tissue 133 a distance of Y, as indicated by the arrow labeled Y in FIG. 16. As can be seen from comparing FIG. 15 with FIG. 17, the penetrating member tip 96 was displaced a total distance of X plus Y from the time initial contact with the skin 133 was made to the time the penetrating member tip 96 reached its maximum extension as shown in FIG. 17. However, the penetrating member tip 96 has only penetrated the skin 133 a distance Y because of the tenting phenomenon.


At the end of the power stroke of the penetrating member 83, as discussed above with regard to box 179 of FIG. 6C, the processor 93 allows the penetrating member to settle for about 8 msec. It is during this settling time that the skin 133 rebounds or relaxes back to approximately its original configuration prior to contact by the penetrating member 83 as shown in FIG. 18. The penetrating member tip 96 is still buried in the skin to a depth of Y, as shown in FIG. 18, however the elastic recoil of the tissue has displaced the penetrating member rearward or retrograde to the point of inelastic tenting that is indicated by the arrows Z in FIG. 18. During the rearward displacement of the penetrating member 83 due to the elastic tenting of the tissue 133, the processor reads and stores the position data generated by the position sensor 91 and thus measures the amount of elastic tenting, which is the difference between X and Z.


Referring to FIG. 19, a tissue penetration sampling device 80 is shown with the controllable driver 179 of FIG. 4 coupled to a sampling module cartridge 205 and disposed within a driver housing 206. A ratchet drive mechanism 207 is secured to the driver housing 206, coupled to the sampling module cartridge 205 and configured to advance a sampling module belt 208 within the sampling module cartridge 205 so as to allow sequential use of each sampling module 209 in the sampling module belt 208. The ratchet drive mechanism 207 has a drive wheel 211 configured to engage the sampling modules 209 of the sampling module belt 208. The drive wheel 211 is coupled to an actuation lever 212 that advances the drive wheel 211 in increments of the width of a single sampling module 209. A T-slot drive coupler 213 is secured to the elongated coupler shaft 84.


A sampling module 209 is loaded and ready for use with the drive head 98 of the penetrating member 83 of the sampling module 209 loaded in the T-slot 214 of the drive coupler 213. A sampling site 215 is disposed at the distal end 216 of the sampling module 209 disposed about a penetrating member exit port 217. The distal end 216 of the sampling module 209 is exposed in a module window 218, which is an opening in a cartridge cover 221 of the sampling module cartridge 205. This allows the distal end 216 of the sampling module 209 loaded for use to be exposed to avoid contamination of the cartridge cover 221 with blood from the lancing process.


A reader module 222 is disposed over a distal portion of the sampling module 209 that is loaded in the drive coupler 213 for use and has two contact brushes 224 that are configured to align and make electrical contact with analyte detecting member contacts 225 of the sampling module 209 as shown in FIG. 77. With electrical contact between the analyte detecting member contacts 225 and contact brushes 224, the processor 93 of the controllable driver 179 can read a signal from an analytical region 226 of the sampling module 209 after a lancing cycle is complete and a blood sample enters the analytical region 226 of the sampling module 209. The contact brushes 224 can have any suitable configuration that will allow the sampling module belt 208 to pass laterally beneath the contact brushes 224 and reliably make electrical contact with the sampling module 209 loaded in the drive coupler 213 and ready for use. A spring loaded conductive ball bearing is one example of a contact brush 224 that could be used. A resilient conductive strip shaped to press against the inside surface of the flexible polymer sheet 227 along the analyte detecting member region 228 of the sampling module 209 is another embodiment of a contact brush 224.


The sampling module cartridge 205 has a supply canister 229 and a receptacle canister 230. The unused sampling modules of the sampling module belt 208 are disposed within the supply canister 229 and the sampling modules of the sampling module belt 208 that have been used are advanced serially after use into the receptacle canister 230.



FIG. 20 illustrates a further embodiment of sampling module cartridges. FIG. 20 shows a sampling module cartridge 202 in a carousel configuration with adjacent sampling modules 204 connected rigidly and with analyte detecting members 206 from the analytical regions of the various sampling modules 204 disposed near an inner radius 208 of the carousel. The sampling modules 204 of the sampling module cartridge 202 are advanced through a drive coupler 213 but in a circular as opposed to a linear fashion.



FIG. 21 shows an exploded view in perspective of the cartridge 245, which has a proximal end portion 254 and a distal end portion 255. The penetrating member cartridge body 246 is disposed at the proximal end portion 254 of the cartridge 245 and has a plurality of penetrating member module portions 250, such as the penetrating member module portion 250. Each penetrating member module portion 250 has a penetrating member channel 251 with a penetrating member 83 slidably disposed within the penetrating member channel 251. The penetrating member channels 251 are substantially parallel to the longitudinal axis 252 of the penetrating member cartridge body 246. The penetrating members 83 shown have a drive head 98, shaft portion 201 and sharpened tip 96. The drive head 98 of the penetrating members are configured to couple to a drive coupler (not shown), such as the drive coupler 85 discussed above.


The penetrating members 83 are free to slide in the respective penetrating member channels 251 and are nominally disposed with the sharpened tip 96 withdrawn into the penetrating member channel 251 to protect the tip 96 and allow relative rotational motion between the penetrating member cartridge body 246 and the sampling cartridge body 247 as shown by arrow 256 and arrow 257 in FIG. 21. The radial center of each penetrating member channel 251 is disposed a fixed, known radial distance from the longitudinal axis 252 of the penetrating member cartridge body 246 and a longitudinal axis 258 of the cartridge 245. By disposing each penetrating member channel 251 a fixed known radial distance from the longitudinal axes 252 and 258 of the penetrating member cartridge body 246 and cartridge 245, the penetrating member channels 251 can then be readily and repeatably aligned in a functional arrangement with penetrating member channels 253 of the sampling cartridge body 247. The penetrating member cartridge body 246 rotates about a removable pivot shaft 259 which has a longitudinal axis 260 that is coaxial with the longitudinal axes 252 and 250 of the penetrating member cartridge body 246 and cartridge 245.


The sampling cartridge body 247 is disposed at the distal end portion 255 of the cartridge and has a plurality of sampling module portions 248 disposed radially about the longitudinal axis 249 of the sampling cartridge body 247. The longitudinal axis 249 of the sampling cartridge body 247 is coaxial with the longitudinal axes 252, 258 and 260 of the penetrating member cartridge body 246, cartridge 245 and pivot shaft 259. The sampling cartridge body 247 may also rotate about the pivot shaft 259. In order to achieve precise relative motion between the penetrating member cartridge body 246 and the sampling cartridge body 247, one or both of the cartridge bodies 246 and 247 may be rotatable about the pivot shaft 259, however, it is not necessary for both to be rotatable about the pivot shaft 259, that is, one of the cartridge bodies 246 and 247 may be secured, permanently or removably, to the pivot shaft 259.


The sampling cartridge body 247 includes a base 261 and a cover sheet 262 that covers a proximal surface 263 of the base forming a fluid tight seal. Each sampling module portion 248 of the sampling cartridge body 247, such as the sampling module portion 248, has a sample reservoir 264 and a penetrating member channel 253. The sample reservoir 264 has a vent 965 at an outward radial end that allows the sample reservoir 264 to readily fill with a fluid sample. The sample reservoir 264 is in fluid communication with the respective penetrating member channel 253 which extends substantially parallel to the longitudinal axis 249 of the sampling cartridge body 247. The penetrating member channel 253 is disposed at the inward radial end of the sample reservoir 264. Still further description of the device of FIG. 21 may be found in commonly assigned, copending U.S. patent application Ser. No. 10/127,395 filed Apr. 19, 2002.


Referring to FIG. 22A, one embodiment of the present invention is a tissue penetrating system 310 with a plurality of penetrating members 312 that each have a tissue penetrating tip 314. The number of penetrating members 310 can vary, but numbers in the ranges of 10, 15, 25, 50, 75, 100, 500 or any other number, are suitable. Each penetrating member 312 can be a lancet, a traditional lancet with a molded body, a needle with a lumen, a knife like element, an elongate member without molded attachments, and the like, and may have a size in the range of 20 mm to 10 mm in length and between 0.012-0.040 mm in diameter. It should be understood of course that penetrating members of a variety of different sizes useful for lancing such as those of conventional lancets may be used in other embodiments. As seen in FIG. 22A, the penetrating member may have an elongate portion with a bend near a proximal end of the member.


Each penetrating member 312 is coupled to a penetrating member driver 316. Suitable penetrating member drivers 316 include but are not limited to, an electric drive force member, a voice coil drive force generator, a linear voice coil device, a rotary voice coil device, and the like. Suitable drive force generators can be found in commonly assigned, copending U.S. patent application Ser. No. 10/127,395, filed Apr. 19, 2002. In one embodiment, the penetrating member driver or drive force generator 316 may be a single actuator used to advance the penetrating member and to withdraw the member. The driver 316 may also be used to stop the penetrating member in the tissue site. Penetrating member driver 316 can be a non-spring actuator for drawing penetrating member 312 in a direction back towards penetrating member driver 316. A coupler 318 on penetrating member driver 316 is configured to engage at least a portion of an elongate portion of a penetrating member 312 in order to drive the penetrating member 312 along a path into and through target tissue 320, and then withdrawn from target tissue 320.


Referring now to FIG. 22B, the tips of the penetrating members 312 can be uncovered when they are launched into a selected target tissue 320. In one embodiment, sterility enclosures 322 are provided for covering at least the tip of each penetrating member 312. FIG. 22B shows that the enclosure may also cover the entire lancet. In one embodiments each sterility enclosure 322 is removed from the penetrating member 312 prior to actuation, launch, of penetrating member 312 and positioned so that penetrating member 312 does not contact the associated sterility enclosure 322 during actuation. As seen in FIG. 22B, the enclosure 322 may be peel away to reveal the penetrating member 312 prior to coupling of the member 312 to the drive force generator 316. In another embodiment, each penetrating member 312 breaches its associated sterility enclosure 322 during launch.


Tissue penetrating system 310 can also include one or more penetrating member sensors 324 that are coupled to penetrating members 312. Examples of suitable penetrating member sensors 324 include but are not limited to, a capacitive incremental encoder, an incremental encoder, an optical encoder, an interference encoder, and the like. Each penetrating member sensor 324 is configured to provide information relative to a depth of penetration of a penetrating member 312 through a target tissue 320 surface, including but not limited to a skin surface, and the like. The penetrating member sensor 324 may be positioned as shown in FIG. 22B. The penetrating member sensor 324 may also be positioned in a variety of location such as but not limited to being closer to the distal end of the penetrating member, in a position as shown in FIG. 5, or in any other location useful for providing an indication of the position of a penetrating member 312 being driven by the force generator 316.


In various embodiments, the penetration depth of a penetrating member 312 through the surface of a target tissue 320 can be, 100 to 2500 microns, 500 to 750 microns, and the like. Each penetrating member sensor 324 can also provide an indication of velocity of a penetrating member 312. Referring to FIG. 22C, a damper 326 can be coupled to penetrating member driver 316. Damper 326 prevents multiple oscillations of penetrating member 312 in target tissue 320, particularly after penetrating member 312 has reached a desired depth of penetration. The damper 326 may be placed in a variety of positions such as but not limited to being coupled to the penetrating member, being coupled to the coupler 318, being coupled to a core or shaft in the drive force generator 316, or at any other position useful for slowing the motion of the penetrating member 312.


A feedback loop 328 can also be included that is coupled to penetrating member sensor 324. Each penetrating member 312 sensor can be coupled to a processor 330 that has control instructions for penetrating member driver 316. By way of illustration, and without limitation, processor 330 can include a memory for storage and retrieval of a set of penetrating member 312 profiles utilized with penetrating member driver 316. Processor 330 can also be utilized to monitor position and speed of a penetrating member 312 as it moves in first direction 332 to and through the target tissue 320.


Processor 330 can adjust an application of force to a penetrating member 312 in order to achieve a desired speed of a penetrating member 312. Additionally, processor 330 can also be used to adjust an application of force applied to a penetrating member 312 when penetrating member 312 contacts target tissue 320 so that penetrating member 312 penetrates target tissue 320 within a desired range of speed. Further, processor 330 can also monitor position and speed of a penetrating member 312 as penetrating member 312 moves in first direction 332 toward the target tissue 320. Application of a launching force to penetrating member 312 can be controlled based on position and speed of penetrating member 312. Processor 330 can control a withdraw force, from target tissue 320, to penetrating member 312 so that penetrating member 312 moves in second direction 334 away from target tissue 320.


Processor 330 can produce a signal that is indicative of a change in direction and magnitude of force exerted on penetrating member 312. Additionally, processor 330 can cause a braking force to be applied to penetrating member 312.


In one embodiment, in first direction 332 penetrating member 312 moves toward target tissue 320 at a speed that is different than a speed at which penetrating member 312 moves away from target tissue 320 in second direction 334. In one embodiment, the speed of penetrating member 312 in first direction 332 is greater than the speed of penetrating member 312 in second direction 334. The speed of penetrating member 312 in first direction 332 can be a variety of different ranges including but not limited to, 0.05 to 60 m/sec, 0.1 to 20.0 m/sec, 1.0 to 10.0 m/sec, 3.0 to 8.0 m/sec, and the like. Additionally, the dwell time of penetrating member 312 in target tissue 320, below a surface of the skin or other structure, can be in the range of, 1 microsecond to 2 seconds, 500 milliseconds to 1.5 second, 100 milliseconds to 1 second, and the like.


As seen in FIGS. 22A and 22B, tissue penetrating system 310 can include a penetrating member transport device 336 for moving each of penetrating member 312 into a position for alignment with penetrating member driver 316. Penetrating members 312 can be arranged in an array configuration by a number of different devices and structures defining support 338, including but not limited to, a belt, a flexible or non-flexible tape device, support channel, cog, a plurality of connectors, and the like. Support 338 can have a plurality of openings each receiving a penetrating member 312. Suitable supports 338 may also include but are not limited to, a bandolier, drum, disc and the like. A description of supports 338 can be found in commonly assigned, copending U.S. patent application Ser. No. 10/127,395 filed Apr. 19, 2002.


As illustrated in FIG. 23, tissue penetrating system 310 can include a single penetrating member driver 316 and a plurality of penetrating members 312. Penetrating member driver 316 moves each penetrating member 312 along a path out of a housing that has a penetrating member exit and then into target tissue 320, stopping in target tissue 320, and then withdrawing out of the target tissue 320. Support 338 couples the penetrating members 312 to define a linear array. Support 338 is movable and configured to move each penetrating member 312 to a launch position associated with penetrating member driver 316. Penetrating member driver 316 can be controlled to follow a predetermined velocity trajectory into and out of target tissue 320.


Tissue penetrating system 310 can include a user interface 340 configured to relay different information, including but not limited to, skin penetrating performance, a skin penetrating setting, and the like. User interface 340 can provide a user with at a variety of different outputs, including but not limited to, penetration depth of a penetrating member 312, velocity of a penetrating member 312, a desired velocity profile, a velocity of penetrating member 312 into target tissue 320, velocity of the penetrating member 312 out of target tissue 320, dwell time of penetrating member 312 in target tissue 320, a target tissue relaxation parameter, and the like. User interface 340 can include a variety of components including but not limited to, a real time clock 342, one or more alarms 344 to provide a user with a reminder of a next target penetrating event is needed, a user interface processor 346, and the like.


User interface 340 can provide a variety of different outputs to a user including but not limited to, number of penetrating members 312 available, number of penetrating members 312 used, actual depth of penetrating member 312 penetration on target tissue 320, stratum corneum thickness in the case where the target tissue 320 is the skin and an area below the skin, force delivered on target tissue 320, energy used by penetrating member driver 316 to drive penetrating member 312 into target tissue 320, dwell time of penetrating member 312, battery status of tissue penetrating system 310, status of tissue penetrating system 310, the amount of energy consumed by tissue penetrating system 310, or any component of tissue penetrating system 310, speed profile of penetrating member 312, information relative to contact of penetrating member 312 with target tissue 320 before penetration by penetrating member 312, information relative to a change of speed of penetrating member 312 as in travels in target tissue 320, and the like.


User interface 340 can include a data interface 348 that couples tissue penetrating system 310 to support equipment 350 with an interface, the internet, and the like. The data interface 348 may also be coupled to the processor 93. Suitable support equipment 350 includes but is not limited to, a base station, home computer, central server, main processing equipment for storing analyte, such as glucose, level information, and the like.


Data interface 348 can be a variety of interfaces including but not limited to, Serial RS-232, modem interface, USB, HPNA, Ethernet, optical interface, IRDA, RF interface, Bluetooth interface, cellular telephone interface, two-way pager interface, parallel port interface standard, near field magnetic coupling, RF transceiver, telephone system, and the like.


User interface 340 be coupled to a memory 352 that stores, a target tissue parameter, target tissue 320 penetrating performance, and the like. The memory 352 may also be connected to processor 93 and store data from the user interface 340.


In one embodiment, memory 352 can store, the number of target tissue penetrating events, time and date of the last selected number of target tissue penetrating events, time interval between alarm and target tissue penetrating event, stratum corneum thickness, time of day, energy consumed by penetrating member driver 316 to drive penetrating member 312 into target tissue 320, depth of penetrating member 312 penetration, velocity of penetrating member 312, a desired velocity profile, velocity of penetrating member 312 into target tissue 320, velocity of penetrating member 312 out of target tissue 320, dwell time of penetrating member 312 in target tissue 320, a target tissue relaxation parameter, force delivered on target tissue 320 by any component of tissue penetrating device, dwell time of penetrating member 312, battery status of tissue penetrating system 310, tissue penetrating system 310 status, consumed energy by tissue penetrating system 310 or any of its components, speed profile of penetrating member 312 as it penetrates and advances through target tissue 320, a tissue target tissue relaxation parameter, information relative to contact of penetrating member 312 with target tissue 320 before penetration by penetrating member 312, information relative to a change of speed of penetrating member 312 as in travels in and through target tissue 320, information relative to consumed analyte detecting members, and information relative to consumed penetrating members 312.


In one embodiment, processor 330 is coupled to and receives any of a different type of signals from user interface 340. User interface 340 can respond to a variety of different commands, including but not limited to audio commands, and the like. User interface 340 can include a sensor for detecting audio commands. Information can be relayed to a user of tissue penetrating system 310 by way of an audio device, wireless device, and the like.


In another embodiment as seen in FIG. 23B, tissue penetrating device includes a human interface 354 with at least one output. The human interface 354 is specific for use by humans while a user interface 340 may be for any type of user, with user defined generically. Human interface 354 can be coupled to processor 330 and penetrating member sensor 324. Human interface 354 can be a variety of different varieties including but not limited to, LED, LED digital display, LCD display, sound generator, buzzer, vibrating device, and the like.


The output of human interface 354 can be a variety of outputs including but not limited to, a penetration event by penetrating member 312, number of penetrating members 312 remaining, time of day, alarm, penetrating member 312 trajectory waveform profile information, force of last penetration event, last penetration event, battery status of tissue penetrating system 310, analyte status, time to change cassette status, jamming malfunction, tissue penetrating system 310 status, and the like.


Human interface 354 is coupled to a housing 356. Suitable housings 356 include but are not limited to a, telephone, watch, PDA, electronic device, medical device, point of care device, decentralized diagnostic device and the like. An input device 358 is coupled to housing. Suitable input devices 358 include but are not limited to, one or more pushbuttons, a touch pad independent of the display device, a touch sensitive screen on a visual display, and the like.


A data exchange device 360 can be utilized for coupling tissue penetrating system 310 to support equipment 350 including but not limited to, personal computer, modem, PDA, computer network, and the like. Human interface 354 can include a real time clock 362, and one or more alarms 364 that enable a user to set and use for reminders for the next target tissue penetration event. Human interface 354 can be coupled to a human interface processor 366 which is distinct from processor 330. Human interface processor 366 can include a sleep mode and can run intermittently to conserve power. Human interface processor 366 includes logic that can provide an alarm time set for a first subset of days, and a second alarm time set for a second subset of days. By way of example, and without limitation, the first subset of days can be Monday through Friday, and the second subset of days can be Saturday and Sunday.


Human interface 354 can be coupled to a memory 368 for storing a variety of information, including but not limited to, the number of target tissue penetrating events, time and date of the last selected number of target tissue penetrating events, time interval between alarm and target tissue penetrating event, stratum corneum thickness when target tissue 320 is below the skin surface and underlying tissue, time of day, energy consumed by penetrating member driver 316 to drive penetrating member 312 into target tissue 320, depth of penetrating member 312 penetration, velocity of penetrating member 312, a desired velocity profile, velocity of penetrating member 312 into target tissue 320, velocity of penetrating member 312 out of target tissue 320, dwell time of penetrating member 312 in target tissue 320, a target tissue relaxation parameter, force delivered on target tissue 320, dwell time of penetrating member 312, battery status of tissue penetrating system 310 and its components, tissue penetrating system 310 status, consumed energy, speed profile of penetrating member 312 as it advances through target tissue 320, a target tissue relaxation parameter, information relative to contact of a penetrating member 312 with target tissue 320 before penetration by penetrating member 312, information relative to a change of speed of penetrating member 312 as in travels in target tissue 320, information relative to consumed sensors, information relative to consumed penetrating members 312.


As illustrated in FIG. 24, tissue penetrating system 310 can include a penetrating member driver 316 and a plurality of cartridges 370. Each cartridge 370 contains a penetrating member 312. The cartridges 370 can be coupled together in an array, which can be a flexible array. A cartridge transport device 372 moves cartridges 370 into a launch position that operatively couples a penetrating member 312 to penetrating member driver 316. A support couples cartridges 370 to define an array. A plurality of sterility enclosures 322 can be provided to at least cover tips of penetrating members 312. Sterility enclosure 322 (shown in phantom) is removed from their associated penetrating members 312 prior to launch of the penetrating member 312. The enclosure may be peeled away (not shown) in a manner similar to that as seen in FIG. 22B, with the enclosure 322 on one tape surface being peeled away. The enclosure 322 may be a blister sack, a sack tightly formed about each cartridge 370, or other enclosure useful for maintaining a sterile environment about the cartridge 370 prior to actuation or launch. The enclosure 322 may contain the entire cartridge 370 or some portion of the cartridge 370 which may need to remain sterile prior to launch. During launch, enclosure or sterility barrier 322 can be breached by a device other than penetrating member 312, or can be breached by penetrating member 312 itself. An analyte detection member, sensor, may be positioned to receive fluid from a wound created by the penetrating member 312. The member may be on the cartridge 370 or may be on the device 80.


Referring to FIGS. 24 and 25, one embodiment of tissue penetrating system 310 includes cartridge transport device 372 and a plurality of cartridges 370. Each cartridge 370 is associated with a penetrating member 312. Cartridge transport device 372 moves each cartridge 370 to a position to align the associated penetrating member 312 with penetrating member driver 316 to drive penetrating member 312 along a path into target tissue 320. In one embodiment as seen in FIG. 25, each cartridge 370 has at least one of a distal port 374 and a proximal port 376. A first seal 378 is positioned at distal or proximal ports. As seen in FIG. 25, the seal 378 may be placed at the distal port. First seal 378 is formed of a material that is fractured by penetrating member 312 before it is launched. A second seal 380 can be positioned at the other port. It will be appreciated that only one or both of distal and proximal ports 374 and 376 can be sealed, and that each cartridge 370 can include only one port 374 and 376. For ease of illustration, the penetrating member 312 extending longitudinally through the lumen in the cartridge 370 is not shown. The seals 380 and 378 may be fracturable seals formed between the penetrating member and the cartridge 370. During actuation, the seals 378 and 380 are broken. Seal 378 may be also be positioned to cover the distal port or exit port 374 without being sealed against the penetrating member (i.e. covering the port without touching the penetrating member). A third seal 381 may be positioned to cover an entrance to sample chamber 384. The seal 381 may be configured to be broken when the penetrating member 312 is actuated. A still further seal 381A may be placed in the lumen. The tip of a penetrating member may be located at any position along the lumen, and may also be at or surrounded by one of the seals 378, 381, 381A, or 376.


