This application claims priority to Japanese patent application Nos. JPAP2000-030908 (filed Feb. 8, 2000) and JPAP2001-24007 (filed Jan. 31, 2001), both of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to a method and apparatus for roller charging, and more particularly to a method and apparatus for performing a charging process relative to an image carrying member in an electrophotographic image forming process.
2. Discussion of the Background
Conventionally, electrophotographic image forming apparatuses such as copying machines, printers, facsimile machines, and so on use a variety of ways for evenly applying a charge to a photoconductive member before generating an electrostatic latent image.
In one exemplary way, a corona discharge is used. A corona charge apparatus includes a charge wire made of tungsten or nickel and which is extended in a metal mesh casing. The charge wire is arranged at a position close to a photoconductive member, and a voltage of a direct current or a direct current overlaid with an alternating current is applied between the charge wire and the photoconductive member so as to produce a corona discharge therebetween. Thereby, the surface of the photoconductive member is charged.
The above corona charge apparatus, however, has a drawback in that various discharge products such as ozone, NOx, etc. are produced due to the relatively high voltage applied. This results in environmental pollution and also causes problems with the image forming process in that the discharge products often produce a coat of nitric acid or nitrate which adversely affects formation of the image.
Therefore, a contact type charge apparatus that produces less ozone and consumes less electricity has been used in place of the corona charge apparatus. Such contact type charge apparatus includes a charge member with a conductive material formed in a roller, a brush, or an elastic blade and which contacts a surface of an image carrying member such as a photoconductive member. The surface of the image carrying member is charged by an application of a voltage between the charge member and the image carrying member.
The roller charge member, for example, includes a metal core and an elastic layer (e.g., conductive rubber) covering the surface of the metal core. When such an elastic layer is left in contact under pressure with the surface of the image carrying member for a relatively long time period, an inclusion such as plastic included in the elastic layer may be extrude to the surface and will be deposited on the surface of the image carrying member. This results in a dirty mark on an image.
Further, in the contact type charge apparatus, the charge process is performed under the condition that the charge member contacts the surface of the image carrying member. Therefore, the charge member may receive the residual toner left on the surface of the image carrying member after an image transfer process. This causes a deterioration of charging performance.
As an attempt to solve the above problems, a roller of the charge roller included in the charge member is provided with spacers, tapes, or films on both ends thereof so that the both ends evenly have a slightly greater diameter. With this charge roller, the surface of the photoconductive member is held distant from the charge roller except for the ends thereof. Thereby, another non-contact type charge apparatus is made. Related techniques for this non-contact type charge apparatus are described in published Japanese unexamined patent application, Nos. 3-240076, No. 4-360167, No. 5-107871, for example.
Further, published Japanese unexamined patent application No. 7-121002, describes an image forming apparatus in which a photoconductive drum is wrapped at both ends with sheet members. A charged plate for applying a charge to the photoconductive drum contacts the sheet members fixed on the ends of the photoconductive drum, thereby charging the photoconductive drum. With such a configuration, an image forming surface of the photoconductive drum preserved between the two sheet members is held apart from the charged plate, while the surface is charged. This is referred to as a non-contact type charging.
With the above non-contact type charge apparatus, portions of the charge roller corresponding to an image forming region do not contact the surface of the photoconductive member. Therefore, it eliminates the drawbacks of the contact type charge apparatus such as the deposition of the material included in the elastic member on the photoconductive member and the transfer of the residual toner deposited on the photoconductive member to the charge member.
However, it is difficult to evenly increase diameters of both ends of the charge roller which is covered by the elastic member, by wrapping a film, for example, around the ends of the wrapping elastic member. This is because the film is needed to perfectly wrap each end surface of the elastic member without a slight gap, and therefore the variations of the film in length are needed to be avoided.
In the above charge roller, the gap G is typically decreased around the center of the charge roller in its axial direction. This is caused due a deformation of the elastic member around the both ends thereof and so on. Therefore, when using a relatively thin film, the charge roller which is the non-contact type charge roller has a risk at the center portion thereof to contact the surface of the photoconductive member.
Accordingly, the film must be thick enough to avoid the above problem. However, an increase in film thickness will make the gap G greater, in particular, around the positions close to the films, resulting in abnormal discharge. This causes a dirty white mark on an image. In other words, operation of the charge roller is very sensitive to the thickness of the film.
