METHOD AND APPARATUS FOR PIC CHANNEL ESTIMATOR CONSIDERING WEIGHT

Information

  • Patent Application
  • 20120113973
  • Publication Number
    20120113973
  • Date Filed
    November 03, 2011
    13 years ago
  • Date Published
    May 10, 2012
    12 years ago
Abstract
A method and an apparatus apply an adaptive weight in a wireless communication system. In the method, channel estimation is performed. A weighting factor that reduces a Mean Square Error (MSE) is determined with respect to a channel in a specific section. A channel estimate value is multiplied by the weighting factor.
Description
CROSS-REFERENCE TO RELATED APPLICATION(S) AND CLAIM OF PRIORITY

The present application is related to and claims the benefit under 35 U.S.C. §119(a) of a Korean patent application filed in the Korean Intellectual Property Office on Nov. 4, 2010 and assigned Serial No. 10-2010-0109007, the entire disclosure of which is hereby incorporated by reference.


TECHNICAL FIELD OF THE INVENTION

The present invention relates to a method and an apparatus for applying an optimized adaptive weight to an output of a channel estimator in order to raise accuracy of the channel estimator used for estimating a channel gain in a Pilot Interference Canceller (PIC).


BACKGROUND OF THE INVENTION

A Code Division Multiple Access (CDMA) communication system uses a PIC technology that cancels a pilot in order to improve a cell performance of an uplink.


However, a weight determining method used in the PIC cannot have an optimized performance in an aspect of a Mean Square Error (MSE).


That is, since the weight determining method used in the PIC has a structure that uses a constant weighting factor, the method cannot apply an instantaneously optimized weighting factor and so an MSE gets large.


Therefore, a method and an apparatus that can apply an instantaneously optimized weighting factor are required.


SUMMARY OF THE INVENTION

To address the above-discussed deficiencies of the prior art, it is a primary aspect of the present invention is to provide a method and an apparatus for a PIC channel estimator considering a weight.


Another aspect of the present invention is to provide a method and an apparatus for improving a performance of a channel estimator by applying a weighting factor that uses a weight algorithm having a minimum (or reduced) Mean Square Error (MSE) in a short term average to an output of the channel estimator in a CDMA communication system.


In accordance with an aspect of the present invention, a method for applying an adaptive weight in a wireless communication system is provided. The method includes performing channel estimation, determining a weighting factor that reduces a Mean Square Error (MSE) with respect to a channel in a specific section, and multiplying a channel estimate value by the weighting factor.


In accordance with another aspect of the present invention, an apparatus for applying an adaptive weight in a wireless communication system is provided. The apparatus includes a channel estimator for performing channel estimation, and a weighting block for determining a weighting factor that reduces a Mean Square Error (MSE) with respect to a channel in a specific section, and multiplying a channel estimate value by the weighting factor.


In accordance with still another aspect of the present invention, a method for canceling a pilot interference in an uplink of a Code Division Multiple Access (CDMA) communication system is provided. The method includes over-sampling a received sample, generating a Pseudo Noise (PN) sequence, despreading the over-sampled sample by a Spreading Factor (SF) to generate a signal of a symbol basis, performing channel estimation on the signal of the symbol basis, and determining a weighting factor reducing a Mean Square Error (MSE) with respect to a channel in a specific section and multiplying a channel estimate value by the weighting factor.


In accordance with further another aspect of the present invention, an apparatus for canceling a pilot interference in an uplink of a Code Division Multiple Access (CDMA) communication system is provided. The apparatus includes an interpolator for over-sampling a received sample, a Pseudo Noise (PN) generator for generating a Pseudo Noise (PN) sequence, a despreader for despreading the over-sampled sample by a Spreading Factor (SF) to generate a signal of a symbol basis, a channel estimator for performing channel estimation on the signal of the symbol basis, and a weighting block for determining a weighting factor reducing a Mean Square Error (MSE) with respect to a channel in a specific section and multiplying a channel estimate value by the weighting factor.


