This disclosure relates to methods and apparatus for drilling boreholes in the earth in general, and more specifically, to methods and apparatus for percussion drilling of blast holes of the type commonly used in mining and quarrying operations.
Various methods and apparatus for drilling boreholes are known in the art and have been used for decades in a wide variety of applications, for example, from oil and gas production, to mining, to quarrying operations. In mining and quarrying operations, such boreholes are typically filled with an explosive that, when detonated, ruptures or fragments the surrounding rock. Thereafter, the fragmented material can be removed and processed in a manner consistent with the particular operation. When used for this purpose, then, such boreholes are commonly referred to as “blast holes,” although the terms may be used interchangeably.
A number of factors influence the effectiveness of the blast, including the nature of the geologic structure (i.e., rock), the size and spacing of the blast holes, the burden (i.e., distance to the free face of the geologic structure), the type, amount, and placement of the explosive, as well as the order in which the blast holes are detonated. Generally speaking, the size, spacing, and depth of the blast holes represent the primary means of controlling the degree of rupture or fragmentation of the geologic structure, and considerable effort goes into developing a blast hole specification that will produce the desired result.
There is a desired ratio of penetration rate per drill bit revolution where the drill-bit carbides penetrate and fracture the rock efficiently, resulting in desirable drilling speed and bit-wear characteristics. This ratio is referred to as the desired depth of cut (DOC). A rate of penetration (PR) can be calculated by multiplying the rotation speed (that is, the indexing of the bit) by the DOC. Prior-art methods have used a simple feedback loop to adjust the rotation rate applied to the bit to maintain an assumed optimum penetration rate. However, these methods do not efficiently adjust drilling for variations in hammer frequencies, or bit diameter, or the relative hardness of the rock. What is needed is a method of monitoring and adjusting these parameters to achieve optimum drilling efficiency by maintaining a penetration rate, depending on local drilling conditions.
Although this application is focused on solving problems in percussive blast-hole drilling operations, the disclosure and claims are equally applicable to the drilling of boreholes in other fields, such as oil and gas drilling.
Non-limiting embodiments of the present disclosure are described by way of example in the following drawings, which are schematic and are not intended to be drawn to scale:
I disclose a method for maintaining a penetration rate of a drilling operation, where the drilling operation is carried out by a drilling rig having hammer drill apparatus. A reference penetration rate for the hammer drill bit is chosen. A starting depth of cut is computed from the reference penetration rate, the measured hammer frequency, and the drill bit parameters. The system measures the actual penetration rate of the drill bit and computes an actual depth of cut. From the actual depth of cut a target bit rotation speed is computed. The target rotation speed is compared to the actual rotation speed, and the rotation speed is adjusted up or down to set the bit rotation speed at a value that will maintain the target rotation speed, notwithstanding changes in hammer frequency or ground conditions.
Referring to
The drilling apparatus 100 comprises a control system 170 that is operatively associated with the drilling rig 110, as well as with the various systems thereof, e.g., a motor system 150, a hoist system 160, or an air injection system and water injection system (not shown in
The drill motor system 150 is connected to the drill string 130 and may be operated by a control system 170 to provide a rotational force or torque to rotate the drill bit 300 provided on the end of the pneumatic hammer drill 140. The drill motor system 150 may also be provided with various sensors and transducers, as described below, to allow the control system 170 to monitor or sense the hammer frequency, as well as the rotational speed and rate of penetration of the drill bit 300.
In
The control system 170 also may include a display 210 with a graphical user interface, and an operator's control console 220, connected to the computer 200 to receive inputs from an operator during a drilling operation, and provide information to the operator. The operator's console 220 may include a keyboard, keypad, joystick, mouse, or other input device. In this application, the collective input mechanisms of the operator's console 220 and the display 210 may be referred to generally as a graphical user interface, or GUI. The display 210 of the GUI may of course provide one or more pages of information and input fields to an operator. The operator console 220 may not necessarily be located on the drilling rig 110, but may be remotely connected to the control system.