Referring still to FIG. 25, a cover sheet 383 may be a flexible polymer sheet as described in commonly assigned, copending U.S. patent application Ser. No. 10/127,395 filed Apr. 19, 2002. It should be understood of course that the sheet may be made of a variety of materials useful for coupling an analyte detecting member 390. This allows the analyte detecting member 390 to be sterilized separately from the cartridge 370 and assembled together with the cartridge at a later time. This process may be used on certain analyte detecting members 390 that may be damaged if exposed to the sterilization process used on the cartridge 370. Of course, some embodiments may also have the analyte detecting member 390 coupled to the cartridge 370 during sterilization. The cover sheet 383 may also form part of the seal to maintain a sterile environment about portions of the penetrating member. In other embodiments, the lumen housing penetrating member may be enclosed and not use a sheet 383 to help form a sterile environment. In still further embodiments, the sheet 383 may be sized to focus on covering sample chamber 384.


As illustrated in FIG. 26, cartridge 370 has at least one port 374. A plurality of penetrating members 312 are in cartridge 370. Although cartridge 370 is shown in FIG. 26 to have a linear design, the cartridge 370 may also have a curved, round, circular, triangular, or other configuration useful for positioning a penetrating member for use with a drive force generator. A seal 382 is associated with each penetrating member 312 in order to maintain each penetrating member 312 in a sterile environment in cartridge 370 prior to launch. Prior to launch, seal 382 associated with the penetrating member 312 to be launched is broken. In one embodiment, a punch (not shown) is used to push down on the seal 382 covering the port 376 of the cartridge 370. This breaks the seal 382 and also pushes it downward, allowing the penetrating member to exit the cartridge without contacting the seal 382. The timing of the breaking of the seal 382 may be varied so long as the penetrating member remains substantially sterile when being launched towards the tissue site 320. In other embodiments, the port 376 may have a seal 383 that protrudes outward and is broken off by the downward motion of the punch. One or more sample chambers 384 are included in cartridge 370. In one embodiment, each penetrating member 312 has an associated sample chamber 384. In one embodiment, illustrated in FIG. 27, penetrating member 312 is extendable through an opening 386 of its associated sample chamber 384. In some embodiments, a seal 387 may be included in the sample chamber 384. Seals 382 and 387 may be made from a variety of materials such as but not limited to metallic foil, aluminum foil, paper, polymeric material, or laminates combining any of the above. The seals may also be made of a fracturable material. The seals may be made of a material that can easily be broken when a device applies a force thereto. The seals alone or in combination with other barriers may be used to create a sterile environment about at least the tip of the penetrating member prior to lancing or actuation.


With reference now to the embodiment of FIG. 28, each sample chamber 384 may have an opening 388 for transport of a body fluid into the sample chamber 384. The size of sample chambers 384 in FIGS. 26 through 28 can vary. In various embodiments, sample chambers 384 are sized to receive, no more than 1.0 mL of the body fluid, no more than 0.75 mL of the body fluid, no more than 0.5 mL of the body fluid, no more than 0.25 mL of the body fluid, no more than 0.1 mL of the body fluid, and the like. It will be appreciated that sample chambers 384 can have larger or smaller sizes.


An analyte detecting member 390 may associated with each sample chamber 384. The analyte detecting member 390 may be designed for use with a variety of different sensing techniques as described in commonly assigned, copending U.S. patent application Ser. No. 10/127,395 filed Apr. 19, 2002. Analyte detecting member 390 can be positioned in sample chamber 384, at an exterior of sample chamber 384, or at other locations useful for obtaining an analyte. Analyte detecting member 390 can be in a well 392, or merely be placed on a support.


In one embodiment, analyte detecting member 390 includes chemistries that are utilized to measure and detect glucose, and other analytes. In another embodiment, analyte detecting member 390 is utilized to detect and measure the amount of different analytes in a body fluid or sample. In various embodiments, analyte detecting member 390 determines a concentration of an analyte in a body fluid using a sample that does not exceed a volume of, 1 mL of a body fluid disposed in sample chamber 384, 0.75 mL of a body fluid disposed in sample chamber 384, 0.5 mL of a body fluid disposed in sample chamber 384, 0.25 mL of a body fluid disposed in sample chamber 384, 0.1 mL of a body fluid disposed in sample chamber 384, and the like. For example and not by way of limitation, the sample chamber 384 may be of a size larger than the volumes above, but the analyte detecting member 390 can obtain an analyte reading using the amounts of fluid described above.


As illustrated in FIG. 29, tissue penetrating system 310 can include a housing member 394, a penetrating member 312 positioned in housing member 394, and analyte detecting member 390 coupled to a sample chamber 384. Analyte detecting member 390 is configured to determine a concentration of an analyte in a body fluid using with a variety of different body fluid, sample, volumes. In various embodiments, the volume is less than 1 mL of body fluid disposed in sample chamber 384, 0.75 of body fluid disposed in sample chamber 384, 0.5 of body fluid disposed in sample chamber 384, 0.25 of body fluid disposed in sample chamber 384, 0.1 of body fluid disposed in sample chamber 384 and the like. Each tip of a penetrating member 312 is configured to extend through an opening of sample chamber 384. A plurality of penetrating members 312 can be positioned in housing member 394. Housing member 394 can be the same as cartridge 370. Cartridge 370 can have distal and proximal ports 374 and 376, respectively. Additionally, in this embodiment, a plurality of cartridges 370 can be provided, each associated with a penetrating member 312.


Referring to FIG. 30, each penetrating member 312 has a packing density, or occupied volume, in cartridge 370. In various embodiments, the packing density of each penetrating member 312 in cartridge 370 can be no more than, 5.0 cm3/penetrating member 312, 4.0 cm3/penetrating member 312, 3.0 cm3/penetrating member 312, 2.0 cm3/penetrating member 312, 1.0 cm3/penetrating member 312, 0.75 cm3/penetrating member 312, 0.5 cm3/penetrating member 312, 0.25 cm3/penetrating member 312, 0.1 cm3/penetrating member 312, and the like. In other words, the volume required for each penetrating member does not exceed 5.0 cm3/penetrating member 312, 4.0 cm3/penetrating member 312, 3.0 cm3/penetrating member 312, 2.0 cm3/penetrating member 312, 1.0 cm3/penetrating member 312, 0.75 cm3/penetrating member 312, 0.5 cm3/penetrating member 312, 0.25 cm3/penetrating member 312, 0.1 cm3/penetrating member 312, and the like. So, as seen in FIG. 30, if the total package volume of the cartridge is defined as X and the cartridge includes Y number of penetrating members 312, penetrating members 312 and test area, or other unit 395, the volume for each unit does not exceed 5.0 cm3/unit, 4.0 cm3/unit, 3.0 cm3/unit, 2.0 cm3/unit, 1.0 cm3/unit, 0.75 cm3/unit, 0.5 cm3/unit, 0.25 cm3/unit, 0.1 cm3/unit, and the like.


In various embodiments, each penetrating member 312 and its associated sample chamber 384 have a combined packing density of no more than about 5.0 cm3, 4.0 cm3, 3.0 cm3, 2.0 cm3, 1.0 cm3, 0.75 cm3, 0.5 cm3, 0.25 cm3, 0.1 cm3, and the like.


With reference now to FIG. 31, tissue penetrating system 310 can have a first seal 378 formed at distal port 374 and a second seal 380 formed at proximal port 376 of cartridge 370. Prior to launching of penetrating member 312, distal seal 378 and second seal 380 maintain a distal tip of penetrating member 312 and sample chamber 384 in a sterile environment. Second seal 380 is breached, and penetrating member 312 is then launched.


As illustrated in FIG. 32, a plurality of lumens 396 can be positioned between distal port 374 and proximal port 376 of cartridge 370 for slidably receiving a penetrating member 312. Sample chamber 384 is defined by cartridge 370, has an opening 398 and is associated with penetrating member 312. First seal 378 covers distal port 374, and a second seal 380 covers proximal port 376.


In another embodiment as shown in FIG. 33, tissue penetrating system 310 includes a plurality of cartridges 370, penetrating member driver 316, and a plurality of penetrating members 312 coupled to penetrating member driver 316. Each penetrating member 312 is associated with a cartridge 370. A plurality of gas-tightly sealed enclosures 400 are coupled in an array. Each enclosure 400 fully contains at least one of cartridge 370. Enclosures 400 are configured to be advanceable on cartridge transport device 372 that individually releases cartridges 370 from sacks or enclosures 400 and loads them individually onto penetrating member driver 316. The enclosures 400 may be removed by peeling back a top portion of the tape as shown in FIG. 22B.


In another embodiment, a plurality of penetrating members 312 each have a sharpened distal tip. A penetrating member driver 316 is coupled to each penetrating member 312. A plurality of cartridges 370 are coupled in an array. Each cartridge 370 houses a penetrating member 312 and is configured to permit penetrating member driver 316 to engage each of penetrating members 312 sequentially. Each cartridge 370 has a plurality of seals positioned to provide that the sharpened distal tips remain in a sterile environment before penetrating target tissue 320. Penetrating members 312 are launched without breaking a seal using the penetrating member.


Referring now to FIG. 34, a plurality of cartridges 370 are provided, each having distal and proximal ports 374 and 376, respectively. A plurality of penetrating members 312 are each associated with a cartridge 370. Each penetrating member 312 has a sharpened distal tip and a shaft portion slidably disposed within cartridge 370. As seen in FIG. 34, the cartridges 370 may be coupled together by a connector or flexible support 403. A seal 404 is formed by a fracturable material between the penetrating member 312 and each cartridge 370. Seal 404 is positioned in at least one of distal or proximal ports 374 and 376, respectively, of cartridge 370. Cartridge transport device 372 moves each cartridge 370 to a position 405 that aligns penetrating member 312 with penetrating member driver 316 so that penetrating member 312 can be driven along a path into target tissue 320.


In another embodiment of the present invention as seen in FIG. 35, tissue penetrating system 310 includes a housing member 406, the plurality of penetrating members 312 positioned in housing member 406, and a tissue stabilizing member 408, which can also be a pressure applicator, stimulating member, stimulating vibratory member that imparts motion to a tissue surface, and the like. Tissue stabilizing member 408 can be positioned to at least partially surround an impact location of the penetrating member 312 on the target tissue 320 site. Tissue stabilizing member 408 can, enhance fluid flow from target tissue 320, stretch a target tissue 320 surface, apply a vacuum to target tissue 320, apply a force to target tissue 320 and cause target tissue 320 to press in an inward direction relative to housing member 406, apply a stimulation to target tissue 320, and the like. Tissue stabilizing member 408 can have a variety of different configurations. In one embodiment, tissue stabilizer member 408 includes a plurality of protrusions 410. In some further embodiments, a vacuum source 412 may be provided to assist the creation of a low pressure environment in the tissue stabilizing member 408 or along the fluid path to a sample chamber associated with the system 310. In some embodiments, the tissue stabilizing member 408 is mounted on the cartridge 370. In other embodiments, the member 408 may be mounted on the housing 406. The member 408 may also be pressed against the tissue site 320 and act as a pressure applicator. The member 408 may also be used against a variety of tissue including but not limited to skin or other body tissue.


Referring now to FIGS. 36 and 37, a cartridge 370 is shown with a penetrating member 312 creating a wound W in the tissue site 320. In FIG. 36, a movable capillary member 420 is extended towards the wound W as indicated by arrow 422 to gather body fluid being expressed from the wound. The fluid may be drawn to a sample chamber 384 (not shown). In FIG. 37, the wound W is created and then the entire cartridge is moved to the tissue site 320 to gather body fluid from the wound W. In some embodiments, the cartridge 370 moves towards the wound W relative to the housing 406.


Tissue penetrating systems 310 of FIGS. 22 through 37, can be utilized in a variety of different applications to detect any number of different analytes, including but not limited to glucose. The systems 310 may be used to measure potassium, other ions, or analytes associated with the process of glucose monitoring. The analyte detecting member 390 may further be adapted to measure other analytes found in body fluid.


In a still further embodiment, penetrating member 312 may be moved and positioned to be in engagement with penetrating member driver 316. Penetrating member 312 is in a sterile environment, and prior to launch, the sterilizing covering, which can be a seal is removed. Tissue stabilizing member can apply a stimulation to a surface of the target tissue 320 prior to, and during penetration by penetration member. Penetrating member 312 is engaged with penetrating driving member and controllably pierces a target tissue 320 site. Penetrating member sensor 324 is utilized to control penetration depth and velocity of penetrating member 312. Penetrating member 312 is stopped at a desired depth below a surface of target tissue 320 in order to reduce or eliminate without multiple oscillations against the surface of target tissue 320. A wound is created, causing blood to flow into sample chamber 384. In various embodiments, no more than 1 mL of a body fluid is collected in sample chamber 384.


A number of different preferences, options, embodiment, and features have been given above, and following any one of these may results in an embodiment of this invention that is more presently preferred than a embodiment in which that particular preference is not followed. These preferences, options, embodiment, and features may be generally independent, and additive; and following more than one of these preferences may result in a more presently preferred embodiment than one in which fewer of the preferences are followed.


While the invention has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various adaptations, changes, modifications, substitutions, deletions, or additions of procedures and protocols may be made without departing from the spirit and scope of the invention. Any of the embodiments of the invention may be modified to include any of the features described above or feature incorporated by reference herein. For example, the cartridge of FIG. 26 may be adapted to include a distal portion with a tissue stabilizing member. The cartridge of FIG. 26 may be adapted for use with a vacuum device. The cartridge may include indexing features such as notches on the distal portion or outer radial periphery for those cartridges with a radial configuration. The notches will facilitate positioning, among other things, and may be used for movement. Other cartridges or tapes herein may be modified with notches or tractor holes to facilitate movement. User interfaces, human interfaces, and other interfaces may be added to any of the embodiments of the present invention.


With any of the above embodiments, the location of the penetrating member drive device may be varied, relative to the penetrating members or the cartridge. With any of the above embodiments, the penetrating member tips may be uncovered during actuation (i.e. penetrating members do not pierce the penetrating member enclosure or protective foil during launch). With any of the above embodiments, the penetrating members may be a bare penetrating member during launch. With any of the above embodiments, the penetrating members may be bare penetrating members prior to launch as this may allow for significantly tighter densities of penetrating members. In some embodiments, the penetrating members may be bent, curved, textured, shaped, or otherwise treated at a proximal end or area to facilitate handling by an actuator. The penetrating member may be configured to have a notch or groove to facilitate coupling to a gripper or coupler. The notch or groove may be formed along an elongate portion of the penetrating member. The coupler may be designed to create a frictional only type grip on the penetrating member.


With any of the above embodiments, any open cavity housing the penetrating may be on the bottom or the top of the cartridge, with the gripper on the other side. In some embodiments, sensors may be printed on the top, bottom, or side of the cavities. The front end of the cartridge maybe in contact with a user during lancing. The same driver may be used for advancing and retraction of the penetrating member. The penetrating member may have a diameters and length suitable for obtaining the blood volumes described herein. The penetrating member driver may also be in substantially the same plane as the cartridge. The driver may use a through hole or other opening to engage a proximal end of a penetrating member to actuate the penetrating member along a path into and out of the tissue.


Any of the features described in this application or any reference disclosed herein may be adapted for use with any embodiment of the present invention. For example, the devices of the present invention may also be combined for use with injection penetrating members or needles as described in commonly assigned, copending U.S. patent application Ser. No. 10/127,395 filed Apr. 19, 2002. A sensor to detect the presence of foil may also be included in the lancing apparatus. For example, if a cavity has been used before, the foil or sterility barrier will be punched. The sensor can detect if the cavity is fresh or not based on the status of the barrier. It should be understood that in optional embodiments, the sterility barrier may be designed to pierce a sterility barrier of thickness that does not dull a tip of the penetrating member. The lancing apparatus may also use improved drive mechanisms. For example, a solenoid force generator may be improved to try to increase the amount of force the solenoid can generate for a given current. A solenoid for use with the present invention may have five coils and in the present embodiment the slug is roughly the size of two coils. One change is to increase the thickness of the outer metal shell or windings surround the coils. By increasing the thickness, the flux will also be increased. The slug may be split; two smaller slugs may also be used and offset by ½ of a coil pitch. This allows more slugs to be approaching a coil where it could be accelerated. This creates more events where a slug is approaching a coil, creating a more efficient system.


In another optional alternative embodiment, a gripper in the inner end of the protective cavity may hold the penetrating member during shipment and after use, eliminating the feature of using the foil, protective end, or other part to retain the used penetrating member. Some other advantages of the disclosed embodiments and features of additional embodiments include: same mechanism for transferring the used penetrating members to a storage area; a high number of penetrating members such as 25, 50, 75, 100, 500, or more penetrating members may be put on a disk or cartridge; molded body about a penetrating member becomes unnecessary; manufacturing of multiple penetrating member devices is simplified through the use of cartridges; handling is possible of bare rods metal wires, without any additional structural features, to actuate them into tissue; maintaining extreme (better than 50 micron-lateral- and better than 20 micron vertical) precision in guiding; and storage system for new and used penetrating members, with individual cavities/slots is provided. The housing of the lancing device may also be sized to be ergonomically pleasing. In one embodiment, the device has a width of about 56 mm, a length of about 105 mm and a thickness of about 15 mm. Additionally, some embodiments of the present invention may be used with non-electrical force generators or drive mechanism. For example, the punch device and methods for releasing the penetrating members from sterile enclosures could be adapted for use with spring based launchers. The gripper using a frictional coupling may also be adapted for use with other drive technologies.


Still further optional features may be included with the present invention. For example, with any of the above embodiments, the location of the penetrating member drive device may be varied, relative to the penetrating members or the cartridge. With any of the above embodiments, the penetrating member tips may be uncovered during actuation (i.e. penetrating members do not pierce the penetrating member enclosure or protective foil during launch). The penetrating members may be a bare penetrating member during launch. The same driver may be used for advancing and retraction of the penetrating member. Different analyte detecting members detecting different ranges of glucose concentration, different analytes, or the like may be combined for use with each penetrating member. Non-potentiometric measurement techniques may also be used for analyte detection. For example, direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode may be used to measure glucose levels. In all methods, nanoscopic wire growth can be carried out via chemical vapor deposition (CVD). In all of the embodiments of the invention, preferred nanoscopic wires may be nanotubes. Any method useful for depositing a glucose oxidase or other analyte detection material on a nanowire or nanotube may be used with the present invention. Expected variations or differences in the results are contemplated in accordance with the objects and practices of the present invention. It is intended, therefore, that the invention be defined by the scope of the claims which follow and that such claims be interpreted as broadly as is reasonable.

Claims
  • 1. A tissue penetrating system, comprising: a housing member;a plurality of penetrating members positioned in a disposable in the housing member, the disposable having a plurality of penetrating member module portions each with a penetrating member channel, each of a penetrating member channel being parallel to a longitudinal axis of the disposable each of a penetrating member being free to slide in a respective penetrating member channel of the disposable with a sharpened tip of the penetrating member being withdrawn into a penetrating member channel to protect the tip and allow rotational motion between the disposable relative to the housing, a radial center of each penetrating member channel being disposed in a fixed, known radial distance from a longitudinal axis of the disposable to provide that each of a penetrating member channel is repeatably aligned in a functional arrangement with penetrating member channels of the disposable, the disposable configured to rotate about a pivot;a plurality of analyte sensors, each of an analyte sensors being associated with a penetrating member,an electronic penetrating member driver for driving each of the plurality of penetrating members;a processor coupled to the electronic penetrating member driver, the processor including a user customizable velocity profile for setting penetration parameters of at least one of the plurality of penetrating members to successfully create the puncture wound with a desired degree of painlessness, success rate, and blood volume; wherein the processor causes the electronic penetrating member driver to advance and retract said at least one penetrating member of the plurality of penetrating members with predetermined force to achieve said user customizable velocity profile; anda penetrating member transport device for moving each of the plurality of penetrating members into a position for alignment with and to be driven by the penetrating member driver.
  • 2. The system of claim 1, wherein a tissue stabilizing member is configured to enhance fluid flow from a target tissue.
  • 3. The system of claim 1, wherein a tissue stabilizing member includes a plurality of protrusions.
  • 4. The system of claim 1, wherein a tissue stabilizing member applies a vacuum to a target tissue.
  • 5. The system of claim 1, wherein a tissue stabilizing member is configured to apply a force to a target tissue and cause the target tissue to press in an inward direction.
  • 6. The system of claim 1, wherein a tissue stabilizing member applies a stimulation to a target tissue.
  • 7. The system of claim 1, wherein a dwell time of the penetrating member in a target tissue below a skin surface is in the range of 500 milliseconds to 1.5 second.
  • 8. The system of claim 1, wherein a dwell time of the penetrating member in a target tissue below a skin surface is in the range of 100 milliseconds to 1 second.
  • 9. The system of claim 1, wherein the penetrating member sensor includes a capacitive incremental encoder.
  • 10. The system of claim 1, wherein the penetrating member sensor includes an incremental encoder.
  • 11. The system of claim 1, wherein the penetrating member sensor includes an optical encoder.
  • 12. The system of claim 1, wherein the penetrating member sensor includes an interference encoder.
  • 13. The system of claim 1, further comprising: a sample chamber with an opening for transport of a body fluid into the sample chamber, the sample chamber being sized to receive no more than 1.0 μL of the body fluid.
  • 14. The system of claim 1, further comprising: a sample chamber with an opening for transport of a body fluid into the sample chamber, the sample chamber being sized to receive no more than 0.75 μL of the body fluid.
  • 15. The system of claim 1, further comprising: a sample chamber with an opening for transport of a body fluid into the sample chamber, the sample chamber being sized to receive no more than 0.5 μL of the body fluid.
  • 16. The system of claim 1, further comprising: a sample chamber with an opening for transport of a body fluid into the sample chamber, the sample chamber being sized to receive no more than 0.25 μL of the body fluid.
  • 17. The system of claim 1, further comprising: a sample chamber with an opening for transport of a body fluid into the sample chamber, the sample chamber being sized to receive no more than 0.1 μL of the body fluid.
  • 18. The system of claim 1, further comprising: an analyte detecting member coupled to a sample chamber, the analyte detecting member being configured to determine a concentration of an analyte in a body fluid using a sample that does not exceed a volume of 1 μL of a body fluid disposed in the sample chamber.
  • 19. The system of claim 1, further comprising: an analyte detecting member coupled to a sample chamber, the analyte detecting member being configured to determine a concentration of an analyte in a body fluid using a sample that does not exceed a volume of 0.75 μL of a body fluid disposed in the sample chamber.
  • 20. The system of claim 1, further comprising: an analyte detecting member coupled to a sample chamber, the analyte detecting member being configured to determine a concentration of an analyte in a body fluid using a sample that does not exceed a volume of 0.5 μL of a body fluid disposed in the sample chamber.
  • 21. The system of claim 1, further comprising: an analyte detecting member coupled to a sample chamber, the analyte detecting member being configured to determine a concentration of an analyte in a body fluid using a sample that does not exceed a volume of 0.25 μL of a body fluid disposed in the sample chamber.
  • 22. The system of claim 1, further comprising: an analyte detecting member coupled to a sample chamber, the analyte detecting member being configured to determine a concentration of an analyte in a body fluid using a sample that does not exceed a volume of 0.1 μL of a body fluid disposed in the sample chamber.
  • 23. The system of claim 1, wherein each penetrating member is an elongated member without molded attachments.
  • 24. The system of claim 1, further comprising: a penetrating member transport device for moving each of a penetrating member into a position aligned with the penetrating member driver.
  • 25. The system of claim 1, further comprising, a belt for holding the penetrating members in an array configuration.
  • 26. The system of claim 1, further comprising: a tape device configured to hold the penetrating members in an array configuration.
  • 27. The system of claim 1, further comprising: a support channel configured to hold the penetrating members in an array configuration.
  • 28. The system of claim 1, further comprising: a cog configured to hold the penetrating members in an array configuration.
  • 29. The system of claim 1, further comprising: a plurality of connectors between penetrating members for holding the penetrating members in an array configuration.
  • 30. The system of claim 1, further comprising: a penetrating member sensor coupled to each of the plurality of penetrating members, the penetrating member sensor configured to provide information relative to a depth of penetration of a penetrating member through a skin surface.
  • 31. The system of claim 30, wherein the depth of penetration is 100 to 2500 microns.
  • 32. The system of claim 30, wherein the penetrating member sensor is further configured to provide an indication of velocity of a penetrating member.
  • 33. The system of claim 30, further comprising: a feedback loop coupled to the penetrating member sensor.
  • 34. The system of claim 30, wherein the depth of penetration is 500 to 750 microns.
  • 35. The system of claim 34, wherein a processor includes a memory for storage and retrieval of a set of penetrating member profiles utilized with the penetrating member driver.
  • 36. The system of claim 34, wherein a processor is utilized to monitor position and speed of a penetrating member as the penetrating member moves in a first direction.
  • 37. The system of claim 34, wherein a processor is utilized to adjust an application of force to a penetrating member to achieve a desired speed of the penetrating member.
  • 38. The system of claim 34, wherein a processor is utilized to adjust an application of force to a penetrating member when the penetrating member contacts a target tissue so that the penetrating member penetrates the target tissue within a desired range of speed.
  • 39. The system of claim 34, wherein a processor is utilized to monitor position and speed of a penetrating member as the penetrating member moves in the first direction toward a target tissue, wherein the application of a launching force to the penetrating member is controlled based on position and speed of the penetrating member.
  • 40. The system of claim 30, wherein the penetrating member driver is a voice coil drive force generator.
  • 41. The system of claim 40, wherein a processor is utilized to control a withdraw force to the penetrating member so that the penetrating member moves in a second direction away from a target tissue.
  • 42. The system of claim 40, wherein a speed of a penetrating member in a first direction is the range of 0.05 to 60 m/sec.
  • 43. The system of claim 40, wherein a speed of a penetrating member in a first direction is the range of 0.1 to 20.0 m/sec.
  • 44. The system of claim 40, wherein a speed of a penetrating member in a first direction is the range of 1.0 to 10.0 m/sec.
  • 45. The system of claim 40, wherein a speed of a penetrating member in a first direction is the range of 3.0 to 8.0 m/sec.
  • 46. The system of claim 40, wherein a dwell time of the penetrating member in a target tissue below a skin surface is in the range of 1 microsecond to 2 seconds.
  • 47. The system of claim 30, wherein the penetrating member sensor is coupled to a processor with control instructions for the penetrating member driver.
  • 48. The system of claim 47, wherein in a first direction the penetrating member moves toward the target tissue at a speed that is different than a speed at which the penetrating member moves away from a target tissue.
  • 49. The system of claim 47, wherein in a first direction the penetrating member moves toward the target tissue at a speed that is greater than a speed at which the penetrating member moves away from a target tissue.
  • 50. The system of claim 1, further comprising: a seal formed by a fracturable material between the penetrating member and a cartridge, the seal being positioned at least one of a distal port or a proximal port of the cartridge.
  • 51. The system of claim 50, further comprising a second fracturable seal located at least one of the distal port or proximal port of cartridge.
  • 52. The system of claim 1, further comprising: a support structure for receiving the penetrating members.
  • 53. The system of claim 52, wherein the support structure is a bandolier.
  • 54. The system of claim 52, wherein the support structure is a drum.
  • 55. The system of claim 52, wherein the support structure is a disc.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Ser. No. 10/335,212 filed Dec. 31, 2002 now U.S. Pat. No. 7,547,287, which application is a continuation-in-part of U.S. Ser. No. 10/127,395 filed Apr. 19, 2002 now U.S. Pat. No. 7,025,774 and 10/237,261, filed Sep. 5, 2002 now U.S. Pat. No. 7,344,507. All applications listed above are fully incorporated herein by reference for all purposes.