Generally, in the non-contact type charging apparatus, somewhat constant charge voltage can be obtained under the condition that the gap is varied when the charge roller is applied with only the direct current voltage and when the gap between the surfaces of the charge roller and the photoconductive member (e.g., the image carrying member) is smaller than a predetermined value (i.e., 20 μm).
When the above gap is greater than the predetermined value, however, the charge voltage can no longer be constant and is decreased in accordance with the gap. To compensate such voltage reduction, a DC (direct current) voltage overlaid by an AC (alternating current) voltage is applied to the charge roller. Thereby, a constant charge voltage is produced.
In this case, abnormal discharge may occur when the voltage applied according to the gap is too large. The voltage to be applied is needed to be controlled at a level that does not cause an abnormal discharge. As a result, the gap needs to be smaller than a certain value at which abnormal discharge does not occur. In other words, the thickness of the film is also restricted from this aspect.
On the other hand, as illustrated in
Generally, the above-described photoconductive member (the image carrying member) includes a photoconductive drum having a drum shape. Accordingly, the film may be wrapped around both ends of the photoconductive drum in order to provide the gap between the surfaces of the charge roller and the photoconductive drum, as described above with reference to the published Japanese unexamined patent application No. 7-121002. In this case, the photoconductive drum is typically made of a hard material and therefore it will not be deformed when receiving pressure from the charge roller via the films. This in turn causes no deformation of the films.
However, in the case of the charge roller with wrapping films on its ends, the films are attached on the elastic member wrapped around the metal core. Accordingly, the elastic member is deformed by the pressure from the photoconductive member via the wrapped films and the films will accordingly be deformed. As a result, the films are easily peeled off. Therefore, in the charge roller with wrapping films, it is desirable to avoid an application of an intensive pressure to a specific portion of the elastic member so as not to cause a deformation and/or leaning toward that specific portion.
The above-described image forming apparatus described in the published Japanese unexamined patent application No. 7-121002, has a drawback. With this image forming apparatus, the film members are attached to the photoconductive drum side. In order to obtain a desired photocell charging performance, the distance of the image forming area between the film members needs to be longer. But, this makes it difficult to maintain the straightness of the relatively long surface of the photoconductive drum within a desired tolerance and therefore the manufacturing cost is increased. This drawback is further explained in detail in the following description.
In the above forming apparatus, a transfer process is achieved by contact between a transfer roller and the photoconductive drum. During this process, the transfer roller receives a higher pressure from the film members than other portions of the photoconductive drum. Thus, the transfer roller is prone to be worn at both ends and a leak of the charge at the ends thereof which are worn will occur. At the same time, the film members themselves will be worn and, as a result the gap for assuring the desirable charging performance cannot be formed.
Also, in the above forming apparatus, a cleaning process is achieved by contact between a cleaning member and the photoconductive drum. If the cleaning member has a length across both film members, the transfer roller receives a higher pressure from the film members than other portions of the photoconductive drum during the cleaning process. Therefore, the cleaning member is prone to wearing at both ends, causing leakage of the charge at the ends which are worn. At the same time, the film members themselves will also be worn and the charging process will also be degraded. That is, the cleaning member needs to have a length within a length between the both film members is arranged inside between the both film members.
The cleaning process is particularly needed in the non-contact type charging apparatus in which the charging member is arranged to face the photoconductive member with a relatively small gap because the residual toner can easily be transferred onto the charging member through this gap. If a cleaning member is not provided and the charging member is deposited with the residual toner, this causes a reduction of the charging performance and results in production of an abnormal image.
Therefore, to avoid the above problem, it is desirable to prevent the residual toner from flowing into the effective charging area by appropriately setting the effective cleaning width of the cleaning member. For this purpose, the effective cleaning width and the width of the effective charging area have the following relationship:
the effective cleaning width>the width of the effective charging area.
The width of the effective charging area in the image forming apparatus is normally determined in the manner described below. First, the maximum size of a recording sheet acceptable by the image forming apparatus determines the width. When the size is A3, the length of its short side, 297 mm, is the width, and when the size is A4, the length of its short side, 210 mm, is the width. Second, based on the consideration of rolling of the recording sheet during the time of sheet transferring, an exposure width with a margin is determined. This exposure width may be varied based on the consideration of variations of sheet transferring quality between the machines and is normally a width of the short side length of the maximum sheet size plus a margin of 2 mm to 4 mm to both sides, resulting a width of 301 mm to 305 mm. As a feedback control, when a sensor pattern for measuring an image density, for example, is written in a side area outside the maximum sheet width, the writing width is accordingly increased.