A database 250 is provided as a part of the control system. The database 250 may have predetermined settings and parameters for achieving optimum performance of the drilling apparatus or system 100. Such settings and parameters can include physical characteristics, such as diameters of the pneumatic hammer drill, the drill bit 300, and, in some cases, the diameter of the drill bit buttons 320. The operating air pressures and hammer frequency in beats per minute for particular pneumatic hammer drills 140 may also be available in the database 250. In the operation of one embodiment of the drilling apparatus or system 100, an operator selects a display of information about the bit being used from a dropdown menu on the operating system GUI of the control console 220. From these inputs, calculations are performed as described below, and the optimum operating range for the bit chosen is used for automatic control of drilling, and also displayed as a reference for manual drilling. In some cases, where a needed parameter is missing, this can be entered by the operator in the GUI of the display 210.
First, the embodiment of system and method disclosed here calculates an ideal rotation speed as a target so as to rotate the bit 300 sufficiently so that a button 320 on the bit 300 has moved exactly one diameter around the circumference of the bit 300 between hammer strikes. This ideal indexing rotation speed (called RS here) is then assigned to a certain reference penetration rate to determine a depth of cut (called DOC here). As a non-limiting example a penetration rate of 1500 mm/minute would be reasonable for many drilling applications. For a bit rotation speed of, for example, 45 rpm, these values set the DOC at 1500 mm/min/45 RPM, which equals 33 mm/rotation of the bit 300.
The actual penetration rate of the bit 300 is measured, such as by taking the time derivative of the drill head position, which position may be measured using, for example, a rotary encoder 165 on a sheave in the drill feed system. As discussed below, the drilling control system 170 is programmed to adjust the rotation speed of the bit 300 based on the measured penetration rate to maintain the 33 mm/rotation ratio, as stated in the example in the previous paragraph, even though rock conditions may change during drilling.
Stated procedurally, we illustrate the foregoing calculation in
At step 510 an initial hammer frequency HF is measured. This initial hammer frequency can alternatively be estimated from published hammer-drill specifications, as discussed in more detail below.
Step 520 computes a depth of cut DOC for the drill bit 300 according to the relationship DOC=PR/(HF*Dbutton/(Dbit*π)), where Dbutton is the diameter 330 of the bit button 320, and Dbit is the diameter 310 of the bit 300. At step 530, the system measures the actual penetration rate PRm as explained above and, at step 540, computes a target rotation speed RS=PRm/DOC.
At step 550 the system measures the actual rotation speed RSa. If RSa>RS, then control passes to step 570, where the rotation speed RS is adjusted downward by the control of the drill motor system 150; else, a comparison is made again at step 580. After this comparison, if RSa<RS, then control passes to step 590, where rotation speed RS is adjusted upward; else, if RSa=RS (within the limits of measurement accuracy), then the rotation speed RS is maintained at step 595. Finally, control from steps 570, 590, or 595 passes to step 510, where the current hammer frequency HF is again measured, and this value is passed to step 520 to re-compute the desired depth-of-cut DOC from the reference penetration rate PR and the current hammer frequency HF. The control loop continues after step 520 so long as drilling continues. In this way, the pre-determined penetration rate, PR, is maintained, although the hammer frequency HF and ground conditions may vary. In one embodiment, the target rotation speed is limited by maximum and minimum reasonable rotation speeds stored in the database 250.
Note that in this calculation, the rotation speed, RS, will be increased in proportion to an increase in the rate of penetration PR, the hammer frequency, HF, or the diameter 330 of the button, Dbutton (if the bit were changed to one with differently-sized buttons, for example). The rotation speed RS will be decreased in proportion to an increase in the diameter, Dbit of the bit 300. The diameter of the bit 300 and the diameter of the buttons 320 may be taken from manufacturer's publications, or, if necessary, measured in the field. Correspondingly, the rotation speed RS will be decreased in proportion to a decrease in the rate of penetration, or of the hammer frequency HF.
The above exemplary calculations imply a means for measuring the rate of penetration PR, and the hammer frequency HF, and transmitting such data to the control system 170. Hammer frequency may be measured by a accelerometer 145 attached to the pneumatic hammer 140, or by an acoustic pickup 175 on the drilling rig 110, or by fluctuations in drilling air pressure. A starting hammer frequency HF can be estimated from published hammer-drill information relating hammer frequency to air or hydraulic pressure driving the pneumatic hammer 140, which values are available in published manufacturer's manuals, as next discussed.