US Referenced Citations (2937)
Number Name Date Kind
2061 Osdel Apr 1841 A
55620 Capewell Jun 1866 A
1135465 Pollock Apr 1915 A
1733847 Wilmot Oct 1929 A
2258857 McCann Oct 1941 A
2628319 Vang Feb 1953 A
2714890 Alfred Aug 1955 A
2763935 Whaley Sep 1956 A
2801633 Ehrlich Aug 1957 A
2880876 Dujardin Apr 1959 A
3046987 Ehrlich Jul 1962 A
3030959 Grunert Sep 1962 A
3086288 Balamuth Apr 1963 A
3090384 Baldwin et al. May 1963 A
3208452 Stern Sep 1965 A
3358689 Higgins Dec 1967 A
3412729 Smith, Jr. Nov 1968 A
3448307 Rudolph Jun 1969 A
3494358 Grossenbacher Feb 1970 A
3620209 Kravitz Nov 1971 A
3626929 Sanz Dec 1971 A
3628026 Cronin Dec 1971 A
3665672 Speelman May 1972 A
3673475 Britton Jun 1972 A
3712293 Mielke, Jr. Jan 1973 A
3734812 Yazawa May 1973 A
3742954 Strickland Jul 1973 A
3780960 Tokuno Dec 1973 A
3832776 Sawyer Sep 1974 A
3836148 Manning Sep 1974 A
3851543 Krom Dec 1974 A
3853010 Christen Dec 1974 A
3924818 Pfeifle Dec 1975 A
3938526 Anderson Feb 1976 A
3953172 Shapiro Apr 1976 A
3971365 Smith Jul 1976 A
4057394 Genshaw Nov 1977 A
4077406 Sandhage Mar 1978 A
4109655 Chaconac Aug 1978 A
4139011 Benoit Feb 1979 A
4154228 Feldstein May 1979 A
4168130 Barth Sep 1979 A
4184486 Papa Jan 1980 A
4190420 Covington Feb 1980 A
4191193 Seo Mar 1980 A
4193690 Levenson Mar 1980 A
4203446 Hofert May 1980 A
4207870 Eldridge Jun 1980 A
4223674 Fluent Sep 1980 A
4224125 Nakamura Sep 1980 A
4224949 Scott Sep 1980 A
4230118 Holman et al. Oct 1980 A
4240439 Abe Dec 1980 A
4254083 Columbus Mar 1981 A
4258001 Pierce Mar 1981 A
4259653 McGonigal Mar 1981 A
4299230 Kubota Nov 1981 A
4301412 Hill Nov 1981 A
4321397 Nix Mar 1982 A
4338174 Tamura Jul 1982 A
4340669 Bauer Jul 1982 A
4350762 De Luca Sep 1982 A
4353984 Yamada Oct 1982 A
4356826 Kubota Nov 1982 A
4360016 Sarrine Nov 1982 A
4388922 Telang Jun 1983 A
4391905 Bauer Jul 1983 A
4391906 Bauer Jul 1983 A
4392933 Nakamura Jul 1983 A
4394512 Batz Jul 1983 A
4397556 Muller Aug 1983 A
4407008 Schmidt Sep 1983 A
4411266 Cosman Oct 1983 A
4414975 Ryder Nov 1983 A
4418037 Katsuyama Nov 1983 A
4420564 Tsuji Dec 1983 A
4425039 Grant Jan 1984 A
4426451 Columbus Jan 1984 A
4426884 Polchaninoff Jan 1984 A
4440301 Intengan Apr 1984 A
4442836 Meinecke Apr 1984 A
4442972 Sahay Apr 1984 A
4449529 Burns May 1984 A
4462405 Ehrlich Jul 1984 A
4469110 Slama Sep 1984 A
4517978 Levin May 1985 A
4518384 Tarello May 1985 A
4523994 Shono Jun 1985 A
4535769 Burns Aug 1985 A
4535773 Yoon Aug 1985 A
4537197 Hulka Aug 1985 A
4539988 Shirley Sep 1985 A
4545382 Higgins Oct 1985 A
4553541 Burns Nov 1985 A
4561445 Berke Dec 1985 A
4577630 Nitzsche Mar 1986 A
4580564 Anderson Apr 1986 A
4580565 Cornell Apr 1986 A
4586819 Tochigi May 1986 A
4586926 Osborne May 1986 A
4590411 Kelly May 1986 A
4595479 Kimura Jun 1986 A
4600014 Beraha Jul 1986 A
4603209 Tsien Jul 1986 A
4608997 Conway Sep 1986 A
4615340 Cronenberg Oct 1986 A
4616649 Burns Oct 1986 A
4619754 Niki Oct 1986 A
4622974 Coleman Nov 1986 A
4624253 Burns Nov 1986 A
4627445 Garcia Dec 1986 A
4637393 Ray Jan 1987 A
4637403 Garcia Jan 1987 A
4643189 Mintz Feb 1987 A
4648408 Hutcheson Mar 1987 A
4648714 Benner Mar 1987 A
4653511 Goch Mar 1987 A
4653513 Dombrowski Mar 1987 A
4655225 Dahne Apr 1987 A
4661768 Carusillo Apr 1987 A
4666438 Raulerson May 1987 A
4676244 Enstrom Jun 1987 A
4677979 Burns Jul 1987 A
4678277 Delhaye Jul 1987 A
4682892 Chawla Jul 1987 A
4702594 Grant Oct 1987 A
4711245 Higgins Dec 1987 A
4712460 Allen Dec 1987 A
4712548 Enstrom Dec 1987 A
4714462 DiDomenico Dec 1987 A
4715374 Maggio Dec 1987 A
4731330 Hilll Mar 1988 A
4731726 Allen, III Mar 1988 A
4734360 Phillips Mar 1988 A
4735203 Ryder Apr 1988 A
4737458 Batz Apr 1988 A
4750489 Berkman Jun 1988 A
4753776 Hillman Jun 1988 A
4756884 Hillman Jul 1988 A
4757022 Shults Jul 1988 A
4758323 Davis Jul 1988 A
4774192 Teriniello Sep 1988 A
4784486 Van Wagenen Nov 1988 A
4787398 Garcia Nov 1988 A
4790979 Teriniello Dec 1988 A
4794926 Munsch et al. Jan 1989 A
4797283 Allen Jan 1989 A
4814142 Gleisner Mar 1989 A
4814661 Ratzlaff Mar 1989 A
4817603 Turner Apr 1989 A
4818493 Coville Apr 1989 A
4820010 Sciefres Apr 1989 A
4820399 Senda Apr 1989 A
4823806 Bajada Apr 1989 A
4824639 Hildenbrand Apr 1989 A
RE32922 Levin May 1989 E
4825711 Jensen May 1989 A
4827763 Bourland May 1989 A
4829011 Gibbons May 1989 A
4830959 McNeill May 1989 A
4836904 Armstron Jun 1989 A
4840893 Hill Jun 1989 A
4844095 Chiodo Jul 1989 A
4845392 Mumbower Jul 1989 A
4850973 Jordan Jul 1989 A
4857274 Simon Aug 1989 A
4868129 Gibbons Sep 1989 A
4869249 Crossman Sep 1989 A
4869265 McEwen Sep 1989 A
4873993 Meserol Oct 1989 A
4877026 de Laforcade Oct 1989 A
4882013 Turner Nov 1989 A
4883055 Merrick Nov 1989 A
4883068 Dechow Nov 1989 A
4886499 Cirelli Dec 1989 A
4889529 Haindl Dec 1989 A
4892097 Ranalletta Jan 1990 A
4895147 Bodicky Jan 1990 A
4895156 Schulze Jan 1990 A
4897173 Nankai Jan 1990 A
4900424 Birch Feb 1990 A
4900666 Phillips Feb 1990 A
4911794 Parce Mar 1990 A
4920977 Haynes May 1990 A
4924879 O'brien May 1990 A
4935346 Phillips Jun 1990 A
4938218 Goodman Jul 1990 A
4940468 Petillo Jul 1990 A
4944304 Nishina Jul 1990 A
4945045 Forrest Jul 1990 A
4946795 Gibbons Aug 1990 A
4948727 Cass Aug 1990 A
4948961 Hillman Aug 1990 A
4952373 Sugarman Aug 1990 A
4952515 Gleisner Aug 1990 A
4953552 DeMarzo Sep 1990 A
4953976 Adler-Golden Sep 1990 A
4963498 Hillman Oct 1990 A
4966581 Landau Oct 1990 A
4966646 Zdeblick Oct 1990 A
4966671 Nylander Oct 1990 A
4975581 Robinson Dec 1990 A
4976724 Nieto Dec 1990 A
4977910 Miyahara Dec 1990 A
4983178 Schnell Jan 1991 A
4984085 Landowski Jan 1991 A
4990154 Brown Feb 1991 A
4995402 Smith Feb 1991 A
4999582 Parks Mar 1991 A
5001054 Wagner Mar 1991 A
5001873 Rufin Mar 1991 A
5004923 Hillman Apr 1991 A
5010772 Bourland Apr 1991 A
5010774 Kikuo Apr 1991 A
5014718 Mitchen May 1991 A
5019974 Beckers May 1991 A
5026388 Ingalz Jun 1991 A
D318331 Phillips Jul 1991 S
5028142 Ostoich et al. Jul 1991 A
5029583 Meserol Jul 1991 A
5035704 Lambert Jul 1991 A
5039617 McDonald Aug 1991 A
5043143 Shaw Aug 1991 A
5046496 Betts Sep 1991 A
5047044 Smith Sep 1991 A
5049487 Phillips Sep 1991 A
5049673 Tsien Sep 1991 A
5054487 Clarke Oct 1991 A
5054499 Swierczek Oct 1991 A
5057082 Burchette, Jr. Oct 1991 A
5057277 Mauze Oct 1991 A
5059394 Phillips Oct 1991 A
5059789 Salcudean Oct 1991 A
5060174 Gross Oct 1991 A
5062898 McDermott Nov 1991 A
5064411 Gordon, III Nov 1991 A
5070874 Barnes Dec 1991 A
5070886 Mitchen Dec 1991 A
5074872 Brown Dec 1991 A
5077017 Gorin Dec 1991 A
5077199 Basagni Dec 1991 A
5080865 Leiner Jan 1992 A
5086229 Rosenthal Feb 1992 A
5089112 Skotheim Feb 1992 A
5092842 Bechtold Mar 1992 A
5094943 Siedel Mar 1992 A
5096669 Lauks Mar 1992 A
5097810 Fishman Mar 1992 A
5100427 Crossman Mar 1992 A
5100428 Mumford Mar 1992 A
5104380 Holman Apr 1992 A
5104382 Brinkerhoff et al. Apr 1992 A
5104619 Castro Apr 1992 A
5104813 Besemer Apr 1992 A
5107764 Gasparrini Apr 1992 A
5108564 Szuminsky Apr 1992 A
5108889 Smith Apr 1992 A
5116759 Klainer May 1992 A
5120420 Nankai Jun 1992 A
5122244 Hoenes Jun 1992 A
5126034 Carter Jun 1992 A
5128015 Szuminsky Jul 1992 A
5128171 Gleisner Jul 1992 A
5132801 Yamano Jul 1992 A
5133730 Biro Jul 1992 A
5135719 Hillman Aug 1992 A
5139685 Castro Aug 1992 A
5140161 Hillman Aug 1992 A
5141868 Shanks Aug 1992 A
5144139 Hillman Sep 1992 A
5145565 Kater Sep 1992 A
5146091 Knudson Sep 1992 A
5152296 Simons Oct 1992 A
5152775 Ruppert Oct 1992 A
5153671 Miles Oct 1992 A
5156611 Haynes Oct 1992 A
5162525 Masilamani Nov 1992 A
5163442 Ono Nov 1992 A
5164598 Hillman Nov 1992 A
5167619 Wuchinich Dec 1992 A
5170364 Gross Dec 1992 A
5174726 Findlay Dec 1992 A
D332490 Brown Jan 1993 S
5178142 Harjunmaa Jan 1993 A
5179005 Phillips Jan 1993 A
5181910 Scanlon Jan 1993 A
5181914 Zook Jan 1993 A
5183042 Harjunmaa Feb 1993 A
5185256 Nankai Feb 1993 A
5187100 Matzinger Feb 1993 A
5188118 Terwilliger Feb 1993 A
5189751 Giuliani Mar 1993 A
5192415 Yoshioka Mar 1993 A
5194391 Mauze Mar 1993 A
5196025 Ranalletta Mar 1993 A
5201324 Swierczek Apr 1993 A
5205920 Oyama Apr 1993 A
5208163 Charlton et al. May 1993 A
5209028 McDermott May 1993 A
5211652 Derbyshire May 1993 A
5212879 Biro May 1993 A
5215587 McConnellogue Jun 1993 A
5216597 Beckers Jun 1993 A
5217476 Wishinsky Jun 1993 A
5217480 Haber Jun 1993 A
5218966 Yamasawa Jun 1993 A
5222504 Solomon Jun 1993 A
5228972 Osaka Jul 1993 A
5229282 Yoshioka Jul 1993 A
5230866 Shartle Jul 1993 A
5231993 Haber et al. Aug 1993 A
5241969 Carson Sep 1993 A
5247932 Chung Sep 1993 A
5249583 Mallaby Oct 1993 A
5250066 Lambert Oct 1993 A
5251126 Kahn Oct 1993 A
5253656 Rincoe Oct 1993 A
5256998 Becker Oct 1993 A
5264103 Yoshioka Nov 1993 A
5264105 Gregg Nov 1993 A
5264106 McAleer Nov 1993 A
5266179 Nankai Nov 1993 A
5266359 Spielvogel Nov 1993 A
D342573 Cerola Dec 1993 S
5267974 Lambert Dec 1993 A
5272087 El Murr Dec 1993 A
5277181 Mendelson Jan 1994 A
5279294 Anderson Jan 1994 A
5279791 Aldrich Jan 1994 A
5282822 Macors Feb 1994 A
5286362 Hoenes Feb 1994 A
5286364 Yacynych Feb 1994 A
5288636 Pollmann Feb 1994 A
5294261 McDermott Mar 1994 A
5296378 Sakata Mar 1994 A
5300779 Hillman Apr 1994 A
5304192 Crouse Apr 1994 A
5304193 Zhadanov Apr 1994 A
5304347 Mann Apr 1994 A
5304468 Phillips Apr 1994 A
5306623 Kiser Apr 1994 A
5307263 Brown Apr 1994 A
5312590 Gunasingham May 1994 A
5314441 Cusack May 1994 A
5314442 Morita May 1994 A
5315793 Peterson May 1994 A
5316012 Siegal May 1994 A
5318583 Rabenau Jun 1994 A
5318584 Lange Jun 1994 A
5320607 Ishibashi Jun 1994 A
5320808 Holen Jun 1994 A
5324302 Crouse Jun 1994 A
5324303 Strong Jun 1994 A
5330634 Wong Jul 1994 A
5332479 Uenoyama Jul 1994 A
5341206 Pittaro Aug 1994 A
5342382 Brinkerhoff Aug 1994 A
5344703 Kovar Sep 1994 A
5350392 Purcell Sep 1994 A
5352351 White Oct 1994 A
5354287 Wacks Oct 1994 A
5354447 Uenoyama Oct 1994 A
5356420 Czernecki Oct 1994 A
5360410 Wacks Nov 1994 A
5365699 Armstrong Nov 1994 A
5366469 Steg Nov 1994 A
5366470 Ramel Nov 1994 A
5366609 White Nov 1994 A
5368047 Suzuki Nov 1994 A
5370509 Golding Dec 1994 A
5371687 Holmes Dec 1994 A
5372135 Mendelson Dec 1994 A
5375397 Ferrand Dec 1994 A
5378628 Graetzel Jan 1995 A
5382346 Uenoyama Jan 1995 A
5383885 Bland Jan 1995 A
5389534 Gentezkow Feb 1995 A
5390450 Goenka Feb 1995 A
5393903 Graetzel Feb 1995 A
5395339 Talonn Mar 1995 A
5395387 Burns Mar 1995 A
5397334 Schenk Mar 1995 A
5401376 Foos Mar 1995 A
5402798 Swierczek Apr 1995 A
5405283 Goenka Apr 1995 A
5405510 Betts Apr 1995 A
5405511 White Apr 1995 A
5407545 Hirose Apr 1995 A
5407554 Saurer Apr 1995 A
5407818 Gentezkow Apr 1995 A
5409583 Yoshioka Apr 1995 A
5409664 Allen Apr 1995 A
5410059 Fraser Apr 1995 A
5415169 Siczek May 1995 A
5418142 Kiser May 1995 A
5423847 Strong et al. Jun 1995 A
5424545 Block Jun 1995 A
5426032 Phillips Jun 1995 A
5436161 Bergstrom Jul 1995 A
5437999 Diebold Aug 1995 A
5438271 White Aug 1995 A
5443701 Willner Aug 1995 A
5445920 Saito Aug 1995 A
D362719 Kaplan Sep 1995 S
5453360 Yu Sep 1995 A
5454828 Schraga Oct 1995 A
5456875 Lambert Oct 1995 A
5459325 Hueton Oct 1995 A
5460182 Goodman Oct 1995 A
5462533 Daugherty Oct 1995 A
5464418 Schraga Nov 1995 A
5465722 Fort Nov 1995 A
5471102 Becker Nov 1995 A
5472427 Rammler Dec 1995 A
5474084 Cunniff Dec 1995 A
5476474 Davis Dec 1995 A
5480387 Gabriel Jan 1996 A
5487748 Marshall Jan 1996 A
D367109 Ryner Feb 1996 S
5490505 Diab Feb 1996 A
5496274 Graves Mar 1996 A
5496453 Uenoyama Mar 1996 A
5498542 Corey Mar 1996 A
5501836 Myerson Mar 1996 A
5501893 Laermer Mar 1996 A
5507288 Bocker Apr 1996 A
5507629 Jarvik Apr 1996 A
5508171 Walling Apr 1996 A
5509410 Hill Apr 1996 A
5510266 Bonner et al. Apr 1996 A
5512159 Yoshioka Apr 1996 A
5514152 Smith May 1996 A
5515170 Matzinger May 1996 A
5518006 Mawhirt May 1996 A
D371198 Savage Jun 1996 S
5524636 Sarvazyan Jun 1996 A
5525511 D'Costa Jun 1996 A
5525518 Lundsgaard Jun 1996 A
5526120 Jina Jun 1996 A
5527333 Nikkels Jun 1996 A
5527334 Kanner Jun 1996 A
5529074 Greenfield Jun 1996 A
5540676 Freiberg Jul 1996 A
5540709 Ramel Jul 1996 A
5543326 Heller Aug 1996 A
5545174 Schenk Aug 1996 A
5545291 Smith Aug 1996 A
5547702 Gleisner Aug 1996 A
D373419 Muramatsu Sep 1996 S
5554153 Costello Sep 1996 A
5554166 Lange Sep 1996 A
5558834 Chu Sep 1996 A
5562384 Alvite Oct 1996 A
5562696 Nobles Oct 1996 A
5563031 Yu Oct 1996 A
5563042 Phillips Oct 1996 A
5569286 Peckham Oct 1996 A
5569287 Tezuka Oct 1996 A
5571132 Mawhirt Nov 1996 A
5575284 Athan Nov 1996 A
5575403 Charlton Nov 1996 A
5575895 Ikeda Nov 1996 A
5582697 Ikeda Dec 1996 A
5584846 Mawhirt Dec 1996 A
5591139 Lin Jan 1997 A
5593852 Heller Jan 1997 A
5599501 Carey Feb 1997 A
5605837 Karimi Feb 1997 A
D378612 Clark Mar 1997 S
5608006 Myerson Mar 1997 A
5609749 Yamauchi Mar 1997 A
5611809 Marshall Mar 1997 A
5611810 Arnold Mar 1997 A
5613978 Harding Mar 1997 A
5616135 Thorne et al. Apr 1997 A
5617851 Lipkovker Apr 1997 A
5618297 Hart Apr 1997 A
5620579 Genshaw Apr 1997 A
5620863 Tomasco Apr 1997 A
5624458 Lipscher Apr 1997 A
5624459 Kortenbach Apr 1997 A
5624537 Turner Apr 1997 A
D379516 Rutter May 1997 S
5628764 Schraga May 1997 A
5628765 Morita May 1997 A
5628890 Carter May 1997 A
5628961 Davis May 1997 A
5630828 Mawhirt May 1997 A
5630986 Charlton May 1997 A
5632410 Moulton May 1997 A
5640954 Pfeiffer Jun 1997 A
D381591 Rice Jul 1997 S
5643306 Schraga Jul 1997 A
5643308 Markman Jul 1997 A
5645555 Davis Jul 1997 A
5647851 Pokras Jul 1997 A
5650062 Ikeda Jul 1997 A
5653863 Genshaw Aug 1997 A
5657760 Ying et al. Aug 1997 A
5658444 Black Aug 1997 A
5660791 Brenneman Aug 1997 A
D383550 Larson Sep 1997 S
5662127 De Vaughn Sep 1997 A
5662672 Pambianchi Sep 1997 A
5666966 Horie Sep 1997 A
5676143 Simonsen Oct 1997 A
5678306 Bozeman Oct 1997 A
5680858 Henrik-Egesborg Oct 1997 A
5680872 Sesekura Oct 1997 A
5682233 Brinda Oct 1997 A
5682884 Hill Nov 1997 A
5683562 Schaffar Nov 1997 A
5691898 Rosenberg Nov 1997 A
5692514 Bowman Dec 1997 A
5695947 Guo Dec 1997 A
5700695 Yassinzadch Dec 1997 A
5705045 Park Jan 1998 A
5707384 Kim Jan 1998 A
5708247 McAleer Jan 1998 A
5709668 Wacks Jan 1998 A
5709699 Warner Jan 1998 A
5710011 Forrow Jan 1998 A
5714123 Sohrab Feb 1998 A
5714390 Hallowitz Feb 1998 A
5719034 Kiser Feb 1998 A
5720862 Hamamoto Feb 1998 A
5720924 Eikmeier Feb 1998 A
D392391 Douglas Mar 1998 S
D392740 Yung Mar 1998 S
5723284 Ye Mar 1998 A
5727548 Hill Mar 1998 A
5729905 Mathiasmeier Mar 1998 A
5730753 Morita Mar 1998 A
5733085 Shida Mar 1998 A
5733300 Pambianchi Mar 1998 A
D393716 Brenneman Apr 1998 S
D393717 Brenneman Apr 1998 S
5735868 Lee Apr 1998 A
5736103 Pugh Apr 1998 A
5738244 Charlton Apr 1998 A
5741228 Lambrecht Apr 1998 A
5741634 Nozoe Apr 1998 A
RE35803 Lange May 1998 E
5746217 Erickson May 1998 A
5746761 Turchin May 1998 A
5746898 Preidel May 1998 A
5753429 Pugh May 1998 A
5753452 Smith May 1998 A
5755228 Wilson May 1998 A
5755733 Morita May 1998 A
5758643 Wong Jun 1998 A
5759364 Charlton Jun 1998 A
5762770 Pritchard Jun 1998 A
5770086 Indriksons Jun 1998 A
5770369 Meade Jun 1998 A
5772586 Heinonen Jun 1998 A
5772677 Mawhirt Jun 1998 A
5773270 D'Orazio Jun 1998 A
5776157 Thorne Jul 1998 A
5776719 Douglas Jul 1998 A
5779365 Takaki Jul 1998 A
5780304 Matzinger Jul 1998 A
5782770 Mooradian Jul 1998 A
5782852 Foggia Jul 1998 A
5788651 Weilandt Aug 1998 A
5788652 Rahn Aug 1998 A
5789255 Yu Aug 1998 A
5794219 Brown Aug 1998 A
5795725 Buechler Aug 1998 A
5795774 Matsumoto Aug 1998 A
5797940 Mawhirt Aug 1998 A
5797942 Schraga Aug 1998 A
5798030 Raguse Aug 1998 A
5798031 Charlton Aug 1998 A
5800781 Gavin Sep 1998 A
5801057 Smart Sep 1998 A
5807375 Gross Sep 1998 A