Third, development width is wider than the exposure width so as to be able to develop images written inside the exposure width. The development width is, for example, 304 mm to 313 mm in machines capable of handling A3-sized recording sheets. Lastly, the effective charging width is determined. The effective charging width is wider than the development width because the voltage of the background in the development area is charged to a predetermined voltage. For example, the effective charging width is 305 mm to 322 mm in machines capable of using A3-sized recording sheets. Thus, the effective charging width and the associated values are determined according to accuracy of elements and assembling of each machine.
Blade, brush, and magnetic brush methods are widely known for cleaning the surface of the photoconductive member. In these methods, the cleaning member contacts the surface of the photoconductive member so as to mechanically scrape the toner, or the cleaning member is applied with a voltage to clean off the toner by an electrostatic force.
Accordingly, those types of the cleaning member which contact the surface of the photoconductive member are needed to be extended inside the both film members so as not to contact the film members under a consideration of the aforementioned problems. Therefore, as shown in
In the non-contact type charging apparatus in which the charge member and the photoconductive member are arranged close to each other with a small gap, straightness of the charge member and the photoconductive member is important. For example, when a charge roller is not very straight and is curved, for example, the charge roller will turn in an eccentric manner and the distance of the gap between the charge roller and the photoconductive member will vary. In some cases, a part of the charge roller will touch the photoconductive member during one turn of the charge roller. This is same to the straightness of the photoconductive drum.
Therefore, both the charge member and the photoconductive drum are required to be very straight, particularly between outside edges of the film members. Accordingly, if the length of such a charge roller or photoconductive drum is made shorter this would increase yields of such components and thereby reduce the cost of manufacturing.
Based on the above, it would be preferable that the two film members are arranged with the shorter distance to each other and, in the non-contact charging apparatus, the inside distance between the film members is preferably equal to the effective charging width.
However, this will cause a problem in some cases. For example,
Therefore, in this case, the film members 218 are preferably arranged at the positions drawn in solid lines in
One aspect of the invention relates to a novel charge roller. In one example, a novel charge roller includes a metal core, an elastic member, and film members. The elastic member is wrapped around the metal core. Each of the film members is wrapped around each end of the elastic member wrapped around the metal core in a circumferential direction of the metal core such that at least a part of each of the film members exists at every position around each end of the elastic member in an axial direction of the metal core without the film members overlapping each other in an radial direction of the metal core.
Each of short side edges of each of the film members may have an edge line with an acute angle relative to an edge of a longitudinal side of the each of the film members to form an acute triangle such that the edge lines of the short side edges face each other to form a thin-line-shaped space therebetween. In one embodiment, the acute angle is approximately 45 degrees.
The present application also relates to a novel charging apparatus that includes the novel charge roller.
The present application also relates to a novel image carrying apparatus that incorporates the novel charge roller and to a novel electrophotographic image forming apparatus that includes the novel charge roller. In one example, the charge roller is arranged and configured to contact the image carrying member with the film members of the charge roller, and the image carrying member holds a charge on a surface thereof by an application of a voltage applied between the charge roller, and the image carrying member. Further, the image carrying member is exposed to light so that an electrostatic image is formed on the image carrying member.
The present invention also relates to a novel method of preparing a charge roller. In one embodiment, film wrapping apparatus in which a pair of rails mounted in parallel on a plane plate is arranged such that when an unfinished charge roller is placed on the pair of rails, both ends of an elastic member wrapped around a metal core of the unfinished charge roller are placed outside the pair of rails. Each of the pair of rails has a thickness approximately equal to a thickness of a film member. Two pieces of the film members are set in parallel to each other with their adhesive surfaces upwards on the plane plate respectively outside and in parallel to the pair of rails with a distance greater than a whole length of each of the two film members from each other in a longitudinal direction. An unfinished charge roller is placed on the pair of rails so that the both ends of the elastic member wrapped around the metal core of the unfinished charge roller are placed outside the pair of rails. The unfinished charge roller is moved by rotation along the pair of rails so that the film members are adhered with the adhesive surfaces to the ends of the elastic member wrapped around the metal core of the unfinished charge roller.
A more complete appreciation of the present application and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents which operate in a similar manner.
