The present invention relates to the field of medical devices, in particular personal isolation and/or protection devices to reduce the risk of airborne illness transmission.
Prior to the present invention, various isolation devices have been contemplated, including passive face masks, gas masks and some tent-based devices. For the purposes of traveling where one will frequently interact with others and be exposed to their secretions, the face and gas masks are either too bulky or ineffective and the tent-based devices are not practical. Regarding face masks, in particular, even with professional installation these masks are notoriously poor at preventing airborne illness transmission. Gas mask provide a better system for filtration and can accomplish effective isolation, but are very bulky, awkward and unattractive. Furthermore, for longer trips, the gas mask must be removed to allow for drinking and eating which negates the purpose for such a device. Tent-based devices, while highly effective when used in combination with positive pressure, are not at all practical for use outside of the home or office. Therefore, there exists a strong need, particularly in light of the upcoming flu epidemic, for a less obtrusive, more effective personal isolation system.
The device of the present invention may create and maintain a pressure differential in the vicinity of the user's nasopharynx. Using a portable filter and pressurized air source, the region of the user's nasopharynx can be subjected to positive or negative pressured air. Positive pressure will prevent exposure surrounding air while negative air pressure will isolate those around the user from potential toxins or pathogens exhaled from the user. In the positive pressure embodiments, the surrounding air may be displaced by the positive pressure environment preventing exposure to ambient air in all instances other than a direct blast of high flow air directed at the users nasopharynx (such as an uncovered and maliciously directed sneeze). If adequate pressure is used, though, even this scenario would not allow for transmission of airborne illness with repulsion of any infective droplets being repelled by the positive pressure created. In the negative pressure embodiment, exhaled air may be evacuated from the nasopharynx, filtered and returned to the user's surroundings to prevent exposure to those around the user. The device of the present invention may be incorporated into a variety of garments, accessories or existing isolation devices (ie face masks) to improve their efficacy. Alternatively, the device may also be attached to an air source in the user's vicinity and simply provide filtration of the air prior to delivery to the region surrounding the user.
In the positive pressure embodiment, the positive pressure and/or repelling force could be generated by a variety of mechanisms, but in its preferred embodiment includes a filter, a fan (or pressurized air source), a head and/or neck worn garment to direct the airflow to create the localized positive pressure region and optional tubing to channel air flow if the fan/filter is not incorporated directly into a head or neck worn garment.
The device could be used in combination with a face mask to drastically increase its efficacy, as well, by creating a positive pressure environment between the face mask and the nasopharynx to prevent ambient air and water droplets from passing around the edges of the mask into the user's lungs (the most common failure mechanism).
Lastly, in the airplane embodiment or in any area where a pressurized air source is available, the device may consist of a hepa or other filter which may be reversibly or irreversibly attached to the pressurized air source to generate a localized positive pressure region of sterilized air. This embodiment may be used in combination with a partial or full canopy, as well, in order to increase the local positive pressure generation around the user.
The present invention may be constructed of a variety of materials and may be used for a variety of applications with the only requirement being that of portable, localized positive pressure generation for the protection of the user. Applications include protection for air travelers, healthcare workers, construction workers or any other application in which the user desires to prevent exposure to ambient air and its constituent toxins and pathogens.
Alternatively, particularly for air and other forms of travel, the device of the present invention could also be modified to provide for isolation of the user's surrounding from the users exhaled air. In this embodiment, capable of being used with a face mask as well, the filtration mechanism may draw air from the region of the patient's nasopharynx creating a localized region of negative pressure to prevent transmission of exhaled particles from the user to anyone in their vicinity. This embodiment may be used in a variety of applications, as well, with quarantine of infected traveling individuals and prevention of transmission of pathogens from visitors to immunocompromised patients being two robust applications. In this way, the use of a portable negative pressure isolation system, the user need not worry about infecting or exposing individuals in their vicinity.
The present invention may take a variety of embodiments with the only requisite feature being that of a portable, air filter capable of generating a localized pressure differential in the region of the user's nasopharynx. As can be seen in
Lastly,
Number | Name | Date | Kind |
---|---|---|---|
3976063 | Henneman et al. | Aug 1976 | A |
4172454 | Warncke et al. | Oct 1979 | A |
4846166 | Willeke | Jul 1989 | A |
20030005934 | Japuntich et al. | Jan 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20070163586 A1 | Jul 2007 | US |