5810199 Charlton Sep 1998 A
8800781 Gavin Sep 1998
D399566 Sohrab Oct 1998 S
5820551 Hill Oct 1998 A
5822715 Worthington Oct 1998 A
5823973 Racchini Oct 1998 A
5824491 Priest Oct 1998 A
5827181 Dias Oct 1998 A
5828943 Brown Oct 1998 A
5829589 Nguyen Nov 1998 A
5830219 Bird Nov 1998 A
5832448 Brown Nov 1998 A
5840020 Heinonen Nov 1998 A
5840171 Birch Nov 1998 A
5843691 Douglas Dec 1998 A
5843692 Phillips Dec 1998 A
5846216 Gonzales Dec 1998 A
5846486 Pugh Dec 1998 A
5846490 Yokota Dec 1998 A
5849174 Sanghera Dec 1998 A
5853373 Griffith Dec 1998 A
5854074 Charlton Dec 1998 A
D403975 Douglas Jan 1999 S
5855377 Murphy Jan 1999 A
5855801 Lin Jan 1999 A
5856174 Lipshutz Jan 1999 A
5856195 Charlton Jan 1999 A
5857967 Frid Jan 1999 A
5857983 Douglas Jan 1999 A
5858804 Zanzucchi Jan 1999 A
5860922 Gordon et al. Jan 1999 A
5863800 Eikmeier Jan 1999 A
5866353 Berneth Feb 1999 A
5868135 Kaufman Feb 1999 A
5868772 LeVaughn Feb 1999 A
5869972 Birch Feb 1999 A
5871494 Simons Feb 1999 A
5872713 Douglas Feb 1999 A
5873887 King Feb 1999 A
5876351 Rohde Mar 1999 A
5876957 Douglas Mar 1999 A
5879163 Brown Mar 1999 A
5879310 Sopp Mar 1999 A
5879311 Duchon Mar 1999 A
5879373 Roeper Mar 1999 A
5880829 Kauhaniemi Mar 1999 A
5882494 van Antwerp Mar 1999 A
5885211 Eppstein Mar 1999 A
5886056 Hershkowitz Mar 1999 A
5887133 Brown Mar 1999 A
5890128 Diaz Mar 1999 A
RE36191 Solomon Apr 1999 E
5891053 Sesekura Apr 1999 A
5892569 Van de Velde Apr 1999 A
5893848 Negus Apr 1999 A
5893870 Talen Apr 1999 A
5897493 Brown Apr 1999 A
5897569 Kellogg Apr 1999 A
5899855 Brown May 1999 A
5899915 Saadat May 1999 A
5900130 Benvegnu May 1999 A
5902731 Ouyang May 1999 A
5906921 Ikeda May 1999 A
D411619 Duchon Jun 1999 S
5908416 Costello Jun 1999 A
5911937 Hekal Jun 1999 A
5912134 Shartle Jun 1999 A
5913310 Brown Jun 1999 A
5916156 Hildenbrand Jun 1999 A
5916229 Evans Jun 1999 A
5916230 Brenneman Jun 1999 A
5918603 Brown Jul 1999 A
5919711 Boyd Jul 1999 A
5921963 Erez Jul 1999 A
5922188 Ikeda Jul 1999 A
5922530 Yu Jul 1999 A
5922591 Anderson Jul 1999 A
RE36268 Szuminsky Aug 1999 E
5931794 Pitesky Aug 1999 A
5933136 Brown Aug 1999 A
5935075 Casscells et al. Aug 1999 A
5938635 Kuhle Aug 1999 A
5938679 Freeman Aug 1999 A
5940153 Castaneda Aug 1999 A
5942102 Hodges Aug 1999 A
5942189 Wolfbeis Aug 1999 A
5947957 Morris Sep 1999 A
5951300 Brown Sep 1999 A
5951492 Douglas Sep 1999 A
5951493 Douglas Sep 1999 A
5951582 Thorne Sep 1999 A
5951836 McAleer Sep 1999 A
5954738 LeVaughn Sep 1999 A
5956501 Brown Sep 1999 A
5957846 Chiang Sep 1999 A
5958199 Miyamoto Sep 1999 A
5959098 Goldberg Sep 1999 A
5960403 Brown Sep 1999 A
5961451 Reber Oct 1999 A
5964718 Duchon Oct 1999 A
5965380 Heller Oct 1999 A
5968063 Chu Oct 1999 A
5968760 Phillips Oct 1999 A
5968836 Matzinger Oct 1999 A
5971941 Simons Oct 1999 A
5972199 Heller Oct 1999 A
5972294 Smith Oct 1999 A
5972715 Celentano Oct 1999 A
5974124 Schlueter Oct 1999 A
5976085 Kimball Nov 1999 A
5983193 Heinonen Nov 1999 A
5985116 Ikeda Nov 1999 A
5985559 Brown Nov 1999 A
5986754 Harding Nov 1999 A
5993400 Rincoe Nov 1999 A
5993434 Dev Nov 1999 A
D417504 Love Dec 1999 S
5997476 Brown Dec 1999 A
5997561 Boecker Dec 1999 A
5997817 Crismore Dec 1999 A
5997818 Hacker Dec 1999 A
6001067 Shults Dec 1999 A
6007497 Huitema Dec 1999 A
D418602 Prokop Jan 2000 S
6014577 Henning Jan 2000 A
6015392 Douglas Jan 2000 A
6018289 Sekura Jan 2000 A
6020110 Williams Feb 2000 A
6022324 Skinner Feb 2000 A
6022366 Schraga Feb 2000 A
6022748 Charych Feb 2000 A
6023629 Tamada Feb 2000 A
6023686 Brown Feb 2000 A
6027459 Shain et al. Feb 2000 A
6030399 Ignotz Feb 2000 A
6030827 Davis Feb 2000 A
6030967 Marui Feb 2000 A
6032059 Henning Feb 2000 A
6032119 Brown Feb 2000 A
6033421 Theiss Mar 2000 A
6033866 Guo Mar 2000 A
6036924 Simons Mar 2000 A
6037178 Leiner Mar 2000 A
6041253 Kost Mar 2000 A
6045567 Taylor Apr 2000 A
6046055 Wolfbeis Apr 2000 A
6048352 Douglas Apr 2000 A
D424696 Ray May 2000 S
6056701 Duchon May 2000 A
6059815 Lee May 2000 A
6060327 Keen May 2000 A
6061128 Zweig May 2000 A
6063039 Cunningham May 2000 A
6066103 Duchon May 2000 A
6066243 Anderson May 2000 A
6066296 Brady May 2000 A
6067463 Jeng May 2000 A
6068615 Brown May 2000 A
D426638 Ray Jun 2000 S
6070761 Bloom Jun 2000 A
6071249 Cunningham Jun 2000 A
6071250 Douglas Jun 2000 A
6071251 Cunningham Jun 2000 A
6071294 Simons Jun 2000 A
6071391 Gotoh Jun 2000 A
6074360 Haar et al. Jun 2000 A
6077408 Miyamoto Jun 2000 A
6080106 Lloyd Jun 2000 A
6080172 Fujiwara Jun 2000 A
D428150 Ruf Jul 2000 S
6083196 Trautman Jul 2000 A
6083710 Heller Jul 2000 A
6084660 Shartle Jul 2000 A
6085576 Sunshine Jul 2000 A
6086544 Hibner Jul 2000 A
6086545 Roe Jul 2000 A
6086562 Jacobsen Jul 2000 A
6090078 Erskine Jul 2000 A
6091975 Daddona Jul 2000 A
6093146 Filangeri Jul 2000 A
6093156 Cunningham et al. Jul 2000 A
D428993 Lubs Aug 2000 S
6099484 Douglas Aug 2000 A
6099802 Pugh Aug 2000 A
6100107 Lei Aug 2000 A
6101478 Brown Aug 2000 A
6102933 Lee Aug 2000 A
6103033 Say Aug 2000 A
6103509 Sode Aug 2000 A
6104940 Watanabe Aug 2000 A
6106751 Talbot Aug 2000 A
6107083 Collins Aug 2000 A
6113578 Brown Sep 2000 A
6117155 Lee Sep 2000 A
6117630 Reber Sep 2000 A
6118126 Zanzucchi Sep 2000 A
6119033 Spigelman Sep 2000 A
6120462 Hibner Sep 2000 A
6120676 Heller Sep 2000 A
6121009 Heller Sep 2000 A
6122536 Sun Sep 2000 A
6126804 Andresen Oct 2000 A
6126899 Woudenberg Oct 2000 A
6129823 Hughes Oct 2000 A
6132449 Lum Oct 2000 A
6133837 Riley Oct 2000 A
6134461 Say Oct 2000 A
6136013 Marshall Oct 2000 A
6139562 Mauze Oct 2000 A
6143164 Heller Nov 2000 A
6144837 Quy Nov 2000 A
6144976 Silva et al. Nov 2000 A
6149203 Hanlon Nov 2000 A
6151586 Brown Nov 2000 A
6152875 Hakamata Nov 2000 A
6152942 Brenneman Nov 2000 A
6153069 Pottgen Nov 2000 A
RE36991 Yamamoto Dec 2000 E
6155267 Nelson Dec 2000 A
6155992 Henning et al. Dec 2000 A
6156051 Schraga Dec 2000 A
6157442 Raskas Dec 2000 A
6159147 Lichter Dec 2000 A
6159424 Kauhaniemi Dec 2000 A
6161095 Brown Dec 2000 A
6162397 Jurik Dec 2000 A
6162611 Heller Dec 2000 A
6167362 Brown Dec 2000 A
6167386 Brown Dec 2000 A
6168563 Brown Jan 2001 B1
6168957 Matzinger Jan 2001 B1
6171325 Mauze Jan 2001 B1
6172743 Kley et al. Jan 2001 B1
6175752 Say Jan 2001 B1
6176847 Humphreys Jan 2001 B1
6176865 Mauze Jan 2001 B1
6177000 Peterson Jan 2001 B1
6177931 Alexander Jan 2001 B1
6183489 Douglas Feb 2001 B1
6186145 Brown Feb 2001 B1
6190612 Berger Feb 2001 B1
6191852 Paffhausen Feb 2001 B1
6192891 Gravel Feb 2001 B1
6193673 Viola Feb 2001 B1
6193873 Ohara Feb 2001 B1
6194900 Freeman Feb 2001 B1
6197040 LeVaughn Mar 2001 B1
6197257 Raskas Mar 2001 B1
6200773 Ouyang Mar 2001 B1
6203504 Latterell Mar 2001 B1
6206841 Cunningham et al. Mar 2001 B1
6210133 Aboul-Hosn Apr 2001 B1
6210272 Brown Apr 2001 B1
6210369 Wilmot Apr 2001 B1
6210420 Mauze Apr 2001 B1
6210421 Bocker Apr 2001 B1
6212417 Ikeda Apr 2001 B1
6214626 Meller Apr 2001 B1
6214804 Felgner Apr 2001 B1
6218571 Zheng Apr 2001 B1
6219574 Cormier Apr 2001 B1
6221023 Matsuba Apr 2001 B1
6221238 Grundig Apr 2001 B1
6224617 Saadat et al. May 2001 B1
6225078 Ikeda May 2001 B1
6228100 Schraga May 2001 B1
6230051 Cormier May 2001 B1
6230501 Bailey May 2001 B1
6231531 Lum May 2001 B1
6233471 Berner May 2001 B1
6233539 Brown May 2001 B1
6234772 Wampler May 2001 B1
6240393 Brown May 2001 B1
D444235 Roberts Jun 2001 S
6241862 McAleer Jun 2001 B1
6242207 Douglas Jun 2001 B1
6245060 Loomis Jun 2001 B1
6245215 Douglas Jun 2001 B1
6246992 Brown Jun 2001 B1
6248065 Brown Jun 2001 B1
6251083 Yum Jun 2001 B1
6251121 Saadat Jun 2001 B1
6251260 Heller Jun 2001 B1
6251344 Goldstein Jun 2001 B1
D444557 Levaughn Jul 2001 S
6254831 Barnard Jul 2001 B1
6256533 Vuzhakov Jul 2001 B1
6258111 Ross Jul 2001 B1
6258229 Winarta Jul 2001 B1
6258254 Miyamoto Jul 2001 B1
6261241 Burbank Jul 2001 B1
6261245 Kawai Jul 2001 B1
6261519 Harding Jul 2001 B1
6264635 Wampler Jul 2001 B1
6268161 Han Jul 2001 B1
6268162 Phillips Jul 2001 B1
6269314 Iitawaki Jul 2001 B1
6270455 Brown Aug 2001 B1
6270637 Crismore Aug 2001 B1
6272359 Kivela Aug 2001 B1
6272364 Kurnik Aug 2001 B1
6275717 Gross Aug 2001 B1
6280254 Wu Aug 2001 B1
6281006 Heller Aug 2001 B1
6283926 Cunningham Sep 2001 B1
6283982 Levaughn Sep 2001 B1
6284478 Heller Sep 2001 B1
6285448 Kuenstner Sep 2001 B1
6285454 Douglas Sep 2001 B1
6289254 Shimizu Sep 2001 B1
6290683 Erez Sep 2001 B1
6294897 Champlin Sep 2001 B1
6295506 Heinonen Sep 2001 B1
6299578 Kurnik Oct 2001 B1
6299596 Ding Oct 2001 B1
6299757 Feldman Oct 2001 B1
6302844 Walker Oct 2001 B1
6302855 Lav Oct 2001 B1
6305804 Rice Oct 2001 B1
6306104 Cunningham Oct 2001 B1
6306152 Verdonk Oct 2001 B1
6306347 Mason Oct 2001 B1
6309351 Kurnik Oct 2001 B1
6309535 Williams Oct 2001 B1
6312612 Sherman Nov 2001 B1
6315738 Nishikawa Nov 2001 B1
6318970 Backhouse Nov 2001 B1
6319210 Douglas Nov 2001 B1
6322574 Lloyd Nov 2001 B1
6322808 Trautman Nov 2001 B1
6322963 Bauer Nov 2001 B1
6329161 Heller Dec 2001 B1
6330426 Brown Dec 2001 B2
6331163 Kaplan Dec 2001 B1
6332871 Douglas Dec 2001 B1
6334363 Testud Jan 2002 B1
6334778 Brown Jan 2002 B1
6334856 Allen Jan 2002 B1
6335203 Patel Jan 2002 B1
6336900 Alleckson Jan 2002 B1
6338790 Feldman Jan 2002 B1
6346120 Yamazaki Feb 2002 B1
6349229 Watanabe Feb 2002 B1
6350273 Minagawa Feb 2002 B1
6350451 Horn Feb 2002 B1
6352514 Douglas Mar 2002 B1
6352523 Brown Mar 2002 B1
6353753 Flock Mar 2002 B1
6364889 Kheiri et al. Apr 2002 B1
6364890 Lum Apr 2002 B1
6368273 Brown Apr 2002 B1
6375469 Brown Apr 2002 B1
6375627 Mauze Apr 2002 B1
6379301 Worthington Apr 2002 B1
6379317 Kintzig Apr 2002 B1
6379324 Gartstein Apr 2002 B1
6379969 Mauze Apr 2002 B1
6381577 Brown Apr 2002 B1
D456910 Clark May 2002 S
6387709 Mason May 2002 B1
6391005 Lum et al. May 2002 B1
6395227 Kiser May 2002 B1
6398522 Skill Jun 2002 B2
6398562 Butler Jun 2002 B1
6399394 Dahm Jun 2002 B1
6402701 Kaplan Jun 2002 B1
6402704 Mcmorrow Jun 2002 B1
6409740 Kuhr Jun 2002 B1
6413410 Hodges Jul 2002 B1
6413411 Pottgen Jul 2002 B1
6415821 Kamholz Jul 2002 B2
6420128 Ouyang Jul 2002 B1
6421633 Heinonen Jul 2002 B1
6423014 Churchill Jul 2002 B1
6428664 Bhullar Aug 2002 B1
6436055 Roe Aug 2002 B1
6436256 Williams Aug 2002 B1
6436721 Kuo Aug 2002 B1
6440645 Yon-Hin Aug 2002 B1
6444115 Hodges Sep 2002 B1
6447119 Stewart et al. Sep 2002 B1
6447265 Antaki Sep 2002 B1
6451040 Purcell Sep 2002 B1
6453810 Rossmeisl Sep 2002 B1
6458258 Taniike Oct 2002 B2
6461496 Feldman Oct 2002 B1
6462162 van Antwerp Oct 2002 B2
6464649 Duchon Oct 2002 B1
6471903 Sherman Oct 2002 B2
6472220 Simons Oct 2002 B1
6475360 Hodges Nov 2002 B1
6475372 Ohara Nov 2002 B1
6475436 Schabbach Nov 2002 B1
6475750 Han Nov 2002 B1
6477394 Rice Nov 2002 B2
6477424 Thompson Nov 2002 B1
6484046 Say Nov 2002 B1
6485439 Roe Nov 2002 B1
6485461 Mason Nov 2002 B1
6485923 Yani Nov 2002 B1
6488827 Shartle Dec 2002 B1
6488872 Beebe et al. Dec 2002 B1
6488891 Mason Dec 2002 B2
6489133 Phillips Dec 2002 B2
6491709 Sharma Dec 2002 B2
6491870 Patel Dec 2002 B2
6494830 Wessel Dec 2002 B1
6497845 Sacherer Dec 2002 B1
6501404 Walker Dec 2002 B2
6501976 Sohrab Dec 2002 B1
6503209 Hakky et al. Jan 2003 B2
6503210 Hirao Jan 2003 B1
6503231 Prausnitz Jan 2003 B1
6503290 Jarosinski Jan 2003 B1
6503381 Gotoh Jan 2003 B1
6506165 Sweeney Jan 2003 B1
6506168 Fathallah Jan 2003 B1
6506575 Knappe Jan 2003 B1
6508785 Eppstein Jan 2003 B1
6512986 Harmon Jan 2003 B1
6514270 Schraga Feb 2003 B1
6514460 Fendrock Feb 2003 B1
6519241 Theimer Feb 2003 B1
6520326 McIvor Feb 2003 B2
6521110 Hodges Feb 2003 B1
6521182 Shartle Feb 2003 B1
6527521 Noda Mar 2003 B2
6527716 Epstein Mar 2003 B1
6527778 Athanasiou Mar 2003 B2
6529377 Nelson Mar 2003 B1
6530892 Kelly Mar 2003 B1
6530937 Schraga Mar 2003 B1
6531322 Jurik Mar 2003 B1
6533949 Yeshurun Mar 2003 B1
6537207 Rice Mar 2003 B1
6537242 Palmer Mar 2003 B1
6537264 Cormier et al. Mar 2003 B1
6537292 Lee Mar 2003 B1
6540672 Simonsen Apr 2003 B1
6540675 Aceti et al. Apr 2003 B2
6540762 Bertling Apr 2003 B1
6540891 Stewart Apr 2003 B1
6541266 Modzelewski Apr 2003 B2
6547954 Ikeda Apr 2003 B2
6549796 Sohrab Apr 2003 B2
6551494 Heller Apr 2003 B1
6553244 Lesho Apr 2003 B2
6554381 Locher Apr 2003 B2
6555061 Leong Apr 2003 B1
D475136 Taniguchi May 2003 S
6558320 Causey May 2003 B1
6558361 Yeshurun May 2003 B1
6558402 Chelak May 2003 B1
6558528 Matzinger May 2003 B1
6560471 Heller May 2003 B1
6561978 Conn May 2003 B1
6561989 Whitson May 2003 B2
6562210 Bhullar May 2003 B1
6565509 Say et al. May 2003 B1
6565808 Hudak May 2003 B2
6569157 Shain May 2003 B1
6571651 Hodges Jun 2003 B1
6572566 Effenhauser Jun 2003 B2
6572822 Jurik Jun 2003 B2
6574490 Abbink Jun 2003 B2
6575905 Knobbe Jun 2003 B2
6576101 Heller Jun 2003 B1
6576117 Iketaki et al. Jun 2003 B1
6576416 Haviland Jun 2003 B2
6579690 Bonnecaze Jun 2003 B1
6582573 Douglas Jun 2003 B2
6584338 Van Muiswinkel Jun 2003 B1
D477670 Jurik Jul 2003 S
6586199 Ouyang Jul 2003 B2
6587705 Kim Jul 2003 B1
6589260 Schmelzeisen-R Jul 2003 B1
6589261 Abulhaj Jul 2003 B1
6591124 Sherman et al. Jul 2003 B2
6591125 Buse Jul 2003 B1
6592744 Hodges Jul 2003 B1
6592745 Feldman Jul 2003 B1
6595919 Berner Jul 2003 B2
6599407 Taniike Jul 2003 B2
6599693 Webb Jul 2003 B1
6599769 Kondo Jul 2003 B2
6601534 Hebrank Aug 2003 B2
6602205 Erickson Aug 2003 B1
6602268 Kuhr Aug 2003 B2
6602678 Kwon Aug 2003 B2
6604050 Trippel Aug 2003 B2
6607362 Lum Aug 2003 B2
6607494 Fowler Aug 2003 B1
6607658 Heller Aug 2003 B1
6612111 Hodges Sep 2003 B1
6616616 Fritz et al. Sep 2003 B2
6616819 Liamos Sep 2003 B1
6618934 Feldman Sep 2003 B1
6620112 Klitmose Sep 2003 B2
6620310 Ohara Sep 2003 B1
6623501 Heller Sep 2003 B2
6626851 Hirao Sep 2003 B2
6632349 Hodges Oct 2003 B1
6635222 Kent Oct 2003 B2
6638415 Hodges Oct 2003 B1
6638772 Douglas Oct 2003 B1
6641533 Causey Nov 2003 B2
6645142 Braig Nov 2003 B2
6645219 Roe Nov 2003 B2
6645368 Beatty Nov 2003 B1
6649416 Kauer Nov 2003 B1
6650915 Routt Nov 2003 B2
6652720 Mansouri Nov 2003 B1
6652734 Hodges Nov 2003 B1
6652814 House Nov 2003 B1
D484600 Kaar Dec 2003 S
6656428 Clark et al. Dec 2003 B1
6656697 Ouyang Dec 2003 B1
6656702 Yugawa Dec 2003 B1
6659966 Essenpreis Dec 2003 B2
6660018 Lum Dec 2003 B2
6662439 Bhullar Dec 2003 B1
6669669 Flaherty Dec 2003 B2
6671527 Peterson Dec 2003 B2
D484980 Hartwein Jan 2004 S
6673617 Patel Jan 2004 B2
6676995 Dick Jan 2004 B2
6679841 Bojan Jan 2004 B2
6679852 Schmelzeisen-Redeker et al. Jan 2004 B1
6682933 Patel Jan 2004 B2
6689411 Dick Feb 2004 B2
6706000 Perez et al. Mar 2004 B2
6706049 Moerman Mar 2004 B2
6706159 Moerman Mar 2004 B2
6706232 Hasegawa Mar 2004 B2
6709692 Sudor Mar 2004 B2
6713660 Roe Mar 2004 B1
6716577 Yu Apr 2004 B1
6719887 Hasegawa Apr 2004 B2
6719923 Stiene Apr 2004 B2
6721586 Kiser Apr 2004 B2
6723046 Lichtenstein Apr 2004 B2
6723111 Abulhaj Apr 2004 B2
6723371 Chih-hui Apr 2004 B2
6723500 Yu Apr 2004 B2
6726818 Cui et al. Apr 2004 B2
6729546 Roustaei May 2004 B2
6730494 Toranto May 2004 B1
6731966 Spigelman May 2004 B1
6733493 Gruzdev May 2004 B2
6736777 Kim May 2004 B2
6738654 Sohrab May 2004 B2
6740215 Nakaminami et al. May 2004 B1
6743211 Prausnitz Jun 2004 B1
6743597 Guo Jun 2004 B1
6743635 Neel Jun 2004 B2
6746872 Zheng Jun 2004 B2
6749618 Levaughn Jun 2004 B2
6749740 Liamos Jun 2004 B2
6749792 Olsen Jun 2004 B2
6749887 Dick Jun 2004 B1
6751491 Lew Jun 2004 B2
6752817 Flora Jun 2004 B2
6753187 Cizdziel Jun 2004 B2
6759190 Lin Jul 2004 B2
6764496 Schraga Jul 2004 B2
6764581 Forrow Jul 2004 B1
6767441 Cai Jul 2004 B1
6773671 Lewis Aug 2004 B1
6776888 Yamamoto Aug 2004 B2
6780645 Hayter Aug 2004 B2
6780647 Fujiwara Aug 2004 B2
6783502 Orloff Aug 2004 B2