Referring now to the drawings, wherein like reference numeral designate identical or corresponding parts throughout the several views, and more particularly to
The charge roller 14 of
The charge roller 14 further includes film strips 18, each having an adhesive surface and which is made of polypropylene, polyester, or polyethylene terephthalate, for example. One film strip 18 is wrapped around one end of the elastic member 17 in its circumferential direction and the other film strip 18 is wrapped around the other end thereof, as shown in
The above charge roller 14 is placed at such a position that the film strips 18 respectively contact the surface of the photoconductive drum 5, and a predetermined voltage is applied by the power supply source (not shown) between the charge roller 14 and the photoconductive drum 5. Thus, the charge roller 14 serves as a charging apparatus for charging the surface of the photoconductive drum 5.
Pressure springs 19 are provided to apply a predetermined pressure to the respective end sides of the metal core 16 of the charge roller 14 via sliding shaft supporters 30. The charge roller 14 is thereby held under pressure in contact with the photoconductive drum 5 via the film strips 18.
As an alternative to the pressure springs 19, the charge roller 14 may be held under pressure by its own weight in contact with the photoconductive drum 5 via the film strips 18. As shown in
In the charge roller 14, the metal core 16 has a diameter of 9 mm and the rubber layer of the elastic member 17 made of the epichlorohydrin rubber has a diameter of 11.14 mm with a manufacturing tolerance of +0 mm and −0.2 mm, for example. Each of the file strips 18 wrapped around the end sides of the elastic member 17 has a length of 34 mm with a manufacturing tolerance of +0 mm and −1 mm, a width of 8 mm with a manufacturing tolerance of +0 mm and −1 mm, a width of 8 mm with a manufacturing tolerance of +0.5 mm and −0 mm, and a thickness of 60 μm, inclusive of an adhesive layer having a thickness of 20 μm, with a manufacturing tolerance of ±7.5 μm. The adhesive layer easily loses its thickness by an application of pressure and therefore the thickness of the film strip 1B will be 40 μm and ±5 μm from the tolerance. The elastic member 17 has a hardness of approximately 79 degrees according to the former JIS-A (Japanese Industrial Standards) and uses a rubber of which hardness is proven with a test piece having a hardness of 50 degrees or more according to the above former JIS-A.
The charging apparatus having the thus-configured charge roller 14 can be installed in an image forming apparatus.
The printer 200 of
The photoconductive units 2a–2d are detachably deposited at an approximate center of the main unit 1. Each of the photoconductive units 2a–2d includes the above-described photoconductive drum 5 to form and carry an image. Under the photoconductive units 2a–2d, the transfer belt 3 is extended between a plurality of rollers such that the photoconductive drums 5 contact the surface of the transfer belt 3. The transfer belt 3 is rotated in a direction A.
The development units 10a–10d are provided next to photoconductive units 10a–10d, respectively, and are configured to apply four different color toners. The optical writing unit 6 is arranged above the development units 10a–10d and the duplex unit 7 is arranged thereunder.
The sheet flipping unit 8 is provided at a rear side of the main unit 1. With the sheet flipping unit 8, a recording sheet P can be flipped before ejection or can be forwarded to the duplex unit 7.
The fixing unit 9 is provided between the transfer belt 3 and the sheet flipping unit 8. The fixing unit 9 fixes a toner image onto the recording sheet P. The reverse path 20 is provided downstream from the fixing unit 9 in a sheet flow direction. The recording sheet P can be ejected through the reverse path 20 to the facedown tray 26 with the pair of ejection rollers 25.
The sheet cassettes 11 and 12 are provided at a lower part thereof. The sheet cassette 11 may contain a plurality of the recording sheets P in one size and the sheet cassette 12 may contain a plurality of the recording sheets P in another size. The manual insertion tray 13 is provided at a front side of the main unit 1 and is turned in a direction B so as to form an opening for receiving the recording sheet P.
The photoconductive units 2a–2d have a common structure but form images corresponding to different color toners: yellow, magenta, cyan, and black, respectively. The photoconductive units 2a–2d are spaced uniformly in line in parallel to the sheet transfer direction.
As illustrated in
The photoconductive units 2a–2d may be configured without the brush roller 15. In this example being explained, the photoconductive drum 5 has a diameter of 30 mm, for example.
In each of the photoconductive units 2a–2d, the photoconductive drum 5 is rotated in a direction C (
The charge roller cleaner 49 is made of sponge, for example, and is arranged to contact the surface of the elastic member 17 of the charge roller 14 so as to clean the depositions such as dust and toner particles off the surface.