As an example of establishing a hammer frequency value, where no initial direct measurement is available, we can estimate the frequency from this example calculation:
HF=(m_press*hammer_diameter+b_press)*(bit_air_pressure+(m_frequency*hammer_diameter+b_frequency).
In the above equation, bit_air_pressure is measured by the pressure transducer (not shown) typically included on the drilling rig 110; this air pressure will influence the hammer frequency as air pressure increases or decreases while drilling. The “hammer diameter” in this case is not the same as the bit diameter 310 used in this application, but is a parameter available in the manufacturer's documentation. This “hammer diameter” will be input to the control system 170 through the GUI 210 by the operator. The coefficients m_press, b_press, m_frequency, and b_frequency can also be determined from manufacturer's published tables for hammer operating frequency of different diameter hammers through a range of pressures. These variables as described are only examples of relevant parameters to hammer frequency, and do not limit the claims.
The actual rate of penetration PRm, in the calculation above can be determined by taking the time derivative of the drill head position, which position is measured using, for example, a rotary encoder 165 on a hoist sheave 160 in the drill feed system. A ideal or reference rate of penetration PR can be determined by field testing of particular machines with particular hammer drill systems, in particular rock formations, to arrive at a starting value where there is 100% indexing of the drill bit 300; that is, with no overlap of strikes by the buttons 320. Normal drilling speeds will usually be somewhat less than this reference value due to hardness of the rock, although the reference value is not limiting, and faster rates of penetration will be available in softer ground.
None of the description in this application should be read as implying that any particular element, step, or function is an essential element which must be included in the claim scope; the scope of patented subject matter is defined only by the allowed claims. Moreover, none of these claims are intended to invoke 35 U.S.C. Section 112(f) unless the exact words “means for” are used, followed by a gerund. The claims as filed are intended to be as comprehensive as possible, and no subject matter is intentionally relinquished, dedicated, or abandoned.
Number | Name | Date | Kind |
---|---|---|---|
4165789 | Rogers | Aug 1979 | A |
4195699 | Rogers | Apr 1980 | A |
4699223 | Noren | Oct 1987 | A |
5458207 | Mattero | Oct 1995 | A |
5720355 | Lamine | Feb 1998 | A |
5735358 | Lyon | Apr 1998 | A |
6192998 | Pinckard | Feb 2001 | B1 |
6424919 | Moran et al. | Jul 2002 | B1 |
6502650 | Beccu | Jan 2003 | B1 |
6957707 | Koivunen et al. | Oct 2005 | B2 |
7198117 | Uitto | Apr 2007 | B2 |
7159674 | Egerstrom | Jul 2007 | B2 |
7428938 | Marshall | Sep 2008 | B2 |
7604070 | Kemppainen | Oct 2009 | B2 |
7654337 | Noel | Feb 2010 | B2 |
7717190 | Keskiniva et al. | May 2010 | B2 |
7762352 | Pettersson | Jul 2010 | B2 |
8121971 | Edwards et al. | Feb 2012 | B2 |
8397839 | Lyon | Mar 2013 | B2 |
RE44427 | Runquist et al. | Aug 2013 | E |
9470081 | Henriksson | Oct 2016 | B2 |
9574432 | Ringer | Feb 2017 | B2 |
9951616 | Uotila | Apr 2018 | B2 |
20090044976 | Pettersson | Feb 2009 | A1 |
20160008406 | Mchugh et al. | Mar 2016 | A1 |
20160010859 | Waxse | Apr 2016 | A1 |
20180156022 | Miller | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
0112810 | Apr 1984 | EP |
3221554 | Sep 2017 | EP |
Entry |
---|
Samuel G.R., “Percussion Drilling . . . Is It a Lost Technique? A Review,” Permian Basin Oil and Gas Recovery Conference, Mar. 27-29, 1996, SPE-35240-MS. |
Cavanough, G.L., et al., “A Self-Optimizing Control System for Hard Rock Percussive Drilling,” IEEE/ASME Transactions on Mechatronics (Apr. 2008) 13(2):153-157. |
Izquierdo, L.E., et al., “A methodology for estimation of the specific rock energy index using corrected down-the-hole drill monitoring data,” Mining Technology, Transactions of the Institutions of Mining and Metallurgy: Section A (2004) 113(4):225-236. |
Number | Date | Country | |
---|---|---|---|
20200181981 A1 | Jun 2020 | US |