6783537 Kuhr Aug 2004 B1
6784274 van Antwerp Aug 2004 B2
6786874 Grace Sep 2004 B2
6787013 Chang Sep 2004 B2
6787109 Haar Sep 2004 B2
6790327 Ikeda Sep 2004 B2
6790599 Madou Sep 2004 B1
6792791 Sato Sep 2004 B2
6793632 Sohrab Sep 2004 B2
6793633 Douglas Sep 2004 B2
6793802 Lee Sep 2004 B2
6797150 Kermani Sep 2004 B2
6800488 Khan Oct 2004 B2
6801041 Karinka Oct 2004 B2
6801804 Miller Oct 2004 B2
6802199 Hilgers Oct 2004 B2
6802811 Slepian Oct 2004 B1
6802957 Jung Oct 2004 B2
6805780 Ryu Oct 2004 B1
6808499 Churchill Oct 2004 B1
6808908 Yao Oct 2004 B2
6808937 Ligler Oct 2004 B2
6809807 Erickson Oct 2004 B1
6811406 Grube Nov 2004 B2
6811557 Schraga Nov 2004 B2
6811659 Vachon Nov 2004 B2
6811753 Hirao Nov 2004 B2
6811792 Roser Nov 2004 B2
6812031 Carlsson Nov 2004 B1
6814843 Bhullar Nov 2004 B1
6814844 Bhullar Nov 2004 B2
6814845 Wilson Nov 2004 B2
6815186 Clark Nov 2004 B2
6816742 Kim Nov 2004 B2
6818180 Douglas Nov 2004 B2
6821483 Phillips Nov 2004 B2
6823750 Hodges Nov 2004 B2
6825047 Woudenberg Nov 2004 B1
6827250 Uhland Dec 2004 B2
6827829 Kawanaka Dec 2004 B2
6829507 Lidman Dec 2004 B1
6830551 Uchigaki Dec 2004 B1
6830668 Musho Dec 2004 B2
6830669 Miyazaki Dec 2004 B2
6830934 Hardling Dec 2004 B1
6833540 MacKenzie Dec 2004 B2
6835184 Sage Dec 2004 B1
6835553 Han Dec 2004 B2
6835570 Patel Dec 2004 B2
6837858 Cunningham Jan 2005 B2
6837976 Cai Jan 2005 B2
6837988 Leong Jan 2005 B2
6840912 Kloepfer Jan 2005 B2
6841052 Musho Jan 2005 B2
6843254 Tapper Jan 2005 B2
6843902 Penner Jan 2005 B1
6844149 Goldman Jan 2005 B2
6847451 Pugh Jan 2005 B2
6849052 Uchigaki Feb 2005 B2
6849168 Crumly et al. Feb 2005 B2
6849216 Rappin Feb 2005 B2
6849456 Patel Feb 2005 B2
6850790 Berner Feb 2005 B2
6852119 Abulhaj Feb 2005 B1
6852212 Maxwell Feb 2005 B2
6852500 Hoss Feb 2005 B1
6853854 Proniewiez Feb 2005 B1
6855243 Khan Feb 2005 B2
6856125 Kermani Feb 2005 B2
6856928 Harmon Feb 2005 B2
6858015 List Feb 2005 B2
6858401 Phillips Feb 2005 B2
6859738 Bush Feb 2005 B2
6862466 Ackerman Mar 2005 B2
6862534 Sterling Mar 2005 B2
6863800 Karinka Mar 2005 B2
6863801 Hodges Mar 2005 B2
6865408 Abbink Mar 2005 B1
6866641 Marshall Mar 2005 B2
6866675 Perez Mar 2005 B2
6866758 Bhullar Mar 2005 B2
6866822 House Mar 2005 B1
6869418 Marano-Ford Mar 2005 B2
6872200 Mann Mar 2005 B2
6872297 Mansouri Mar 2005 B2
6872298 Kermani Mar 2005 B2
6872299 Kermani Mar 2005 B2
6872358 Hagen Mar 2005 B2
6875208 Santini Apr 2005 B2
6875327 Miyazaki Apr 2005 B1
6875613 Shartle Apr 2005 B2
6878120 Roe Apr 2005 B2
6878251 Hodges Apr 2005 B2
6878255 Wang Apr 2005 B1
6878262 Taniike Apr 2005 B2
6880968 Haar Apr 2005 B1
6881203 Delmore Apr 2005 B2
6881322 Tokunaga Apr 2005 B2
6881378 Zimmer Apr 2005 B1
6881541 Petersen Apr 2005 B2
6881550 Phillips Apr 2005 B2
6881551 Heller Apr 2005 B2
6881578 Otake Apr 2005 B2
6882940 Potts Apr 2005 B2
6884592 Matzinger Apr 2005 B2
6885196 Taniike Apr 2005 B2
6885883 Parris Apr 2005 B2
8752233 Argauer Apr 2005
6887202 Currie May 2005 B2
6887239 Elstrom May 2005 B2
6887253 Schraga May 2005 B2
6887254 Curie May 2005 B1
6887426 Phillips May 2005 B2
6887709 Leong May 2005 B2
6889069 Routt May 2005 B2
6890319 Crocker May 2005 B1
6890421 Ohara May 2005 B2
6890484 Bautista May 2005 B2
6891936 Kai May 2005 B2
6892085 McIvor May 2005 B2
6893396 Schulze May 2005 B2
6893545 Gotoh May 2005 B2
6893552 Wang May 2005 B1
6895263 Shin May 2005 B2
6895264 Rice May 2005 B2
6895265 Silver May 2005 B2
6896793 Erdosy May 2005 B2
6897788 Khair May 2005 B2
6902905 Burson Jun 2005 B2
6904301 Raskas Jun 2005 B2
6905733 Russel Jun 2005 B2
6908008 Pugh Jun 2005 B2
6908535 Rankin Jun 2005 B2
6908591 MacPhee Jun 2005 B2
6908593 Shartle Jun 2005 B1
6911130 Brenneman Jun 2005 B2
6911131 Miyazaki Jun 2005 B2
6911621 Bhullar Jun 2005 B2
6911937 Sparrow Jun 2005 B1
6913210 Baasch Jul 2005 B2
6913668 Matzinger Jul 2005 B2
6916410 Katsuki Jul 2005 B2
6918874 Hatch Jul 2005 B1
6918901 Theeuwes Jul 2005 B1
6918918 Schraga Jul 2005 B1
6922576 Raskas Jul 2005 B2
6922578 Eppstein Jul 2005 B2
6923764 Aceti Aug 2005 B2
6923894 Huang Aug 2005 B2
6923936 Swanson Aug 2005 B2
6924093 Haviland Aug 2005 B2
6925317 Samuels Aug 2005 B1
6925393 Kalatz Aug 2005 B1
6929631 Brugger Aug 2005 B1
6929649 Pugh Aug 2005 B2
6929650 Fukuzawa Aug 2005 B2
6931327 Goode Aug 2005 B2
6931328 Braig Aug 2005 B2
6939310 Matzinger Sep 2005 B2
6939312 Hodges Sep 2005 B2
6939450 Karinka Sep 2005 B2
6939685 Ouyang Sep 2005 B2
6940591 Sopp Sep 2005 B2
6942518 Liamos Sep 2005 B2
6942769 Cheng Sep 2005 B2
6942770 Cai Sep 2005 B2
6944486 Braig Sep 2005 B2
6945943 Pugh Sep 2005 B2
6946067 Hodges Sep 2005 B2
6946098 Miekka Sep 2005 B2
6946299 Neel Sep 2005 B2
6949111 Schraga Sep 2005 B2
6949221 Kiser Sep 2005 B2
6951631 Catt Oct 2005 B1
6951728 Qian Oct 2005 B2
6952603 Gerber Oct 2005 B2
6952604 DeNuzzio Oct 2005 B2
6953693 Neel Oct 2005 B2
6954662 Freger Oct 2005 B2
6958072 Schraga Oct 2005 B2
6958129 Galen Oct 2005 B2
6958809 Sterling Oct 2005 B2
6959211 Rule Oct 2005 B2
6959247 Neel Oct 2005 B2
6960287 Charlton Nov 2005 B2
6960289 Hodges Nov 2005 B2
6960323 Guo Nov 2005 B2
6964871 Bell Nov 2005 B2
6965791 Hitchcock Nov 2005 B1
6966880 Boecker Nov 2005 B2
6966977 Hasegawa Nov 2005 B2
6967105 Nomura Nov 2005 B2
6968375 Brown Nov 2005 B1
6969359 Duchon Nov 2005 B2
6969450 Taniike Nov 2005 B2
6969451 Shin Nov 2005 B2
6973706 Say Dec 2005 B2
6975893 Say Dec 2005 B2
6977032 Hasegawa Dec 2005 B2
6977722 Wohlstadter et al. Dec 2005 B2
6979544 Keen Dec 2005 B2
6979571 Modzelewski Dec 2005 B2
6982027 Yagi Jan 2006 B2
6982431 Modlin Jan 2006 B2
6983176 Gardner Jan 2006 B2
6983177 Rule Jan 2006 B2
6984307 Zweig Jan 2006 B2
6986777 Kim Jan 2006 B2
6986869 Tuohy Jan 2006 B2
6988996 Roe Jan 2006 B2
6989243 Yani Jan 2006 B2
6989891 Braig Jan 2006 B2
6990365 Parker Jan 2006 B1
6990366 Say Jan 2006 B2
6990367 Kiser Jan 2006 B2
6990849 Bohm Jan 2006 B2
6991918 Keith Jan 2006 B2
6991940 Carroll Jan 2006 B2
6994825 Haviland Feb 2006 B2
6997317 Catelli Feb 2006 B2
6997343 May Feb 2006 B2
6997344 Brown Feb 2006 B2
6997936 Marshall Feb 2006 B2
6998247 Monfre Feb 2006 B2
6998248 Yani Feb 2006 B2
6999810 Berner Feb 2006 B2
7001343 Erickson Feb 2006 B2
7001344 Freeman Feb 2006 B2
7003337 Harjunmaa Feb 2006 B2
7003340 Say Feb 2006 B2
7003341 Say Feb 2006 B2
7004928 Aceti Feb 2006 B2
7005048 Watanabe Feb 2006 B1
7005273 Heller Feb 2006 B2
7005459 Hekal Feb 2006 B2
7005857 Stiene Feb 2006 B2
7006857 Braig Feb 2006 B2
7006858 Silver Feb 2006 B2
7008384 Tapper Mar 2006 B2
7010432 Kermani Mar 2006 B2
7011630 Desai Mar 2006 B2
7011954 Ouyang Mar 2006 B2
7014615 Erickson Mar 2006 B2
7015262 Leong Mar 2006 B2
7016713 Gardner Mar 2006 B2
7018568 Tierney Mar 2006 B2
7018848 Douglas Mar 2006 B2
7022217 Hodges Apr 2006 B2
7022218 Taniike Apr 2006 B2
7022286 Lemke Apr 2006 B2
7024236 Ford Apr 2006 B2
7024248 Penner Apr 2006 B2
7024399 Sumner Apr 2006 B2
7025425 Kovatchev Apr 2006 B2
7025774 Freeman Apr 2006 B2
7027848 Robinson Apr 2006 B2
7029444 Shin Apr 2006 B2
7033322 Silver Apr 2006 B2
7033371 Alden Apr 2006 B2
7039560 Kawatahara May 2006 B2
7041057 Faupel May 2006 B1
7041063 Abreu May 2006 B2
7041068 Freeman May 2006 B2
7041210 Hodges May 2006 B2
7041254 Haviland May 2006 B2
7041468 Drucker May 2006 B2
7043287 Khalil May 2006 B1
7043821 Hodges May 2006 B2
7044911 Drinan May 2006 B2
7045046 Chambers May 2006 B2
7045054 Buck May 2006 B1
7045097 Kovacs May 2006 B2
7045310 Buck May 2006 B2
7045361 Heiss May 2006 B2
7047070 Wilkinson May 2006 B2
7047795 Sato May 2006 B2
7049087 Jenny May 2006 B2
7049130 Carroll May 2006 B2
7050843 Shartle May 2006 B2
7051495 Lang May 2006 B2
7052268 Powell May 2006 B2
7052591 Gao May 2006 B2
7052652 Zanzucchi May 2006 B2
7052864 Durkop May 2006 B2
7054682 Young May 2006 B2
7054759 Fukunaga May 2006 B2
D522656 Orr Jun 2006 S
D523555 Loerwald Jun 2006 S
7056425 Hasegawa Jun 2006 B2
7056495 Roser Jun 2006 B2
7058437 Buse Jun 2006 B2
7059352 Bohm Jun 2006 B2
7060059 Keith Jun 2006 B2
7060168 Taniike Jun 2006 B2
7060192 Yuzhakov Jun 2006 B2
7061593 Braig Jun 2006 B2
7063234 Giraud Jun 2006 B2
7063774 Bhullar Jun 2006 B2
7063775 Yamaoka Jun 2006 B2
7063776 Huang Jun 2006 B2
7066884 Custer Jun 2006 B2
7066885 Erickson Jun 2006 B2
7070564 Matzinger Jul 2006 B2
7070680 Bae Jul 2006 B2
7073246 Bhullar Jul 2006 B2
7074307 Simpson Jul 2006 B2
7074308 Mao Jul 2006 B2
7077328 Krishnaswamy Jul 2006 B2
7077828 Kuhr Jul 2006 B2
7078480 Nagel Jul 2006 B2
7079252 Debreezeny Jul 2006 B1
7081188 Cho Jul 2006 B1
7083712 Morita Aug 2006 B2
7086277 Tess Aug 2006 B2
7087149 Muguruma Aug 2006 B1
7090764 Iyengar Aug 2006 B2
7096053 Loeb Aug 2006 B2
7096124 Sterling Aug 2006 B2
7097631 Trautman Aug 2006 B2
7098038 Fukuoka Aug 2006 B2
7103578 Beck Sep 2006 B2
7105066 Schraga Sep 2006 B2
7107253 Sumner Sep 2006 B1
7108680 Rohr Sep 2006 B2
7108778 Simpson Sep 2006 B2
7109271 Liu Sep 2006 B2
7110112 Uchida Sep 2006 B2
7110803 Shults Sep 2006 B2
7112265 McAleer Sep 2006 B1
7112451 Takahashi Sep 2006 B2
7113172 Hohl Sep 2006 B2
7115362 Douglas Oct 2006 B2
7118351 Effenhauser Oct 2006 B2
7118667 Lee Oct 2006 B2
7118668 Edelbrock Oct 2006 B1
7118916 Matzinger Oct 2006 B2
7118919 Yatscoff Oct 2006 B2
7120483 Russell Oct 2006 B2
7122102 Wogoman Oct 2006 B2
7122110 Deng Oct 2006 B2
7122111 Tokunaga Oct 2006 B2
7125481 Musho Oct 2006 B2
7129038 Gopalan Oct 2006 B2
RE39390 Hasegawa Nov 2006 E
D531725 Loerwald Nov 2006 S
7131342 Hodges Nov 2006 B2
7131984 Sato Nov 2006 B2
7132041 Deng Nov 2006 B2
7133710 Acosta Nov 2006 B2
7134550 Groth Nov 2006 B2
7134999 Brauker Nov 2006 B2
7135100 Lau Nov 2006 B1
7137957 Erickson Nov 2006 B2
7138041 Su Nov 2006 B2
7138089 Aitken Nov 2006 B2
7141034 Eppstein Nov 2006 B2
7141058 Briggs Nov 2006 B2
7144404 Whitson Dec 2006 B2
7144485 Hsu Dec 2006 B2
7144495 Teodorezyk Dec 2006 B2
7144496 Meserol Dec 2006 B2
7144709 Ouyang Dec 2006 B2
7147825 Matsuda Dec 2006 B2
7150755 Levaughn Dec 2006 B2
7150975 Tamada Dec 2006 B2
7150995 Xie Dec 2006 B2
7153696 Fukuoka Dec 2006 B2
7155371 Kawatahara Dec 2006 B2
7156117 Bohm Jan 2007 B2
7156810 Cho Jan 2007 B2
7157723 Colvin Jan 2007 B2
7160251 Neel Jan 2007 B2
7160313 Galloway Jan 2007 B2
7160678 Kayyem Jan 2007 B1
7162289 Shah Jan 2007 B2
7163616 Vreeke Jan 2007 B2
7166074 Reghabi Jan 2007 B2
7166208 Zweig Jan 2007 B2
7167734 Khalil Jan 2007 B2
7167735 Uchida Jan 2007 B2
7167818 Brown Jan 2007 B2
7169116 Day Jan 2007 B2
7169117 Allen Jan 2007 B2
7169289 Schulein Jan 2007 B2
7169600 Hoss Jan 2007 B2
7172728 Otake Feb 2007 B2
7174199 Berner Feb 2007 B2
7175641 Schraga Feb 2007 B1
7175642 Briggs Feb 2007 B2
7179233 Chang Feb 2007 B2
7182910 Allen Feb 2007 B2
7183068 Burson Feb 2007 B2
7183508 Kasai Feb 2007 B2
7188034 Staib Mar 2007 B2
7189576 Fukuoka Mar 2007 B2
7190988 Say Mar 2007 B2
7192405 DeNuzzio Mar 2007 B2
7192450 Brauker Mar 2007 B2
7195704 Kermani Mar 2007 B2
7198606 Boecker Apr 2007 B2
7199594 Kermani Apr 2007 B2
7202854 Hohl Apr 2007 B2
7206620 Erickson Apr 2007 B2
7206623 Blank Apr 2007 B2
D542681 Young May 2007 S
7211052 Roe May 2007 B2
7211096 Kuhr May 2007 B2
7212925 Genshaw May 2007 B2
7213720 Giraud May 2007 B2
7215982 Oshima May 2007 B2
7215983 Cho May 2007 B2
7223248 Erikson May 2007 B2
7225008 Ward May 2007 B1
D543878 Castillo Jun 2007 S
D545438 Huang Jun 2007 S
7225535 Feldman Jun 2007 B2
7226414 Ballerstadt Jun 2007 B2
7226461 Boecker Jun 2007 B2
7226978 Tapsak Jun 2007 B2
7227156 Colvin Jun 2007 B2
7228159 Petersson Jun 2007 B2
7228162 Ward Jun 2007 B2
7228163 Ackerman Jun 2007 B2
7229458 Freeman Jun 2007 B2
7232451 Boecker Jun 2007 B2
7232510 Miyazaki Jun 2007 B2
7233816 Blank Jun 2007 B2
7235056 Duchon Jun 2007 B2
7235170 Watanabe Jun 2007 B2
7235378 Yonehara Jun 2007 B2
7236812 Ballerstadt Jun 2007 B1
7236814 Shioi Jun 2007 B2
D545705 Voege Jul 2007 S
D546216 Bolognesi Jul 2007 S
D546218 Grasso Jul 2007 S
2747138 Reghabi Jul 2007 A1
7238192 List Jul 2007 B2
7238534 Zimmer Jul 2007 B1
7241265 Cummings Jul 2007 B2
7244264 Roe Jul 2007 B2
7244265 Freeman Jul 2007 B2
7244266 Garthe Jul 2007 B2
7247144 Douglas Jul 2007 B2
7250037 Shermer Jul 2007 B2
7250056 Hamamoto Jul 2007 B2
7250095 Black Jul 2007 B2
7250105 Davies Jul 2007 B1
7251513 Kondoh Jul 2007 B2
7251514 Cho Jul 2007 B2
7251515 Cho Jul 2007 B2
7251516 Walker Jul 2007 B2
7251517 Cho Jul 2007 B2
7251518 Herrmann Jul 2007 B2
7252804 Miyashita Aug 2007 B2
7254426 Cho Aug 2007 B2
7254427 Cho Aug 2007 B2
7254428 Cho Aug 2007 B2
7254429 Schurman Aug 2007 B2
7254430 Cho Aug 2007 B2
7254432 Fine Aug 2007 B2
7258673 Racchini Aug 2007 B2
7258693 Freeman Aug 2007 B2
7262061 Petrich Aug 2007 B2
7264139 Brickwood Sep 2007 B2
7264627 Perez Sep 2007 B2
7266400 Fine Sep 2007 B2
7267665 Steil Sep 2007 B2
7267750 Watanabe Sep 2007 B2
7270247 Charlton Sep 2007 B2
7271912 Sterling Sep 2007 B2
7273484 Thoes Sep 2007 B2
7276027 Haar Oct 2007 B2
7276029 Goode Oct 2007 B2
7276146 Wilsey Oct 2007 B2
7276147 Wilsey Oct 2007 B2
7276380 Fukuyama Oct 2007 B2
7277740 Rohleder Oct 2007 B2
7278983 Ireland Oct 2007 B2
7279130 Brown Oct 2007 B2
7282058 Levin Oct 2007 B2
7287318 Bhullar Oct 2007 B2
7288073 Effenhauser Oct 2007 B2
7288102 Griffin Oct 2007 B2
7288174 Cui Oct 2007 B2
7289836 Colvin Oct 2007 B2
7291117 Boecker Nov 2007 B2
7291159 Schmelzeisen-R Nov 2007 B2
7291256 Teodorezyk Nov 2007 B2
7291497 Holmes Nov 2007 B2
7294246 Gundel Nov 2007 B2
7295867 Berner Nov 2007 B2
7297122 Boecker Nov 2007 B2
7297151 Boecker Nov 2007 B2
7297152 Fukuzawa Nov 2007 B2
7297241 Kontschieder Nov 2007 B2
7297248 Bae Nov 2007 B2
7297627 Shah Nov 2007 B2
7299079 Rebec Nov 2007 B2
7299080 Acosta Nov 2007 B2
7299081 Mace Nov 2007 B2
7299082 Feldman Nov 2007 B2
7300402 Iliff Nov 2007 B2
7301629 Bambot Nov 2007 B2
7303573 D'Agostino Dec 2007 B2
7303726 McAllister Dec 2007 B2
7303922 Jeng Dec 2007 B2
7305896 Howell Dec 2007 B2
7306560 Iliff Dec 2007 B2
7308164 Banks Dec 2007 B1
7308292 Colvin Dec 2007 B2
7310542 Jeon Dec 2007 B2
7310543 Smart Dec 2007 B2
7310544 Brister Dec 2007 B2
7311718 Schraga Dec 2007 B2
7311812 Forrow Dec 2007 B2
7312042 Petyt Dec 2007 B1
7313425 Finarov Dec 2007 B2
7314453 Kuo Jan 2008 B2
7315752 Kraemer Jan 2008 B2
7316700 Alden Jan 2008 B2
7316766 Chen Jan 2008 B2
7316929 Purcell Jan 2008 B2
7317938 Lorenz Jan 2008 B2
7317939 Fine Jan 2008 B2
7322942 Roe Jan 2008 B2
7322996 Taylor Jan 2008 B2
7322997 Shi Jan 2008 B2
7322998 Kuhr Jan 2008 B2
7323098 Miyashita Jan 2008 B2
7323141 Kirchhevel Jan 2008 B2
7323315 Marfurt Jan 2008 B2
7324012 Mann Jan 2008 B2
7328052 Samsoondar Feb 2008 B2
7331931 Freeman Feb 2008 B2
7335292 Hodges Feb 2008 B2
7335294 Heller Feb 2008 B2
7337918 Fowler Mar 2008 B2
7338639 Burke Mar 2008 B2
7343188 Sohrab Mar 2008 B2
7344499 Prausnitz Mar 2008 B1
7344500 Talbot Mar 2008 B2
7344507 Briggs Mar 2008 B2
7344626 Harding Mar 2008 B2
7347925 Hsieh Mar 2008 B2
7347926 Morita Mar 2008 B2
7347973 Douglas Mar 2008 B2
RE40198 Buck Apr 2008 E
7351213 Wong Apr 2008 B2
7351323 Iketaki Apr 2008 B2
7351375 Noda Apr 2008 B2
7351770 Liu Apr 2008 B2
7357808 Kennedy Apr 2008 B2
7357851 Reid Apr 2008 B2
7361182 Fukuda Apr 2008 B2
7361307 Schartle Apr 2008 B2
7371247 Boecker May 2008 B2
7372277 Diamond May 2008 B2
7374544 Freeman May 2008 B2
7374546 Roe May 2008 B2
7378007 Moerman May 2008 B2
7378270 Azarnia May 2008 B2
7402616 Rodgers Jul 2008 B2
7404815 Kollias Jul 2008 B2
7410468 Freeman Aug 2008 B2
7429630 Liu Sep 2008 B2
7431814 Hodges Oct 2008 B2
7431820 Hodges Oct 2008 B2
7438694 Boozer Oct 2008 B2
D579652 Lim Nov 2008 S
D579653 Lim Nov 2008 S
7462265 Leach Dec 2008 B2
7465380 Rodgers Dec 2008 B2
7468125 Kraft Dec 2008 B2
D585314 Schvetz Jan 2009 S