The main reference portion 51, the sub-reference portions 52 and 53 are provided to the bracket 50. With the above three reference portions 51–53, each of the photoconductive unit 2a–2d can accurately determine an installation position relative to the main unit 1. The development units 10a–10d have a common configuration using a two-component development method and use different color toners. The development units 10a–10d use yellow, magenta, cyan, and black toner, respectively.
As shown in
Each of the scanning beams for the yellow and magenta images passes through a two-layered fθ lens 23. After the lens 23, the scanning beam for the yellow image is reflected by a mirror 27 and then passes through a long WTL 24. After that, the scanning beam for the yellow image is reflected by mirrors 28 and 29 to fall on the photoconductive drum 5 of the photoconductive unit 2a. The scanning beam for the magenta image is reflected by a mirror 31 after the lens 23 and passes through a long WTL 32. After that, the scanning beam for the magenta image is reflected by mirrors 33 and 34 to fall on the photoconductive drum 5 of the photoconductive unit 2b.
Each of the scanning beams for the cyan and black images passes through a two-layered fθ lens 35. After the lens 35, the scanning beam for the cyan image is reflected by a mirror 36 and then passes through a long WTL 37. After that, the scanning beam for the yellow image is reflected by mirrors 38 and 39 to fall on the photoconductive drum 5 of the photoconductive unit 2c. The scanning beam for the black image is reflected by a mirror 41 after the lens 35 and passes through a long WTL 42. After that, the scanning beam for the black image is reflected by mirrors 43 and 44 to fall on the photoconductive drum 5 of the photoconductive unit 2d.
As shown in
The sheet cassettes 11 and 12 are provided with sheet pick-up mechanisms 55 and 56 for picking up the recording sheet P one by one and feeding it into a transfer mechanism of the printer 200.
The printer 200 applies a roller curvature separation method for separating the recording sheet P from the rotating photoconductive drum 5 and, for this purpose, includes four transfer brushes 57 arranged inside the transfer belt 3. In the printer 200, each of the photoconductive drums 5 is rotated clockwise in
The charged surface of the photoconductive drum 5 of the photoconductive unit 2a is exposed to the laser beam corresponding to the yellow image and which is emitted from the optical writing unit 6, thereby forming a latent image corresponding to the yellow color. The charged surface of the photoconductive drum 5 of the photoconductive unit 2b is exposed to the laser beam corresponding to the magenta image and which is emitted from the optical writing unit 6, thereby forming a latent image corresponding to the magenta color. The charged surface of the photoconductive drum 5 of the photoconductive unit 2c is exposed to the laser beam corresponding to the cyan image and which is emitted from the optical writing unit 6, thereby forming a latent image corresponding to the cyan color. The charged surface of the photoconductive drum 5 of the photoconductive unit 2d is exposed to the laser beam corresponding to the black image and which is emitted from the optical writing unit 6, thereby forming a latent image corresponding to the black color.
The latent images are respectively moved to developing positions of the development units 10a–10d by the rotations of the photoconductive drums 5 and are developed into toner images with the yellow, magenta, cyan, and black toners.
During the above operations, the recording sheet P is supplied from the sheet cassette 11 by the sheet pick-up mechanism 56, or from the sheet cassette 12 by the sheet pick-up mechanism 57, into the transfer mechanism. Then, the recording sheet P is stopped by a pair of registration rollers 59 deposited in front of the photoconductive unit 2a. After that, the recording sheet P is further transferred in synchronism with the movement of the toner image moved by the rotation of the photoconductive drums 5 of the photoconductive unit 2a. The recording sheet P is guided into a sheet path between the photoconductive drum 5 of the photoconductive unit 2a and the transfer belt 3.
During the above process, the recording sheet P is charged to a positive polarity by a sheet attracting roller 58 arranged close to an entrance area of the transfer belt 3 and is attracted to the surface of the transfer belt 3 by an electrostatic force. The recording sheet P is attached to the transfer belt 3 and is transferred in the sheet flow direction. Then, the yellow, magenta, cyan, and black toner images are in turn transferred onto a front surface of the recording sheet P, or an upper surface in
Then, the fixing unit 9 melts and hardens the full color toner image onto the recording sheet P with heat and pressure. After that, the recording sheet P is differently treated depending upon the various print modes. In one mode, the recording sheet P is ejected to the facedown tray 26. In anther mode, the recording sheet P is transferred into the sheet flipping unit 8 and is straightly ejected in a faceup orientation. In another mode, the recording sheet P is flipped in the sheet flipping unit 8 and is ejected in a facedown orientation.
Further, in a duplex print mode, the recording sheet P is flipped through the reverse path 54 in the sheet flipping unit 8 and is transferred to the duplex unit 7. Then, the flipped recording sheet P is transferred to the image forming mechanism having the photoconductive units 2a–2d and receives a full color toner image on its rear surface. The recording sheet P is then ejected in the manner as described above.
If the print operation for two or more sheets is instructed, the above image forming processes are repeated.
In the charge roller 14 of the above printer 200, the film strips 18 are wrapped and fixed by adhesion around the respective end side surfaces of the elastic member 17 in the circumferential direction thereof. Specifically, each of the film strips 18 is fixed to the elastic member 17 such that the tilt edges 18a and 18b are not overlapped each other to form the space S therebetween and that there is no position in the circumferential direction around the elastic member 17 at which the film strip 18 does not exists in the axis direction indicated by the arrow E, as shown in
As described above, if the square-formed film strip 61 is used in place of the film strip 18, it forms the horizontal space b, as illustrated in
However, the above problem is eliminated with the charge roller 14 using the film strips 18. Since the film strip 18 is wrapped around the elastic member 17 so as to form the space S between the tilt edges 18a and 18b, as shown in
In addition, even though the tilt edges 18a and 18b are not contact each other, since the tilt edges 18a and 18b are angled relative to the axis direction E (
Therefore, the photoconductive drum 5 is kept in contact with the film strip 18 at the end side surfaces thereof when rotating. That is, a gap G (
In addition, since the photoconductive drum 5 is kept in contact with the film strip 18 when rotating, as described above, the photoconductive drum 5 does not fall into the space S during every rotation and, as a result, it causes no vibration.
Referring to
With the arrangement of the tilt edges 68a and 68b to have the angle â|=of approximately 45 degrees relative to the side edges 68c and 68d, respectively, the top edges 68e and 68f of each film strip 68 have sufficient adhering area and are firmly adhered to the elastic member 17. In addition, a sufficient amount of a contact width Wa (explained later with reference to
If the angle θ of the tilt edges 68a and 68b is set to an acute angle such as the one smaller than the 45 degrees, as shown in
On the contrary, if the angle θ of the tilt edges 68a and 68b is set to a greater angle such as the one close to 90 degrees, as shown in
In the charge roller 64 of
Referring to
Referring to
In addition, even if the film strip 98 has unevenness in length in the wrapping direction, it can easily be adjusted by displacing the adhering positions of the edges 98a and 98b while maintaining the space S between the tilt edges 98a and 98b. Therefore, the film strip 98 does not require a severe manufacturing accuracy in dimension even in the wrapping direction.
Referring to
Therefore, the contact width at a position where the space S is included is maintained as equal to or greater than a half value of the contact width at a position where the space S is not included. As a result, the variations of the contact width can be made relatively small. Accordingly, since the pressure applied to the elastic member 17 during the time in contact with the photoconductive drum 5 is changed in accordance with the change of the above contact width, the variations of that pressure applied to the elastic member 17 can be made relatively small.
If square-cut film strips 118 are used and are wrapped around the elastic member 17 in a way such that end edges thereof are overlapped each other in the shaft direction without being overlapped each other in the direction perpendicular to the shaft direction, as shown in
In this case, if the twice value of the contact width at the place where the film strip 118 is overlapped is defined as a reference value of 100, the comparative value at the place where the film strip 118 is not overlapped can be defined as a value of 50. Accordingly, the contact width of the photoconductive drum 5 relative to the film strip 118 during one rotation of the charge roller is changed from 100 to 50. Therefore, the smallest contact width becomes a half of the greatest contact width and the variations of the contact width becomes greater than that of the charge roller 114 of
In the charge roller 124, the top edge 18e of the film strip 18 and a top edge 1218e of the film strip 1218 are placed inside as leading edges in a rotation direction indicated by an arrow G to face each other.