7473264 Allen Jan 2009 B2
7474390 Robinson Jan 2009 B2
7474391 Baskeyfield Jan 2009 B2
7481776 Boecker Jan 2009 B2
7481818 Allen Jan 2009 B2
D586465 Faulkner Feb 2009 S
D586466 Smith Feb 2009 S
D586678 Schvetz Feb 2009 S
D586916 Faulkner Feb 2009 S
7485128 Boecker Feb 2009 B2
7491178 Boecker Feb 2009 B2
7498132 Yu Mar 2009 B2
7501052 Iyengar Mar 2009 B2
7501093 Demelo Mar 2009 B2
7521019 Polak Apr 2009 B2
7524293 Freeman Apr 2009 B2
7537571 Freeman May 2009 B2
7547287 Boecker Jun 2009 B2
7548772 Shartle Jun 2009 B2
7553511 Hleong Jun 2009 B2
7563232 Freeman Jul 2009 B2
D598126 Alvarez-Icaza Aug 2009 S
7572356 Rodgers Aug 2009 B2
7575558 Boecker Aug 2009 B2
D600349 Bell Sep 2009 S
D600812 Lei Sep 2009 S
D600813 Bell Sep 2009 S
D601255 Schvetz Sep 2009 S
D601258 Bell Sep 2009 S
7582063 Wurster Sep 2009 B2
7582099 Freeman Sep 2009 B2
7586590 Baskeyfield Sep 2009 B2
7588670 Rodgers Sep 2009 B2
7589828 Robinson Sep 2009 B2
7592151 Liu Sep 2009 B2
7593097 Robinson Sep 2009 B2
7604592 Freeman Oct 2009 B2
7604722 Hodges Oct 2009 B2
7608175 Hodges Oct 2009 B2
7618522 Davies Nov 2009 B2
7648468 Boecker Jan 2010 B2
7648469 Boecker Jan 2010 B2
7653492 Davies Jan 2010 B2
7654127 Krulevitch Feb 2010 B2
7655119 Davies Feb 2010 B2
7665303 Bohm Feb 2010 B2
7666287 Zhao Feb 2010 B2
D611151 Lei Mar 2010 S
D611372 Salter Mar 2010 S
D611489 Bell Mar 2010 S
D611853 Salter Mar 2010 S
D612274 Heidemann Mar 2010 S
D612275 Salter Mar 2010 S
D612279 Heidemann Mar 2010 S
7674232 Boecker Mar 2010 B2
7682318 Alden Mar 2010 B2
7713214 Freeman et al. May 2010 B2
7833172 Hein et al. Nov 2010 B2
7901365 Freeman et al. Mar 2011 B2
8162968 Boozer et al. Apr 2012 B2
20010011157 Latterell Aug 2001 A1
20010016682 Berner Aug 2001 A1
20010017269 Heller Aug 2001 A1
20010018353 Ishigaki Aug 2001 A1
20010023349 Van Tassel et al. Sep 2001 A1
20010027328 Lum Oct 2001 A1
20010031931 Cunningham Oct 2001 A1
20010037355 Britt Nov 2001 A1
20010042004 Taub Nov 2001 A1
20010045355 Gephart Nov 2001 A1
20010054319 Heller Dec 2001 A1
20020002326 Causey Jan 2002 A1
20020002344 Douglas Jan 2002 A1
20020004196 Whitson Jan 2002 A1
20020016568 Lebel Feb 2002 A1
20020016606 Moerman Feb 2002 A1
20020016923 Knaus Feb 2002 A1
20020019606 Lebel Feb 2002 A1
20020019747 Ware Feb 2002 A1
20020019748 Brown Feb 2002 A1
20020025469 Heller Feb 2002 A1
20020029058 Levaughn Mar 2002 A1
20020040208 Flaherty Apr 2002 A1
20020040230 Kuhr Apr 2002 A1
20020042090 Heller Apr 2002 A1
20020042594 Lum Apr 2002 A1
20020044890 Black Apr 2002 A1
20020052618 Haar et al. May 2002 A1
20020053523 Liamos May 2002 A1
20020057993 Maisey May 2002 A1
20020058902 Kollias et al. May 2002 A1
20020076349 Aitken Jun 2002 A1
20020078091 Vu Jun 2002 A1
20020081559 Brown Jun 2002 A1
20020081588 Lumley-Woodyear Jun 2002 A1
20020082543 Park Jun 2002 A1
20020084196 Liamos Jul 2002 A1
20020087056 Aceti Jul 2002 A1
20020092612 Davies Jul 2002 A1
20020099308 Bojan Jul 2002 A1
20020103499 Perez Aug 2002 A1
20020120216 Fritz Aug 2002 A1
20020120261 Morris Aug 2002 A1
20020123335 Luna Sep 2002 A1
20020130042 Moerman et al. Sep 2002 A1
20020133377 Brown Sep 2002 A1
20020136667 Subramanian Sep 2002 A1
20020136863 Subramanian Sep 2002 A1
20020137998 Smart Sep 2002 A1
20020138040 Flora Sep 2002 A1
20020141032 Guarr et al. Oct 2002 A1
20020148739 Liamos Oct 2002 A2
20020156355 Gough Oct 2002 A1
20020160520 Orloff Oct 2002 A1
20020161289 Hopkins Oct 2002 A1
20020168290 Yuzhakov Nov 2002 A1
20020169393 Cunningham Nov 2002 A1
20020169394 Eppstein Nov 2002 A1
20020176984 Smart Nov 2002 A1
20020177761 Orloff Nov 2002 A1
20020177763 Burns Nov 2002 A1
20020188224 Roe Dec 2002 A1
20030014010 Carpenter Jan 2003 A1
20030018282 Effenhauser Jan 2003 A1
20030018300 Duchon Jan 2003 A1
20030028125 Yuzhakov Feb 2003 A1
20030028126 List Feb 2003 A1
20030032077 Itoh Feb 2003 A1
20030038047 Sleva Feb 2003 A1
20030050537 Wessel Mar 2003 A1
20030050573 Kuhr Mar 2003 A1
20030050656 Schraga Mar 2003 A1
20030057391 Krulevitch Mar 2003 A1
20030060730 Perez Mar 2003 A1
20030069509 Matzinger et al. Apr 2003 A1
20030069753 Brown Apr 2003 A1
20030072647 Lum Apr 2003 A1
20030073089 Mauze Apr 2003 A1
20030073229 Greenstein Apr 2003 A1
20030073931 Boecker et al. Apr 2003 A1
20030083685 Freeman May 2003 A1
20030083686 Freeman May 2003 A1
20030088160 Halleck May 2003 A1
20030088191 Freeman et al. May 2003 A1
20030089730 May May 2003 A1
20030093010 Essenpreis May 2003 A1
20030100040 Bonnecaze May 2003 A1
20030106810 Douglas Jun 2003 A1
20030109777 Kloepfer Jun 2003 A1
20030109860 Black Jun 2003 A1
20030111357 Black Jun 2003 A1
20030113827 Burkoth Jun 2003 A1
20030116447 Sturridge Jun 2003 A1
20030120297 Beyerlein Jun 2003 A1
20030135333 Aceti Jul 2003 A1
20030136189 Lauman Jul 2003 A1
20030139653 Manser Jul 2003 A1
20030143113 Yuzhakov Jul 2003 A2
20030144608 Kojima Jul 2003 A1
20030144609 Kennedy Jul 2003 A1
20030146110 Karinka Aug 2003 A1
20030149348 Raskas Aug 2003 A1
20030149377 Erickson Aug 2003 A1
20030150745 Teodorczyk et al. Aug 2003 A1
20030153900 Aceti Aug 2003 A1
20030159944 Pottgen Aug 2003 A1
20030163351 Brown Aug 2003 A1
20030178322 Iyengar Sep 2003 A1
20030191376 Samuels Oct 2003 A1
20030191415 Moerman Oct 2003 A1
20030195435 Williams Oct 2003 A1
20030195540 Moerman Oct 2003 A1
20030199744 Buse Oct 2003 A1
20030199789 Boecker Oct 2003 A1
20030199790 Boecker Oct 2003 A1
20030199791 Boecker Oct 2003 A1
20030199891 Argauer Oct 2003 A1
20030199893 Boecker Oct 2003 A1
20030199894 Boecker Oct 2003 A1
20030199895 Boecker Oct 2003 A1
20030199896 Boecker Oct 2003 A1
20030199897 Boecker Oct 2003 A1
20030199898 Boecker Oct 2003 A1
20030199899 Boecker Oct 2003 A1
20030199900 Boecker Oct 2003 A1
20030199901 Boecker Oct 2003 A1
20030199902 Boecker Oct 2003 A1
20030199903 Boecker Oct 2003 A1
20030199904 Boecker Oct 2003 A1
20030199905 Boecker Oct 2003 A1
20030199906 Boecker Oct 2003 A1
20030199907 Boecker Oct 2003 A1
20030199908 Boecker Oct 2003 A1
20030199909 Boecker Oct 2003 A1
20030199910 Boecker Oct 2003 A1
20030199911 Boecker Oct 2003 A1
20030199912 Pugh Oct 2003 A1
20030201194 Heller Oct 2003 A1
20030203352 Haviland Oct 2003 A1
20030206828 Bell Nov 2003 A1
20030208140 Pugh Nov 2003 A1
20030210811 Dubowsky Nov 2003 A1
20030211619 Olson et al. Nov 2003 A1
20030212344 Yuzhakov Nov 2003 A1
20030212345 McAllister Nov 2003 A1
20030212346 McAllister Nov 2003 A1
20030212347 Sohrab Nov 2003 A1
20030212379 Bylund Nov 2003 A1
20030212423 Pugh Nov 2003 A1
20030212424 Briggs Nov 2003 A1
20030212579 Brown Nov 2003 A1
20030216767 List Nov 2003 A1
20030217918 Davies Nov 2003 A1
20030220552 Reghabi Nov 2003 A1
20030220663 Fletcher Nov 2003 A1
20030223906 McAllister Dec 2003 A1
20030225317 Schell Dec 2003 A1
20030225429 Garthe Dec 2003 A1
20030225430 Schraga Dec 2003 A1
20030228637 Wang Dec 2003 A1
20030229514 Brown Dec 2003 A2
20030232370 Trifiro Dec 2003 A1
20030233055 Erickson Dec 2003 A1
20030233112 Alden et al. Dec 2003 A1
20030233113 Alden et al. Dec 2003 A1
20040006285 Douglas Jan 2004 A1
20040007585 Griffith Jan 2004 A1
20040009100 Simons Jan 2004 A1
20040010279 Freeman Jan 2004 A1
20040015064 Parsons Jan 2004 A1
20040019250 Catelli Jan 2004 A1
20040019259 Brown Jan 2004 A1
20040026243 Davies Feb 2004 A1
20040026244 Hodges Feb 2004 A1
20040030353 Schmelzeisen-R Feb 2004 A1
20040031682 Wilsey Feb 2004 A1
20040034318 Fritz Feb 2004 A1
20040038045 Smart Feb 2004 A1
20040039303 Wurster et al. Feb 2004 A1
20040039342 Eppstein Feb 2004 A1
20040039407 Schraga Feb 2004 A1
20040039408 Abulhaj Feb 2004 A1
20040049219 Briggs Mar 2004 A1
20040049220 Boecker Mar 2004 A1
20040050694 Yang Mar 2004 A1
20040054267 Feldman Mar 2004 A1
20040055898 Heller Mar 2004 A1
20040059256 Perez Mar 2004 A1
20040060818 Feldman Apr 2004 A1
20040061841 Black Apr 2004 A1
20040064068 DeNuzzio Apr 2004 A1
20040069657 Hodges Apr 2004 A1
20040087990 Boecker May 2004 A1
20040092842 Boecker May 2004 A1
20040092994 Briggs May 2004 A1
20040092995 Boecker May 2004 A1
20040096991 Zhang May 2004 A1
20040098009 Boecker May 2004 A1
20040098010 Davison May 2004 A1
20040102803 Boecker May 2004 A1
20040106855 Brown Jun 2004 A1
20040106858 Say Jun 2004 A1
20040106859 Say Jun 2004 A1
20040106860 Say Jun 2004 A1
20040106904 Gonnelli Jun 2004 A1
20040106941 Roe Jun 2004 A1
20040107116 Brown Jun 2004 A1
20040115754 Chang Jun 2004 A1
20040115831 Meathrel Jun 2004 A1
20040116780 Brown Jun 2004 A1
20040116829 Raney Jun 2004 A1
20040117207 Brown Jun 2004 A1
20040117208 Brown Jun 2004 A1
20040117209 Brown Jun 2004 A1
20040117210 Brown Jun 2004 A1
20040122339 Roe Jun 2004 A1
20040127818 Roe Jul 2004 A1
20040127819 Roe Jul 2004 A1
20040127928 Whitson Jul 2004 A1
20040127929 Roe Jul 2004 A1
20040132167 Rule Jul 2004 A1
20040133125 Miyashita Jul 2004 A1
20040133127 Roe Jul 2004 A1
20040137640 Hirao Jul 2004 A1
20040138541 Ward Jul 2004 A1
20040138588 Saikley Jul 2004 A1
20040138688 Giraud Jul 2004 A1
20040146958 Bae Jul 2004 A1
20040154932 Deng Aug 2004 A1
20040157017 Mauze Aug 2004 A1
20040157149 Hofmann Aug 2004 A1
20040157319 Keen Aug 2004 A1
20040157338 Burke Aug 2004 A1
20040157339 Burke Aug 2004 A1
20040158137 Eppstein Aug 2004 A1
20040158271 Hamamoto Aug 2004 A1
20040161737 Yang Aug 2004 A1
20040162473 Sohrab Aug 2004 A1
20040162474 Kiser Aug 2004 A1
20040162506 Duchon Aug 2004 A1
20040162573 Keheiri Aug 2004 A1
20040167383 Kim Aug 2004 A1
20040171057 Yang Sep 2004 A1
20040171968 Katsuki Sep 2004 A1
20040172000 Roe Sep 2004 A1
20040173472 Jung Sep 2004 A1
20040173488 Griffin Sep 2004 A1
20040176705 Stevens Sep 2004 A1
20040176732 Frazier Sep 2004 A1
20040178066 Miyazaki Sep 2004 A1
20040178067 Miyazaki Sep 2004 A1
20040178216 Brickwood Sep 2004 A1
20040180379 van Duyne Sep 2004 A1
20040182703 Bell Sep 2004 A1
20040185568 Matsumoto Sep 2004 A1
20040186359 Beaudoin Sep 2004 A1
20040186394 Roe Sep 2004 A1
20040186500 Koilke Sep 2004 A1
20040193201 Kim Sep 2004 A1
20040193377 Brown Sep 2004 A1
20040194302 Bhullar Oct 2004 A1
20040197231 Katsuki Oct 2004 A1
20040197821 Bauer Oct 2004 A1
20040199062 Petersson Oct 2004 A1
20040199409 Brown Oct 2004 A1
20040200720 Musho Oct 2004 A1
20040200721 Bhullar Oct 2004 A1
20040202576 Aceti Oct 2004 A1
20040204662 Perez Oct 2004 A1
20040206625 Bhullar Oct 2004 A1
20040206636 Hodges Oct 2004 A1
20040206658 Hammerstedt Oct 2004 A1
20040209307 Valkirs Oct 2004 A1
20040209350 Sakata Oct 2004 A1
20040209354 Mathies Oct 2004 A1
20040210279 Gruzdev Oct 2004 A1
20040211666 Pamidi Oct 2004 A1
20040214253 Paek Oct 2004 A1
20040215224 Sakata Oct 2004 A1
20040215225 Nakayama Oct 2004 A1
20040216516 Sato Nov 2004 A1
20040217019 Cai Nov 2004 A1
20040219500 Brown Nov 2004 A1
20040219535 Bell Nov 2004 A1
20040220456 Eppstein Nov 2004 A1
20040220495 Cahir Nov 2004 A1
20040220564 Ho Nov 2004 A1
20040220603 Rutynowski Nov 2004 A1
20040222092 Musho Nov 2004 A1
20040224369 Cai Nov 2004 A1
20040225230 Liamos Nov 2004 A1
20040225311 Levaughn Nov 2004 A1
20040225312 Orloff Nov 2004 A1
20040230216 Levaughn Nov 2004 A1
20040231983 Shen Nov 2004 A1
20040231984 Lauks Nov 2004 A1
20040232009 Okuda Nov 2004 A1
20040236250 Hodges Nov 2004 A1
20040236251 Roe Nov 2004 A1
20040236268 Mitragotri Nov 2004 A1
20040236362 Schraga Nov 2004 A1
20040238357 Bhullar Dec 2004 A1
20040238358 Forrow Dec 2004 A1
20040238359 Ikeda Dec 2004 A1
20040241746 Adlassnig Dec 2004 A1
20040242977 Dosmann Dec 2004 A1
20040243164 D'Agostino Dec 2004 A1
20040243165 Koike Dec 2004 A1
20040245101 Willner Dec 2004 A1
20040248282 Sobha Dec 2004 A1
20040248312 Vreeke Dec 2004 A1
20040249254 Racchini Dec 2004 A1
20040249310 Shartle Dec 2004 A1
20040249311 Haar Dec 2004 A1
20040249405 Watanabe Dec 2004 A1
20040249406 Griffin Dec 2004 A1
20040251131 Ueno Dec 2004 A1
20040253634 Wang Dec 2004 A1
20040254434 Goodnow Dec 2004 A1
20040254599 Lipoma Dec 2004 A1
20040256228 Huang Dec 2004 A1
20040256248 Burke Dec 2004 A1
20040256685 Chou Dec 2004 A1
20040258564 Charlton Dec 2004 A1
20040260204 Boecker Dec 2004 A1
20040260324 Fukuzawa Dec 2004 A1
20040260325 Kuhr Dec 2004 A1
20040260326 Lipoma Dec 2004 A1
20040260511 Burke Dec 2004 A1
20040267105 Monfre Dec 2004 A1
20040267160 Perez Dec 2004 A9
20040267229 Moerman Dec 2004 A1
20040267299 Kuriger Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050000806 Hsieh Jan 2005 A1
20050000807 Wang Jan 2005 A1
20050000808 Cui Jan 2005 A1
20050003470 Nelson Jan 2005 A1
20050004437 Kaufmann Jan 2005 A1
20050004494 Perez Jan 2005 A1
20050008537 Mosolu Jan 2005 A1
20050008851 Ezoe Jan 2005 A1
20050009191 Swenson Jan 2005 A1
20050010090 Acosta Jan 2005 A1
20050010093 Ford Jan 2005 A1
20050010134 Douglas Jan 2005 A1
20050010137 Hodges Jan 2005 A1
20050010198 Marchitto Jan 2005 A1
20050011759 Moerman Jan 2005 A1
20050013731 Burke Jan 2005 A1
20050014997 Ruchti Jan 2005 A1
20050015020 Levaughn Jan 2005 A1
20050016844 Burke Jan 2005 A1
20050019212 Bhullar Jan 2005 A1
20050019219 Oshiman Jan 2005 A1
20050019805 Groll Jan 2005 A1
20050019945 Groll Jan 2005 A1
20050019953 Groll Jan 2005 A1
20050021066 Kuhr Jan 2005 A1
20050027181 Goode, Jr. Feb 2005 A1
20050027211 Kuhr Feb 2005 A1
20050027562 Brown Feb 2005 A1
20050033340 Lipoma Feb 2005 A1
20050033341 Vreeke Feb 2005 A1
20050034983 Chambers Feb 2005 A1
20050036020 Li Feb 2005 A1
20050036146 Braig Feb 2005 A1
20050036906 Nakahara Feb 2005 A1
20050036909 Erickson Feb 2005 A1
20050037482 Braig Feb 2005 A1
20050038329 Morris Feb 2005 A1
20050038330 Jansen Feb 2005 A1
20050038463 Davar Feb 2005 A1
20050038464 Schraga Feb 2005 A1
20050038465 Schraga Feb 2005 A1
20050038674 Braig Feb 2005 A1
20050042766 Ohman Feb 2005 A1
20050043894 Fernandez Feb 2005 A1
20050043965 Heller Feb 2005 A1
20050045476 Neel Mar 2005 A1
20050049472 Manda Mar 2005 A1
20050050859 Coppeta Mar 2005 A1
20050054082 Pachl Mar 2005 A1
20050054908 Blank Mar 2005 A1
20050059872 Shartle Mar 2005 A1
20050059895 Brown Mar 2005 A1
20050060194 Brown Mar 2005 A1
20050061668 Brenneman Mar 2005 A1
20050064528 Kwon Mar 2005 A1
20050067280 Reid Mar 2005 A1
20050067737 Rappin Mar 2005 A1
20050070771 Rule Mar 2005 A1
20050070819 Poux Mar 2005 A1
20050070945 Schraga Mar 2005 A1
20050494473 Desai Mar 2005
20050072670 Hasegawa Apr 2005 A1
20050077176 Hodges Apr 2005 A1
20050077584 Uhland Apr 2005 A1
20050079542 Cullen Apr 2005 A1
20050080652 Brown Apr 2005 A1
20050085839 Allen Apr 2005 A1
20050085840 Yi Apr 2005 A1
20050086083 Brown Apr 2005 A1
20050090754 Wolf Apr 2005 A1
20050090850 Toes Apr 2005 A1
20050096520 Maekawa May 2005 A1
20050096565 Chang May 2005 A1
20050096586 Trautman May 2005 A1
20050096587 Santini, Jr. May 2005 A1
20050096686 Allen May 2005 A1
20050098431 Hodges May 2005 A1
20050098432 Grundel May 2005 A1
20050098433 Grundel May 2005 A1
20050098434 Grundel May 2005 A1
20050100880 Chang May 2005 A1
20050101841 Kaylor May 2005 A9
20050101979 Alden May 2005 A1
20050101980 Alden May 2005 A1
20050101981 Alden May 2005 A1
20050103624 Bhullar May 2005 A1
20050106713 Phan May 2005 A1
20050109637 Iyengar May 2005 A1
20050112712 Ouyang May 2005 A1
20050112782 Buechler May 2005 A1
20050113658 Jacobson May 2005 A1
20050113717 Matzinger May 2005 A1
20050114062 Davies May 2005 A1
20050114154 Wolkowicz May 2005 A1
20050114444 Brown May 2005 A1
20050118056 Swanson Jun 2005 A1
20050118062 Otake Jun 2005 A1
20050119681 Marshall Jun 2005 A1
20050123443 Fujiwara Jun 2005 A1
20050123680 Kang Jun 2005 A1
20050124869 Hefti Jun 2005 A1
20050125017 Kudrna Jun 2005 A1
20050125018 Galloway Jun 2005 A1
20050125019 Kudrna Jun 2005 A1
20050126929 Mansouri Jun 2005 A1
20050130248 Willner Jun 2005 A1
20050130249 Parris Jun 2005 A1
20050130292 Ahn Jun 2005 A1
20050131286 Parker Jun 2005 A1
20050131441 Iio Jun 2005 A1
20050133368 Davies Jun 2005 A1
20050136471 Bhullar Jun 2005 A1
20050136501 Kuriger Jun 2005 A1
20050136529 Yang Jun 2005 A1
20050136550 Yang Jun 2005 A1
20050137531 Prausnitz et al. Jun 2005 A1
20050137536 Gonnelli Jun 2005 A1
20050140659 Hohl Jun 2005 A1
20050143675 Neel Jun 2005 A1
20050143713 Delmore Jun 2005 A1
20050143771 Stout Jun 2005 A1
20050145490 Shinno Jul 2005 A1
20050145491 Amano Jul 2005 A1
20050145520 Ilo Jul 2005 A1
20050149088 Fukuda Jul 2005 A1
20050149089 Trissel Jul 2005 A1
20050149090 Morita et al. Jul 2005 A1
20050150762 Butters Jul 2005 A1
20050150763 Butters Jul 2005 A1
20050154277 Ting Jul 2005 A1
20050154374 Hunter Jul 2005 A1
20050154410 Conway Jul 2005 A1
20050154616 Iliff Jul 2005 A1
20050158850 Kubo Jul 2005 A1
20050159656 Hockersmith Jul 2005 A1
20050159768 Boehm Jul 2005 A1
20050163176 You et al. Jul 2005 A1
20050164299 Stewart Jul 2005 A1
20050164322 Heller Jul 2005 A1
20050164329 Wallace-Davis Jul 2005 A1
20050165285 Iliff Jul 2005 A1
20050165393 Eppstein Jul 2005 A1
20050165622 Neel Jul 2005 A1
20050169810 Hagen Aug 2005 A1
20050169961 Hunter Aug 2005 A1
20050170448 Burson Aug 2005 A1
20050171567 DeHart Aug 2005 A1
20050172021 Brown Aug 2005 A1
20050172022 Brown Aug 2005 A1
20050173245 Feldman Aug 2005 A1
20050173246 Hodges Aug 2005 A1
20050175509 Nakaminami Aug 2005 A1
20050176084 Burkoth Aug 2005 A1
20050176133 Miyashita Aug 2005 A1
20050176153 O'hara Aug 2005 A1
20050177071 Nakayama Aug 2005 A1
20050177201 Freeman Aug 2005 A1
20050177398 Watanabe Aug 2005 A1
20050178218 Montagu Aug 2005 A1
20050181010 Hunter Aug 2005 A1
20050181497 Salto Aug 2005 A1
20050182307 Currie Aug 2005 A1
20050187439 Blank Aug 2005 A1
20050187444 Hubner Aug 2005 A1
20050192488 Bryenton Sep 2005 A1
20050196821 Monfre Sep 2005 A1
20050197666 Raney Sep 2005 A1
20050201897 Zimmer Sep 2005 A1
20050202567 Zanzucchi Sep 2005 A1
20050203358 Monfre Sep 2005 A1
20050203364 Monfre Sep 2005 A1
20050204939 Krejci Sep 2005 A1
20050205136 Freeman Sep 2005 A1
20050205422 Moser Sep 2005 A1
20050205816 Hayenga Sep 2005 A1
20050209515 Hockersmith Sep 2005 A1
20050209564 Bonner Sep 2005 A1
20050209625 Chan Sep 2005 A1
20050211571 Schulein Sep 2005 A1
20050211572 Buck Sep 2005 A1
20050214881 Azarnia Sep 2005 A1
20050214892 Kovatchev Sep 2005 A1
20050215871 Feldman Sep 2005 A1
20050215872 Berner Sep 2005 A1
20050215923 Wiegel Sep 2005 A1
20050215925 Chan Sep 2005 A1
20050216046 Yeoh Sep 2005 A1
20050218024 Lang Oct 2005 A1
20050221276 Rozakis Oct 2005 A1
20050221470 Matsumoto Oct 2005 A1
20050222599 Czernecki Oct 2005 A1
20050227372 Khan Oct 2005 A1
20050228242 Kawamura Oct 2005 A1
20050228883 Brown Oct 2005 A1
20050230252 Tsai Oct 2005 A1
20050230253 Marquant Oct 2005 A1
20050232813 Karmali Oct 2005 A1
20050232815 Ruhl Oct 2005 A1
20050234368 Wong Oct 2005 A1
20050234486 Allen Oct 2005 A1
20050234487 Shi Oct 2005 A1
20050234488 Allen Oct 2005 A1
20050234489 Allen Oct 2005 A1
20050234490 Allen Oct 2005 A1
20050234491 Allen Oct 2005 A1
20050234492 Tsai Oct 2005 A1
20050234494 Conway Oct 2005 A1
20050234495 Schraga Oct 2005 A1
20050235060 Brown Oct 2005 A1
20050239154 Feldman Oct 2005 A1
20050239156 Drucker Oct 2005 A1
20050239194 Takahashi Oct 2005 A1
20050240090 Ruchti Oct 2005 A1
20050240119 Draudt Oct 2005 A1
20050240207 Marshall Oct 2005 A1
20050240778 Saito Oct 2005 A1
20050245798 Yamaguchi Nov 2005 A1
20050245843 Day Nov 2005 A1
20050245844 Mace Nov 2005 A1
20050245845 Roe Nov 2005 A1
20050245954 Roe Nov 2005 A1
20050245955 Schraga Nov 2005 A1
20050256534 Alden Nov 2005 A1
20050258035 Harding Nov 2005 A1
20050258036 Harding Nov 2005 A1
20050258050 Harding Nov 2005 A1
20050265094 Harding Dec 2005 A1
20050276133 Harding Dec 2005 A1
20050278945 Feldman Dec 2005 A1
20050279631 Celentano Dec 2005 A1
20050279647 Beaty Dec 2005 A1
20050283094 Thym Dec 2005 A1
20050284110 Lang Dec 2005 A1
20050284757 Allen Dec 2005 A1
20050287620 Heller Dec 2005 A1
20050288637 Kuhr Dec 2005 A1
20050288698 Matsumoto Dec 2005 A1
20050288699 Schraga Dec 2005 A1
20060000549 Lang Jan 2006 A1
20060003398 Heller Jan 2006 A1
20060004270 Bedard Jan 2006 A1
20060004271 Peyser Jan 2006 A1
20060004272 Shah Jan 2006 A1
20060006574 Lang Jan 2006 A1
20060008389 Sacherer Jan 2006 A1
20060015129 Shahrokni Jan 2006 A1
20060016698 Lee Jan 2006 A1
20060020228 Fowler Jan 2006 A1
20060024774 Zocchi Feb 2006 A1
20060025662 Buse Feb 2006 A1
20060029979 Bai Feb 2006 A1
20060029991 Hagino Feb 2006 A1
20060030028 Nakaminami Feb 2006 A1
20060030050 Milne Feb 2006 A1
20060030761 Raskas Feb 2006 A1
20060030788 Wong Feb 2006 A1
20060034728 Kloepfer Feb 2006 A1
20060037859 Hodges Feb 2006 A1
20060040333 Zocchi Feb 2006 A1
20060047220 Sakata Mar 2006 A1
20060047294 Mori Mar 2006 A1
20060052723 Roe Mar 2006 A1
20060052724 Roe Mar 2006 A1
20060052809 Karbowniczek Mar 2006 A1
20060052810 Freeman Mar 2006 A1
20060058827 Sakata Mar 2006 A1
20060058828 Shi Mar 2006 A1
20060062852 Holmes Mar 2006 A1
20060063988 Schurman Mar 2006 A1
20060064035 Wang Mar 2006 A1
20060079739 Chen Wang Apr 2006 A1
20060079810 Patel Apr 2006 A1
20060079811 Roe Apr 2006 A1
20060079920 Schraga Apr 2006 A1
20060081469 Lee Apr 2006 A1
20060085020 Freeman Apr 2006 A1
20060085137 Bartkowiak Apr 2006 A1
20060086624 Tapsak Apr 2006 A1
20060088945 Douglas Apr 2006 A1
20060089566 DeHart Apr 2006 A1
20060091006 Wang May 2006 A1
20060094944 Chuang May 2006 A1
20060094947 Kovatchev May 2006 A1
20060094985 Aceti May 2006 A1
20060094986 Neel May 2006 A1
20060095061 Trautman May 2006 A1
20060096859 Lau May 2006 A1
20060099107 Yamamoto May 2006 A1
20060099703 Choi May 2006 A1
20060100542 Wong May 2006 A9
20060100543 Raney May 2006 A1
20060100654 Fukuda May 2006 A1
20060100655 Leong May 2006 A1
20060100656 Olsen May 2006 A1
20060106373 Cahir May 2006 A1
20060108236 Kasielke May 2006 A1
20060113187 Deng Jun 2006 A1
20060115857 Keen Jun 2006 A1
20060116562 Acosta Jun 2006 A1
20060116704 Ashby Jun 2006 A1
20060116705 Schraga Jun 2006 A1
20060119362 Kermani Jun 2006 A1
20060121547 McIntire Jun 2006 A1
20060121625 Clemens Jun 2006 A1
20060121759 Kasai Jun 2006 A1
20060122099 Aoki Jun 2006 A1
20060122536 Haar Jun 2006 A1
20060129065 Matsumoto Jun 2006 A1
20060129172 Crossman Jun 2006 A1
20060129173 Wilkinson Jun 2006 A1
20060134713 Rylatt Jun 2006 A1
20060140457 Simshauser Jun 2006 A1
20060144704 Ghesquiere Jul 2006 A1
20060151323 Cho Jul 2006 A1
20060155215 Cha Jul 2006 A1
20060155316 Perez Jul 2006 A1
20060155317 List Jul 2006 A1
20060156796 Burke Jul 2006 A1
20060157362 Schraga Jul 2006 A1
20060160100 Gao Jul 2006 A1
20060161078 Schraga Jul 2006 A1
20060161194 Freeman Jul 2006 A1
20060163061 Hodges Jul 2006 A1
20060166302 Clarke Jul 2006 A1
20060167382 Deshmukh Jul 2006 A1
20061051342 Yaguchi Jul 2006
20060169599 Feldman Aug 2006 A1
20060173254 Acosta Aug 2006 A1
20060173255 Acosta Aug 2006 A1
20060173379 Rasch-Menges Aug 2006 A1
20060173380 Hoenes Aug 2006 A1
20060173478 Schraga Aug 2006 A1
20060175216 Freeman Aug 2006 A1
20060178573 Kermani Aug 2006 A1
20060178599 Faupel Aug 2006 A1
20060178600 Kennedy Aug 2006 A1
20060178686 Schraga Aug 2006 A1
20060178687 Freeman Aug 2006 A1
20060178688 Freeman Aug 2006 A1
20060178689 Freeman Aug 2006 A1
20060178690 Freeman Aug 2006 A1
20060183871 Ward Aug 2006 A1
20060183983 Acosta Aug 2006 A1
20060184065 Deshmukh Aug 2006 A1
20060184101 Srinivasan Aug 2006 A1
20060188395 Taniike Aug 2006 A1
20060189895 Neel Aug 2006 A1
20060191787 Wang Aug 2006 A1
20060195023 Acosta Aug 2006 A1
20060195047 Freeman Aug 2006 A1
20060195128 Alden Aug 2006 A1
20060195129 Freeman Aug 2006 A1
20060195130 Freeman Aug 2006 A1
20060195131 Freeman Aug 2006 A1
20060195132 Freeman Aug 2006 A1
20060195133 Freeman Aug 2006 A1
20060196031 Hoenes Sep 2006 A1
20060196795 Windus-Smith Sep 2006 A1
20060200044 Freeman Sep 2006 A1
20060200045 Roe Sep 2006 A1
20060200046 Windus-Smith Sep 2006 A1
20060200181 Fukuzawa Sep 2006 A1
20060200981 Bhullar Sep 2006 A1
20060200982 Bhullar Sep 2006 A1
20060201804 Chambers Sep 2006 A1
20060204399 Freeman Sep 2006 A1
20060205029 Heller Sep 2006 A1
20060205060 Kim Sep 2006 A1
20060206135 Uehata Sep 2006 A1
20060211127 Iwaki Sep 2006 A1
20060211927 Acosta Sep 2006 A1
20060211931 Blank Sep 2006 A1
20060219551 Edelbrock Oct 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060222567 Kloepfer Oct 2006 A1
20060224171 Sakata Oct 2006 A1
20060224172 Levaughn Oct 2006 A1
20060229532 Wong Oct 2006 A1
20060229533 Hoenes Oct 2006 A1
20060229651 Marshall Oct 2006 A1
20060231396 Yamaoka Oct 2006 A1
20060231418 Harding Oct 2006 A1
20060231421 Diamond Oct 2006 A1
20060231423 Harding Oct 2006 A1
20060231425 Harding Oct 2006 A1
20060231442 Windus-Smith Oct 2006 A1
20060232278 Diamond Oct 2006 A1
20060232528 Harding Oct 2006 A1
20060233666 Vu Oct 2006 A1
20060234263 Light Oct 2006 A1
20060234369 Sih Oct 2006 A1
20060235284 Lee Oct 2006 A1
20060235454 LeVaughn Oct 2006 A1
20060241517 Fowler Oct 2006 A1
20060241666 Briggs Oct 2006 A1
20060241667 Freeman Oct 2006 A1
20060241668 Schraga Oct 2006 A1
20060241669 Stout Oct 2006 A1
20060247154 Palmieri Nov 2006 A1
20060247554 Roe Nov 2006 A1
20060247555 Harttig Nov 2006 A1
20060247670 LeVaughn Nov 2006 A1
20060247671 Levaughn Nov 2006 A1
20060254932 Hodges Nov 2006 A1
20060259057 Kim Nov 2006 A1
20060259058 Schiff Nov 2006 A1
20060259060 Whitson Nov 2006 A1
20060264718 Ruchti Nov 2006 A1
20060264996 Levaughn Nov 2006 A1
20060264997 Colonna Nov 2006 A1
20060266644 Pugh Nov 2006 A1
20060266765 Pugh Nov 2006 A1
20060271083 Boecker Nov 2006 A1
20060271084 Schraga Nov 2006 A1
20060276724 Freeman Dec 2006 A1
20060277048 Kintzig Dec 2006 A1
20060278545 Henning Dec 2006 A1
20060279431 Bakarania Dec 2006 A1
20060281187 Emery Dec 2006 A1
20060282109 Jansen Dec 2006 A1
20060286620 Werner Dec 2006 A1
20060287664 Grage Dec 2006 A1
20060293577 Morrison Dec 2006 A1
20070004989 Dhillon Jan 2007 A1
20070004990 Kistner Jan 2007 A1
20070007183 Schulat Jan 2007 A1
20070009381 Schulat Jan 2007 A1
20070010839 Galloway Jan 2007 A1
20070010841 Teo Jan 2007 A1
20070015978 Kanayama Jan 2007 A1
20070016079 Freeman Jan 2007 A1
20070016103 Calasso Jan 2007 A1
20070016104 Jansen Jan 2007 A1
20070016239 Sato Jan 2007 A1
20070017805 Hodges Jan 2007 A1
20070027370 Brauker Feb 2007 A1
20070027427 Trautman Feb 2007 A1
20070032812 Loerwald Feb 2007 A1
20070032813 Flynn Feb 2007 A1
20070038149 Calasso Feb 2007 A1
20070038235 Freeman Feb 2007 A1
20070043305 Boecker Feb 2007 A1
20070043386 Freeman Feb 2007 A1
20070049901 Wu Mar 2007 A1
20070049959 Feaster Mar 2007 A1
20070055174 Freeman Mar 2007 A1
20070055297 Fukuzawa Mar 2007 A1
20070055298 Uehata Mar 2007 A1
20070060842 Alvarez-Icaza Mar 2007 A1
20070060843 Alvarez-Icaza Mar 2007 A1
20070060844 Alvarez-Icaza Mar 2007 A1
20070060845 Perez Mar 2007 A1
20070061393 Chen Mar 2007 A1
20070062250 Krulevitch Mar 2007 A1
20070062251 Anex Mar 2007 A1
20070062315 Hodges Mar 2007 A1
20070064516 Briggs Mar 2007 A1
20070066939 Krulevitch Mar 2007 A1
20070066940 Karunaratne Mar 2007 A1
20070068807 Feldman Mar 2007 A1
20070073188 Freeman Mar 2007 A1
20070073189 Freeman Mar 2007 A1
20070074977 Guo Apr 2007 A1
20070078358 Escutia Apr 2007 A1
20070078360 Matsumoto Apr 2007 A1
20070078474 Kim Apr 2007 A1
20070080093 Boozer Apr 2007 A1
20070083130 Thomson Apr 2007 A1
20070083131 Escutia Apr 2007 A1
20070083222 Schraga Apr 2007 A1
20070083335 Moerman Apr 2007 A1
20070084749 Demelo Apr 2007 A1
20070088377 LeVaughn Apr 2007 A1
20070092923 Chang Apr 2007 A1
20070093728 Douglas Apr 2007 A1
20070093752 Zhao Apr 2007 A1
20070093753 Krulevitch Apr 2007 A1
20070093863 Pugh Apr 2007 A1
20070093864 Pugh Apr 2007 A1
20070095178 Schraga May 2007 A1
20070100255 Boecker May 2007 A1
20070100256 Sansom May 2007 A1
20070100364 Sansom May 2007 A1
20070102312 Cha May 2007 A1
20070106178 Roe May 2007 A1
20070108048 Wang May 2007 A1
20070112281 Olson May 2007 A1
20070112367 Olson May 2007 A1
20070119710 Golberger May 2007 A1
20070123801 Golberger May 2007 A1
20070123802 Freeman May 2007 A1
20070129618 Golberger Jun 2007 A1
20070129650 Freeman Jun 2007 A1
20070131565 Fujiwara Jun 2007 A1
20070135828 Rutynowski Jun 2007 A1
20070142747 Boecker Jun 2007 A1
20070142748 Freeman Jun 2007 A1
20070142776 Kovelman Jun 2007 A9
20070142854 Schraga Jun 2007 A1
20070144235 Werner Jun 2007 A1
20070149875 Ouyang Jun 2007 A1
20070149897 Ghesquiere Jun 2007 A1
20070161960 Chen Jul 2007 A1
20070162064 Starnes Jul 2007 A1
20070162065 Li Jul 2007 A1
20070167869 Roe Jul 2007 A1
20070167870 Freeman Jul 2007 A1
20070167871 Freeman Jul 2007 A1
20070167872 Freeman Jul 2007 A1
20070167873 Freeman Jul 2007 A1
20070167874 Freeman Jul 2007 A1
20070167875 Freeman Jul 2007 A1
20070173739 Chan Jul 2007 A1
20070173740 Chan Jul 2007 A1
20070173741 Boecker Jul 2007 A1
20070173742 Deshmukh Jul 2007 A1
20070173743 Freeman Jul 2007 A1
20070173874 Uschold Jul 2007 A1
20070173875 Uschold Jul 2007 A1
20070173876 Aylett Jul 2007 A1
20070176120 Schwind Aug 2007 A1
20070179356 Wessel Aug 2007 A1
20070179404 Escutia Aug 2007 A1
20070179405 Emery Aug 2007 A1
20070179406 DeNuzzio Aug 2007 A1
20070182051 Harttig Aug 2007 A1
20070185412 Boecker Aug 2007 A1
20070185515 Stout Aug 2007 A1
20070185516 Schosnig Aug 2007 A1
20070191702 Yodfat Aug 2007 A1
20070191737 Freeman Aug 2007 A1
20070191738 Raney Aug 2007 A1
20070191739 Roe Aug 2007 A1
20070193019 Feldman Aug 2007 A1
20070193882 Dai Aug 2007 A1
20070196240 Boozer Aug 2007 A1
20070196242 Boozer Aug 2007 A1
20070203514 Flaherty Aug 2007 A1
20070203903 Attaran Rezaei Aug 2007 A1
20070205103 Hodges Sep 2007 A1
20070207498 Palmieri Sep 2007 A1
20070213601 Freeman Sep 2007 A1
20070213637 Boozer Sep 2007 A1
20070213682 Haar Sep 2007 A1
20070213756 Freeman Sep 2007 A1
20070218543 Flaherty Sep 2007 A1
20070219346 Trifiro Sep 2007 A1
20070219432 Thompson Sep 2007 A1
20070219436 Takase Sep 2007 A1
20070219462 Briggs Sep 2007 A1
20070219463 Briggs Sep 2007 A1
20070219572 Deck Sep 2007 A1
20070219573 Freeman Sep 2007 A1
20070219574 Freeman Sep 2007 A1
20070225741 Ikeda Sep 2007 A1
20070225742 Abe Sep 2007 A1
20070227907 Shah Oct 2007 A1
20070227911 Wang Oct 2007 A1
20070227912 Chatelier Oct 2007 A1
20070229085 Kawai Oct 2007 A1
20070232872 Prough Oct 2007 A1
20070232956 Harman Oct 2007 A1
20070233013 Schoenberg Oct 2007 A1
20070233166 Stout Oct 2007 A1
20070233167 Weiss Oct 2007 A1
20070233395 Neel Oct 2007 A1
20070235329 Harding Oct 2007 A1
20070235347 Chatelier Oct 2007 A1
20070239068 Rasch-Menges Oct 2007 A1
20070239188 Boozer Oct 2007 A1
20070239189 Freeman Oct 2007 A1
20070239190 Alden Oct 2007 A1
20070240984 Popovich Oct 2007 A1
20070240986 Reymond Oct 2007 A1
20070244380 Say Oct 2007 A1
20070244412 Lav Oct 2007 A1
20070244498 Steg Oct 2007 A1
20070244499 Briggs Oct 2007 A1
20070249921 Groll Oct 2007 A1
20070249962 Alden Oct 2007 A1
20070249963 Alden Oct 2007 A1
20070250099 Flora Oct 2007 A1
20070251836 Hsu Nov 2007 A1
20070254359 Rezania Nov 2007 A1
20070255141 Esenaliev Nov 2007 A1
20070255178 Alvarez-Icaza Nov 2007 A1
20070255179 Alvarez-Icaza Nov 2007 A1
20070255180 Alvarez-Icaza Nov 2007 A1
20070255181 Alvarez-Icaza Nov 2007 A1
20070255300 Vanhiel Nov 2007 A1
20070255301 Freeman Nov 2007 A1
20070255302 Koeppel Nov 2007 A1
20070260271 Freeman Nov 2007 A1
20070260272 Weiss Nov 2007 A1
20070264721 Buck Nov 2007 A1
20070265511 Renouf Nov 2007 A1
20070265532 Maynard Nov 2007 A1
20070265654 Iio Nov 2007 A1
20070273901 Baskeyfield Nov 2007 A1
20070273903 Baskeyfield Nov 2007 A1
20070273904 Robinson Nov 2007 A1
20070273928 Robinson Nov 2007 A1
20070276197 Harmon Nov 2007 A1