If the acute-angled top edges 18e and 1218e are placed as leading edges in the rotation direction G, the top edges 18e and 1218e are prone to be peeled off when the charge roller 124 is rotated under pressure relative to the photoconductive drum 5. This is because the end side surfaces of the elastic member 17 are prone to receive greater pressure from the photoconductive drum 5 than inside surfaces thereof. Therefore, the above charge roller 124 of
By thus placing the film strips 18A and 18B with the distance a on the end side surfaces of the elastic member 17, the leading edges of the spaces S of the film edges 18A and 18B do not contact the photoconductive drum 5 at the same time. Therefore, even if each of the leading edges of the spaces S may cause vibrations of the photoconductive drum 5 in every rotation, such vibrations are not caused at the same time on both end side surfaces of the elastic member 17.
When the leading edges of the spaces S of the film strips 18A and 18B are placed opposite each other relative to the rotation axis of the charge roller 134, intervals of the vibrations may be made longer. Therefore, the rotation of the photoconductive drum 5 becomes stable.
In this case, even if the film strips 148 have unevenness length in the wrapping direction, it can easily be adjusted by displacing the adhering positions of the leading and trailing edges 148a and 148b while they are maintained not to be overlapped each other in the direction E. Therefore, the film strip 148 does not require a severe manufacturing accuracy in dimension even in the wrapping direction.
Further, in this case, since there is no position in the circumferential direction around the elastic member 17 at which the film strip 148 does not exists in the axis direction E, the photoconductive drum 5 causes no vibration due to the space S during the rotation.
In this case, when the photoconductive drum 5 contacts the film strips 158 on the contact line Lt1 across three times of the width W at one end, the contact width is equal to a value three times of the width W. When the photoconductive drum 5 contacts the film strips 158 on the contact line Lt2 across two times of the width W at one end, the contact width is equal to a value two times of the width W. That is, the contact width is changed between two and three times of the width W during one turn of the charge roller 154.
This makes the variations of the contact width comparatively smaller than the case of the film strip 148 shown in
In addition, the greater the number of turns of the film strips, the smaller the variations of the contact width of the film strips relative to the photoconductive drum. Therefore, an event in that the pressure is intensively applied to a specific part of the film strip can be avoided.
By thus arranging the charge roller 164, the positions at which the respective contact widths of the film strips 148A and 148B relative to the photoconductive drum are varied are apart for the predetermined distance C in the circumferential direction of the elastic member 17 and therefore an event in that the variations of the contact widths of the film strips 148A and 148B occur at the same time is avoided.
In addition, it may also be preferable that the leading edges of both film strips 148A and 148B relative to the elastic member 17 are positioned at a distance apart in the circumferential direction of the elastic member 17.
In addition, it may also be preferable that the leading edges of both film strips 158A and 158B relative to the elastic member 17 are positioned at a distance apart in the circumferential direction of the elastic member 17.
Referring to
Accordingly, the cleaning blade 47 can clean off the residual toner after the transfer process so as to prevent an event in that the residual toner enters the effective charging area of the charge roller 14.
If the residual toner is moved to the area close to the gap between the photoconductive drum 5 and the charge roller 14, the residual toner is prone to be attached to the effective charging area of the charge roller 14 and, as a result the charging performance of the charge roller 14 will accordingly be degraded. However, with the above configured cleaning blade 47, the charge roller 14 can be kept clean so that an occurrence of an abnormal image forming due to the dirty charge roller 14 can be prevented.
If the film strips 18 are fixed on the photoconductive drum 5 and the cleaning blade 47 is positioned such that the both edges 47a and 47b contact the film strips 18, wearing will occur on both the cleaning blade 47 and the film strips 18. This will make the gap between the photoconductive drum 5 and the charge roller 14 smaller than a predetermined value. However, in this example of
In addition, by providing the film strips 18 to the charge roller 14, the distance between the two film strips 18 can comparatively be made short. That is, when the film strips 18 are attached to the photoconductive drum 5, the effective cleaning width Wb is needed to be within the inside distance between the two film members Wa, as shown in FIG. 34. However, in this example of
In the above case, the inside distance between the film strips 18 is made short and therefore it becomes easy to provide straightness to the photoconductive drum 5 at the required level. This contributes to the reduction of the manufacturing cost.
In those type of the charge roller having a structure as illustrated in
Therefore, the film strips are tightly adhered to the elastic member with a specific adhesive agent to prevent the entrance of toner particles. In the example being explained, an adhesive sheet is used as the film strip 18 on which an adhesive layer is coated. The material of such adhesive sheet may be any one of polyimide, polyester, and polytetrafluoroethylene, as well as polypropylene, polyester, and polyethylene terephthalate. By using such adhesive sheet, it will be possible to maintain its thickness with a tolerance of from ±5 μm to ±10 μm.
Even with the above film member made of an adhesive sheet, it still has a risk of the entrance of the toner particles to the adhesive layer of the film member, which may gradually cause the film member to be peeled off from the edges.
However, in the example of
Referring to
The film wrapping bed 100 includes a film placement plate 101 configured to include a plane upper surface. The film wrapping bed 100 further includes a pair of roller rails 102 and 103. The roller rails 102 and 103 are fixed in parallel with a predetermined distance from each other on the film placement plate 101. The predetermined distance is determined such that the charge roller 14 can be placed on the roller rails 102 and 103 nearly around the end side surfaces of the elastic member 17 thereof, as shown in
The above method includes the following steps. Two film strips 18 that are cut in a predetermined length and have an adhesive surface are placed on the film placement plate 101 with their adhesive surfaces away from the film placement plate 101. The film strips 18 are placed at positions outside the respective roller rails 102 and 103, in parallel to the roller rails, and corresponding to the positions of the end side surfaces of the elastic member 17. Further, the positions of the two film strips 18 on the film placement plate 101 are at a predetermined distance L apart from each other in the vertical direction in
The film strip 18 is thin and is therefore easy to form wrinkles. With the above method, however, such a film strip 18 can easily be wrapped and fixed in a fine shape around the end side surfaces of the elastic member 17.
In this case, the spaces S formed between the leading and trailing edges 18a and 18b of both the film strips 18 are located at the predetermined distance L apart from each other in the circumferential direction of the charge roller 14.
Referring to
In the method of
With this method of
The transfer roller is generally applied with a voltage so as to generate electrostatic force that causes a toner image formed on the surface of the photoconductive member to move onto a recording sheet. When one of the above different charge rollers is used as such transfer roller, it performs a stable transfer process. In addition, the surface of the transfer roller is held with no portion thereof in contact with the toner image formed on the photoconductive member because of the film strips wrapped around the end side surfaces of the elastic member of the transfer roller. As a result, an event in that the transfer roller receives the residual toner from the photoconductive member is avoided. This prevents a problem in which the backside of the recording sheet has dirty marks of such residual toner. The discharging roller is generally applied with a voltage so as to generate electrostatic force that causes the residual charge on the photoconductive member to drain off. When one of the above different charge rollers is used as such discharging roller, the surface of the discharging roller is held with a constant gap relative to the surface of the photoconductive member because of the film strips wrapped around the end side surfaces of the elastic member of the transfer roller. As a result, the discharging roller performs a stable discharging process. Further, the development roller is generally applied with a voltage so as to generate electrostatic force that causes the toner particles on the photoconductive member to raise in a chaplet-like form having a certain height. When one of the above different charge rollers is used as such development roller, the surface of the development roller is held with a constant gap relative to the raised toner on the surface of the photoconductive member because of the film strips wrapped around the end side surfaces of the elastic member of the transfer roller. As a result, the development roller performs a stable development process.
Numerous additional modifications and variations of the present application are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the present application may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2000-030908 | Feb 2000 | JP | national |
2001-024007 | Jan 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3812780 | Borelli | May 1974 | A |
3944354 | Benwood et al. | Mar 1976 | A |
4033768 | Wieloch | Jul 1977 | A |
5146280 | Kisu | Sep 1992 | A |
5319337 | Matsunari et al. | Jun 1994 | A |
5430527 | Maruyama et al. | Jul 1995 | A |
5446615 | Matsumoto et al. | Aug 1995 | A |
5576805 | Ishihara et al. | Nov 1996 | A |
5659853 | Matsuda et al. | Aug 1997 | A |
5766753 | Murata et al. | Jun 1998 | A |
5993912 | Yoo | Nov 1999 | A |
6001454 | Murata et al. | Dec 1999 | A |
6134408 | Kataoka et al. | Oct 2000 | A |
6141516 | Law et al. | Oct 2000 | A |
20040031556 | Kaneko et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
5-273837 | Oct 1993 | JP |
6-202433 | Jul 1994 | JP |
6-269754 | Sep 1994 | JP |
9-179444 | Jul 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20030083180 A1 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09778738 | Feb 2001 | US |
Child | 10315111 | US |