20070276211 Mir Nov 2007 A1
20070276290 Boecker Nov 2007 A1
20070276425 Kim Nov 2007 A1
20070276621 Davies Nov 2007 A1
20070278097 Bhullar Dec 2007 A1
20070282186 Gilmore Dec 2007 A1
20070282362 Berg Dec 2007 A1
20070288047 Thoes Dec 2007 A1
20070293743 Monfre Dec 2007 A1
20070293744 Monfre Dec 2007 A1
20070293790 Bainczyk Dec 2007 A1
20070293882 Harttig Dec 2007 A1
20070293883 Horie Dec 2007 A1
20070295616 Harding Dec 2007 A1
20080004651 Nicholls Jan 2008 A1
20080007141 Deck Jan 2008 A1
20080009767 Effenhauser Jan 2008 A1
20080009768 Sohrab Jan 2008 A1
20080009892 Freeman Jan 2008 A1
20080009893 LeVaughn Jan 2008 A1
20080015425 Douglas Jan 2008 A1
20080015623 Deck Jan 2008 A1
20080017522 Heller Jan 2008 A1
20080019870 Newman Jan 2008 A1
20080021291 Zocchi Jan 2008 A1
20080021293 Schurman Jan 2008 A1
20080021295 Wang Jan 2008 A1
20080021296 Creaven Jan 2008 A1
20080021346 Haar Jan 2008 A1
20080021490 Briggs Jan 2008 A1
20080021491 Freeman Jan 2008 A1
20080021492 Freeman Jan 2008 A1
20080021493 Levaughn Jan 2008 A1
20080021494 Schmelzeisen-R Jan 2008 A1
20080027385 Freeman Jan 2008 A1
20080031778 Kramer Feb 2008 A1
20080033268 Stafford Feb 2008 A1
20080033318 Mace Feb 2008 A1
20080033319 Kloepfer Feb 2008 A1
20080033468 Lathrop Feb 2008 A1
20080033469 Winheim Feb 2008 A1
20080034834 Schell Feb 2008 A1
20080034835 Schell Feb 2008 A1
20080039885 Purcell Feb 2008 A1
20080039886 Shi Feb 2008 A1
20080039887 Conway Feb 2008 A1
20080040919 Griss Feb 2008 A1
20080045825 Melker Feb 2008 A1
20080045992 Schraga Feb 2008 A1
20080047764 Lee Feb 2008 A1
20080053201 Roesicke Mar 2008 A1
20080057484 Miyata Mar 2008 A1
20080058624 Smart Mar 2008 A1
20080058626 Miyata Mar 2008 A1
20080058631 Draudt Mar 2008 A1
20080058847 Abe Mar 2008 A1
20080058848 Griffin Mar 2008 A1
20080058849 Conway Mar 2008 A1
20080060424 Babic Mar 2008 A1
20080064986 Kraemer Mar 2008 A1
20080064987 Escutia Mar 2008 A1
20080065130 Patel Mar 2008 A1
20080065131 List Mar 2008 A1
20080065132 Trissel Mar 2008 A1
20080065133 Kennedy Mar 2008 A1
20080065134 Conway Mar 2008 A1
20080073224 Diamond Mar 2008 A1
20080077048 Escutia Mar 2008 A1
20080077167 Flynn Mar 2008 A1
20080077168 Nicholls Mar 2008 A1
20080081969 Feldman Apr 2008 A1
20080081976 Hodges Apr 2008 A1
20080082023 Deck Apr 2008 A1
20080082116 Lathrop Apr 2008 A1
20080082117 Ruf Apr 2008 A1
20080086042 Brister Apr 2008 A1
20080086044 Brister Apr 2008 A1
20080086273 Shults Apr 2008 A1
20080093227 Diamond Apr 2008 A1
20080093228 Diamond Apr 2008 A1
20080093230 Diamond Apr 2008 A1
20080094804 Reynolds Apr 2008 A1
20080097171 Smart Apr 2008 A1
20080097241 Maltezos Apr 2008 A1
20080097503 Creaven Apr 2008 A1
20080098802 Burke May 2008 A1
20080103396 Johnson May 2008 A1
20080103415 Roe May 2008 A1
20080103517 Takemoto May 2008 A1
20080105024 Creaven May 2008 A1
20080105568 Wu May 2008 A1
20080108130 Nakaminami May 2008 A1
20080108942 Brister May 2008 A1
20080109024 Berkovitch May 2008 A1
20080109025 Yang May 2008 A1
20080109259 Thompson May 2008 A1
20080114227 Haar May 2008 A1
20080114228 McCluskey May 2008 A1
20080118400 Neel May 2008 A1
20080119703 Brister May 2008 A1
20080119704 Brister May 2008 A1
20080119706 Brister May 2008 A1
20080119761 Boecker May 2008 A1
20080119883 Conway May 2008 A1
20080119884 Flora May 2008 A1
20080121533 Hodges May 2008 A1
20080125800 List May 2008 A1
20080125801 List May 2008 A1
20080134806 Capriccio Jun 2008 A1
20080134810 Neel Jun 2008 A1
20080135559 Byrd Jun 2008 A1
20080140105 Zhong Jun 2008 A1
20080144022 Schulat Jun 2008 A1
20080146899 Ruchti Jun 2008 A1
20080146966 LeVaughn Jun 2008 A1
20080147108 Kennedy Jun 2008 A1
20080149268 Zhao Jun 2008 A1
20080149599 Bohm Jun 2008 A1
20080152507 Bohm Jun 2008 A1
20080154187 Krulevitch Jun 2008 A1
20080154513 Kovatchev Jun 2008 A1
20080159913 Jung Jul 2008 A1
20080161664 Mastrototaro Jul 2008 A1
20080161724 Roe Jul 2008 A1
20080161725 Wong Jul 2008 A1
20080166269 Jansen Jul 2008 A1
20080167578 Bryer Jul 2008 A1
20080167673 Zhong Jul 2008 A1
20080188771 Boecker Aug 2008 A1
20080194987 Boecker Aug 2008 A1
20080194989 Briggs Aug 2008 A1
20080208026 Noujaim Aug 2008 A1
20080208079 Hein Aug 2008 A1
20080210574 Boecker Sep 2008 A1
20080214909 Fuerst Sep 2008 A1
20080214917 Boecker Sep 2008 A1
20080214919 Harmon Sep 2008 A1
20080214956 Briggs Sep 2008 A1
20080228212 List Sep 2008 A1
20000262388 List Oct 2008
20080249435 Haar Oct 2008 A1
20080249554 Freeman Oct 2008 A1
20080255598 LeVaughn et al. Oct 2008 A1
20080262387 List Oct 2008 A1
20080267822 List Oct 2008 A1
20080269723 Mastrototaro Oct 2008 A1
20080269791 Hoenes Oct 2008 A1
20080275365 Guthrie Nov 2008 A1
20080275384 Mastrototaro Nov 2008 A1
20080277291 Heller Nov 2008 A1
20080277292 Heller Nov 2008 A1
20080277293 Heller Nov 2008 A1
20080277294 Heller Nov 2008 A1
20080286149 Roe Nov 2008 A1
20080294068 Briggs Nov 2008 A1
20080300614 Freeman Dec 2008 A1
20080318193 Alvarez-Icaza Dec 2008 A1
20080319284 Alvarez-Icaza Dec 2008 A1
20080319291 Freeman Dec 2008 A1
20090005664 Freeman Jan 2009 A1
20090020438 Hodges Jan 2009 A1
20090024009 Freeman Jan 2009 A1
20090024059 Hoerauf Jan 2009 A1
20090026075 Harding Jan 2009 A1
20090026091 Harding Jan 2009 A1
20090027040 Kermani Jan 2009 A1
20090029479 Docherty Jan 2009 A1
20090043177 Milledge Feb 2009 A1
20090043183 Kermani Feb 2009 A1
20090048536 Freeman Feb 2009 A1
20090054813 Freeman Feb 2009 A1
20090057146 Teodorezyk Mar 2009 A1
20090069716 Freeman Mar 2009 A1
20090084687 Chatelier Apr 2009 A1
20090105572 Malecha Apr 2009 A1
20090105573 Malecha Apr 2009 A1
20090112123 Freeman Apr 2009 A1
20090112155 Zhao Apr 2009 A1
20090112180 Krulevitch Apr 2009 A1
20090112185 Krulevitch Apr 2009 A1
20090124932 Freeman May 2009 A1
20090131829 Freeman May 2009 A1
20090131830 Freeman May 2009 A1
20090131964 Freeman May 2009 A1
20090131965 Freeman May 2009 A1
20090137930 Freeman May 2009 A1
20090138032 Freeman May 2009 A1
20090139300 Pugh Jun 2009 A1
20090184004 Chatelier Jul 2009 A1
20090187351 Orr Jul 2009 A1
20090192410 Freeman Jul 2009 A1
20090192411 Freeman Jul 2009 A1
20090196580 Freeman Aug 2009 A1
20090204025 Marsot Aug 2009 A1
20090216100 Ebner Aug 2009 A1
20090237262 Smith Sep 2009 A1
20090240127 Ray Sep 2009 A1
20090247838 Cummings Oct 2009 A1
20090247982 Kurlevitch Oct 2009 A1
20090259146 Freeman Oct 2009 A1
20090270765 Ghesquiere et al. Oct 2009 A1
20090280551 Cardosi Nov 2009 A1
20090281457 Faulkner Nov 2009 A1
20090281458 Faulkner Nov 2009 A1
20090281459 Faulkner Nov 2009 A1
20090301899 Hodges Dec 2009 A1
20090302872 Haggett Dec 2009 A1
20090302873 Haggett Dec 2009 A1
20090322630 Friman Dec 2009 A1
20090325307 Haggett Dec 2009 A1
20100016700 Sieh Jan 2010 A1
20100018878 Davies Jan 2010 A1
20100030110 Choi Feb 2010 A1
20100041084 Stephens Feb 2010 A1
20100198107 Groll et al. Aug 2010 A1
20100292611 Lum et al. Nov 2010 A1
20110077478 Freeman et al. Mar 2011 A1
Foreign Referenced Citations (356)
Number Date Country
2206674 Aug 1972 DE
3538313 Apr 1986 DE
4212315 Oct 1993 DE
4320347 Dec 1994 DE
4344452 Jun 1995 DE
4420232 Dec 1995 DE
29800611 Jul 1998 DE
19819407 Nov 1999 DE
20009475 Oct 2000 DE
29824204 Oct 2000 DE
10053974 Dec 2000 DE
10032042 Jan 2002 DE
10057832 Feb 2002 DE
10057832 Feb 2002 DE
10142232 Mar 2003 DE
10208575 Aug 2003 DE
10245721 Dec 2003 DE
10361560 Jul 2005 DE
0112498 Jul 1984 EP
137975 Apr 1985 EP
0160768 Nov 1985 EP
0199484 Oct 1986 EP
0254246 Jan 1988 EP
0289 269 Nov 1988 EP
0317847 May 1989 EP
0320109 Jun 1989 EP
0 364 208 Apr 1990 EP
0170375 May 1990 EP
0136362 Dec 1990 EP
0449525 Oct 1991 EP
0453283 Oct 1991 EP
0263948 Feb 1992 EP
0449147 Aug 1992 EP
0530994 Mar 1993 EP
0374355 Jun 1993 EP
0351891 Sep 1993 EP
0593096 Apr 1994 EP
0630609 Dec 1994 EP
0415388 May 1995 EP
0654659 May 1995 EP
0505494 Jul 1995 EP
0662367 Jul 1995 EP
0359831 Aug 1995 EP
0471986 Oct 1995 EP
0368474 Dec 1995 EP
0461601 Dec 1995 EP
0429076 Jan 1996 EP
0552223 Jul 1996 EP
0735363 Oct 1996 EP
0505504 Mar 1997 EP
0777123 Jun 1997 EP
0406304 Aug 1997 EP
0537761 Aug 1997 EP
0795601 Sep 1997 EP
0562370 Nov 1997 EP
0415393 Dec 1997 EP
0823239 Feb 1998 EP
0560336 May 1998 EP
0878 708 Nov 1998 EP
0 898 936 Mar 1999 EP
0505475 Mar 1999 EP
0901018 Mar 1999 EP
0470649 Jun 1999 EP
0 951 939 Oct 1999 EP
0 951 939 Oct 1999 EP
0847447 Nov 1999 EP
0964059 Dec 1999 EP
0964060 Dec 1999 EP
0969097 Jan 2000 EP
0 985 376 May 2000 EP
1021950 Jul 2000 EP
0894869 Feb 2001 EP
1074832 Feb 2001 EP
1093854 Apr 2001 EP
1 101 443 May 2001 EP
1101443 May 2001 EP
1114995 Jul 2001 EP
0736607 Aug 2001 EP
0874984 Nov 2001 EP
1157660 Nov 2001 EP
0730037 Dec 2001 EP
0636879 Jan 2002 EP
01174083 Jan 2002 EP
0851224 Mar 2002 EP
0759553 May 2002 EP
0856586 May 2002 EP
0817809 Jul 2002 EP
0872728 Jul 2002 EP
0795748 Aug 2002 EP
0685737 Sep 2002 EP
0958495 Nov 2002 EP
0937249 Dec 2002 EP
1337182 Aug 2003 EP
0880692 Jan 2004 EP
01374770 Jan 2004 EP
1404232 Apr 2004 EP
1404233 Apr 2004 EP
1246688 May 2004 EP
1486766 Dec 2004 EP
1502614 Feb 2005 EP
1643908 Apr 2006 EP
1790288 May 2007 EP
1790288 May 2007 EP
1881322 Jan 2008 EP
1921992 May 2008 EP
2039294 Mar 2009 EP
2039294 Mar 2009 EP
2130493 Dec 2009 EP
2 555 432 May 1985 FR
2622457 Nov 1987 FR
1558111 Dec 1979 GB
2168815 Jun 1986 GB
233936 Jun 1999 GB
2335860 Oct 1999 GB
2335990 Oct 1999 GB
HEI 4 194660 Jul 1992 JP
1996010208 Dec 1992 JP
1014906 Jan 1998 JP
2000-116768 Apr 2000 JP
WO 8001389 Jul 1980 WO
WO 8504089 Sep 1985 WO
WO 8607632 Dec 1985 WO
WO8605966 Oct 1986 WO
WO 9109139 Jun 1991 WO
WO9203099 Mar 1992 WO
WO9206971 Apr 1992 WO
WO9207263 Apr 1992 WO
WO9207468 May 1992 WO
WO9300044 Jan 1993 WO
WO 9306979 Apr 1993 WO
WO9309723 May 1993 WO
WO 9325898 Dec 1993 WO
WO 9427140 Nov 1994 WO
WO 9429703 Dec 1994 WO
WO 9429704 Dec 1994 WO
WO 9429731 Dec 1994 WO
WO 9500662 Jan 1995 WO
WO 9510223 Apr 1995 WO
WO9512583 May 1995 WO
WO 9522597 Aug 1995 WO
WO9614799 May 1996 WO
WO 9630431 Oct 1996 WO
WO9637148 Nov 1996 WO
WO 9702359 Jan 1997 WO
WO 9702487 Jan 1997 WO
WO 9711883 Apr 1997 WO
WO 9711883 Apr 1997 WO
WO 9718464 May 1997 WO
WO9728741 Aug 1997 WO
WO 9730344 Aug 1997 WO
WO 9742882 Nov 1997 WO
WO 9742888 Nov 1997 WO
WO 9745720 Dec 1997 WO
WO 9803431 Jan 1998 WO
WO9814436 Apr 1998 WO
WO 9819159 May 1998 WO
WO9819609 May 1998 WO
WO 9820332 May 1998 WO
WO 9820348 May 1998 WO
WO9820867 May 1998 WO
WO 9824366 Jun 1998 WO
WO 9824373 Jun 1998 WO
WO 9835225 Aug 1998 WO
WO9845276 Oct 1998 WO
WO 9903584 Jan 1999 WO
WO 9905966 Feb 1999 WO
WO9907295 Feb 1999 WO
WO 9907431 Feb 1999 WO
WO 9913100 Mar 1999 WO
WO 9917854 Apr 1999 WO
WO 9918532 Apr 1999 WO
WO 9919507 Apr 1999 WO
WO 9919717 Apr 1999 WO
WO 9927483 Jun 1999 WO
WO 9927852 Jun 1999 WO
WO 9962576 Dec 1999 WO
WO 9964580 Dec 1999 WO
WO 0006024 Feb 2000 WO
WO 0009184 Feb 2000 WO
WO 0011578 Mar 2000 WO
WO 0015103 Mar 2000 WO
WO 0017799 Mar 2000 WO
WO 0017800 Mar 2000 WO
WO 0018293 Apr 2000 WO
WO 0019346 Apr 2000 WO
WO 0020626 Apr 2000 WO
WO0029577 May 2000 WO
WO 0030186 May 2000 WO
WO 0032097 Jun 2000 WO
WO 0032098 Jun 2000 WO
WO 0033236 Jun 2000 WO
WO 0039914 Jul 2000 WO
WO 0042422 Jul 2000 WO
WO 0044084 Jul 2000 WO
WO0046854 Aug 2000 WO
WO 0050771 Aug 2000 WO
WO0055915 Sep 2000 WO
WO 0060340 Oct 2000 WO
WO 0064022 Oct 2000 WO
WO 0067245 Nov 2000 WO
WO 0067268 Nov 2000 WO
WO 0072452 Nov 2000 WO
WO 0100090 Jan 2001 WO
WO 0116578 Mar 2001 WO
WO 0145014 Mar 2001 WO
WO 0175433 Mar 2001 WO
WO 0123885 Apr 2001 WO
WO 0125775 Apr 2001 WO
WO 0126813 Apr 2001 WO
WO0129037 Apr 2001 WO
WO 0133216 May 2001 WO
WO 0134029 May 2001 WO
WO 0136955 May 2001 WO
WO 0137174 May 2001 WO
WO 0140788 Jul 2001 WO
WO 0157510 Aug 2001 WO
WO 0163271 Aug 2001 WO
WO 0164105 Sep 2001 WO
WO 0166010 Sep 2001 WO
WO 0169505 Sep 2001 WO
WO 0172220 Oct 2001 WO
WO 0172225 Oct 2001 WO
WO 0173124 Oct 2001 WO
WO 0173395 Oct 2001 WO
WO 0189691 Nov 2001 WO
WO0195806 Dec 2001 WO
WO 0195806 Dec 2001 WO
WO 0200101 Jan 2002 WO
WO 0202796 Jan 2002 WO
WO 0208750 Jan 2002 WO
WO 0208753 Jan 2002 WO
WO 0208950 Jan 2002 WO
WO 0218940 Mar 2002 WO
WO 0221317 Mar 2002 WO
WO 0225551 Mar 2002 WO
WO 0232559 Apr 2002 WO
WO 0241227 May 2002 WO
WO 0241779 May 2002 WO
WO 0244948 Jun 2002 WO
WO 0249507 Jun 2002 WO
WO0249507 Jun 2002 WO
WO 02056769 Jul 2002 WO
WO 02059734 Aug 2002 WO
WO 02069791 Sep 2002 WO
WO 02077638 Oct 2002 WO
WO 02100251 Dec 2002 WO
WO 02100252 Dec 2002 WO
WO 02100253 Dec 2002 WO
WO 02100254 Dec 2002 WO
WO 02100460 Dec 2002 WO
WO 02100461 Dec 2002 WO
WO 02101343 Dec 2002 WO
WO 02101359 Dec 2002 WO
WO 03000321 Jan 2003 WO
WO 03023389 Mar 2003 WO
WO 03042691 May 2003 WO
WO 03039369 May 2003 WO
WO 03045557 Jun 2003 WO
WO 03046542 Jun 2003 WO
WO 03049609 Jun 2003 WO
WO 03050534 Jun 2003 WO
WO 03066128 Aug 2003 WO
WO 03070099 Aug 2003 WO
WO 03071940 Sep 2003 WO
WO 03082091 Oct 2003 WO
WO 03082091 Oct 2003 WO
WO 03088824 Oct 2003 WO
WO 03088834 Oct 2003 WO
WO 03088835 Oct 2003 WO
WO 03088851 Oct 2003 WO
WO03088834 Oct 2003 WO
WO 03094752 Nov 2003 WO
WO 03101297 Dec 2003 WO
WO 2004008130 Jan 2004 WO
WO 2004022133 Mar 2004 WO
WO 2004026130 Apr 2004 WO
WO 2004040285 May 2004 WO
WO 2004040287 May 2004 WO
WO 2004040948 May 2004 WO
WO 2004041082 May 2004 WO
WO 2004045375 Jun 2004 WO
WO 2004054455 Jul 2004 WO
WO 2004060174 Jul 2004 WO
WO 2004060446 Jul 2004 WO
WO 2004091693 Oct 2004 WO
WO 2004098405 Nov 2004 WO
WO 2004003147 Dec 2004 WO
WO 2004107964 Dec 2004 WO
WO 2004107975 Dec 2004 WO
WO 2004112602 Dec 2004 WO
WO 2004112612 Dec 2004 WO
WO 2004112612 Dec 2004 WO
WO 2005001418 Jan 2005 WO
WO 2005006939 Jan 2005 WO
WO 2005011774 Feb 2005 WO
WO 2005013824 Feb 2005 WO
WO 2005016125 Feb 2005 WO
WO 2005018425 Mar 2005 WO
WO 2005018430 Mar 2005 WO
WO 2005018454 Mar 2005 WO
WO 2005018709 Mar 2005 WO
WO 2005018710 Mar 2005 WO
WO 2005018711 Mar 2005 WO
WO 2005022143 Mar 2005 WO
WO 2005023088 Mar 2005 WO
WO 2005033659 Apr 2005 WO
WO 2005034720 Apr 2005 WO
WO 2005034721 Apr 2005 WO
WO 2005034741 Apr 2005 WO
WO 2005034778 Apr 2005 WO
WO 2005035017 Apr 2005 WO
WO 2005035018 Apr 2005 WO
WO 2005037095 Apr 2005 WO
WO 2005046477 May 2005 WO
WO 2005045414 May 2005 WO
WO 2005065399 Jul 2005 WO
WO 2005065414 Jul 2005 WO
WO 2005065415 Jul 2005 WO
WO 20065545 Jul 2005 WO
WO 2005072604 Aug 2005 WO
WO2005084546 Sep 2005 WO
WO 2005084557 Sep 2005 WO
WO 2005104948 Nov 2005 WO
WO 2005104948 Nov 2005 WO
WO 2005114185 Dec 2005 WO
WO 2005116622 Dec 2005 WO
WO 2005119234 Dec 2005 WO
WO 2005120197 Dec 2005 WO
WO 2005120199 Dec 2005 WO
WO 2005120365 Dec 2005 WO
WO 2005120365 Dec 2005 WO
WO 2005121759 Dec 2005 WO
WO 2006001797 Jan 2006 WO
WO 2006001973 Jan 2006 WO
WO 2006011062 Feb 2006 WO
WO 2006013045 Feb 2006 WO
WO 2006015615 Feb 2006 WO
WO 2006027702 Mar 2006 WO
WO 2006031920 Mar 2006 WO
WO 2006032391 Mar 2006 WO
WO 2006072004 Jul 2006 WO
WO 2006105146 Oct 2006 WO
WO 2006116441 Nov 2006 WO
WO 2007010087 Jan 2007 WO
WO 2007025635 Mar 2007 WO
WO 2007044834 Apr 2007 WO
WO 2007054335 May 2007 WO
WO 2007070719 Jun 2007 WO
WO 2007084367 Jul 2007 WO
WO 2007088905 Aug 2007 WO
WO 2007106470 Sep 2007 WO
WO 2007119900 Oct 2007 WO
WO 2008085052 Jul 2008 WO
WO 2008112268 Sep 2008 WO
WO 2008112279 Sep 2008 WO
WO 2010109461 Sep 2010 WO
Non-Patent Literature Citations (2)
Entry
Machine translation of DE 10053974 pp. 1-4, provided by epo.org.
A. Bott, W. Heineman, Chronocoulometry, Current Separations, 2004, 20, pp. 121.
Related Publications (1)
Number Date Country
20060271083 A1 Nov 2006 US
Continuations (1)
Number Date Country
Parent 10335212 Dec 2002 US
Child 11417312 US
Continuation in Parts (2)
Number Date Country
Parent 10127395 Apr 2002 US
Child 10335212 US
Parent 10237261 Sep 2002 US
Child 10127395 US