Before undertaking the DETAILED DESCRIPTION OF THE INVENTION below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document: the terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation; the term “or,” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like; and the term “controller” means any device, system or part thereof that controls at least one operation, such a device may be implemented in hardware, firmware or software, or some combination of at least two of the same. It should be noted that the functionality associated with any particular controller may be centralized or distributed, whether locally or remotely. Definitions for certain words and phrases are provided throughout this patent document, those of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior, as well as future uses of such defined words and phrases.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts:



FIG. 1 is a view illustrating a general PIC structure applied to an uplink of a CDMA communication network according to an exemplary embodiment of the present invention;



FIG. 2 is a block diagram illustrating a weighting block according to an exemplary embodiment of the present invention;



FIG. 3 is a block diagram illustrating a weighting block according to an exemplary embodiment of the present invention;



FIG. 4 is a block diagram illustrating an IIR filter for an averaging unit according to an exemplary embodiment of the present invention; and



FIG. 5 is a flowchart illustrating a process for determining a weighting factor according to an exemplary embodiment of the present invention.





Throughout the drawings, like reference numerals will be understood to refer to like parts, components and structures.


DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1 through 5, discussed below, and the various embodiments used to describe the principles of the present disclosure in this patent document are by way of illustration only and should not be construed in any way to limit the scope of the disclosure. Those skilled in the art will understand that the principles of the present disclosure may be implemented in any suitably arranged wireless communication system.


The following description with reference to the accompanying drawings is provided to assist in a comprehensive understanding of exemplary embodiments of the invention as defined by the claims and their equivalents. It includes various specific details to assist in that understanding but these are to be regarded as merely exemplary. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. Also, descriptions of well-known functions and constructions are omitted for clarity and conciseness.


The terms and words used in the following description and claims are not limited to the bibliographical meanings, but, are merely used by the inventor to enable a clear and consistent understanding of the invention. Accordingly, it should be apparent to those skilled in the art that the following description of exemplary embodiments of the present invention are provided for illustration purpose only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.


Exemplary embodiments of the present invention provide a method and an apparatus for a PIC channel estimator considering a weight.


Exemplary embodiments of the present invention use a PIC that cancels a pilot in order to improve a cell performance of an uplink in a CDMA system.



FIG. 1 is a view illustrating a general PIC structure applied to an uplink of a CDMA communication network according to an exemplary embodiment of the present invention.


Referring to FIG. 1, the PIC includes an interpolator 101, a despreader 102, a Pseudo Noise (PN) generator 103, a channel estimator 104, a weighting block 105, a pilot regenerator 106, a pilot canceller 107, and a summation 108.


The interpolator 101 over-samples a received sample r(k) by I time. Here, “I” denotes an over-sampling ratio of the interpolator 101.


The PN generator 103 generates a PN sequence used for an i-th user to provide the same to the despreader 102 and the pilot regenerator 106.


The despreader 102 despreads a signal received from the interpolator 101 by a Spreading Factor (SF) to generate a signal xi,j(n) of a symbol basis and provides the generated signal to the channel estimator 104.


The channel estimator 104 filters the signal xi,j(n) provided by the despreader 102 to generate an estimated channel gain ĥi,j(n) and provides the same to the weighting block 105.


The weighting block 105 applies a weight to an estimated channel gain ĥi, j(n) by a generated weighting factor. An example of a weighting factor generating block used for a general PIC is illustrated in FIG. 2. A channel estimate value αfαĥi,j(n) to which a weight has been applied using a constant weighting factor α(n)=αfα as in FIG. 2 is provided to the pilot regenerator 106.


The pilot regenerator 106 generates a pilot yi,j(k) to be cancelled every user using a channel estimate value αi,j(n)ĥi,j(n) to which a weight has been applied, a pilot pattern, and a PN sequence.


The summation 108 sums all of pilots yi,j(k) of every user generated by the pilot regenerator 106 and provides the same to the pilot canceller 107.


The pilot canceller 107 cancels pilots yi,j(k) of every user from a received signal r(k) to generate a sample rp(k) where a pilot has been cancelled.



FIG. 2 is a block diagram illustrating a weighting block according to an exemplary embodiment of the present invention.


Referring to FIG. 2, the weighting block includes a multiplier 202. The multiplier 202 multiplies a received channel estimate value of the channel estimator 104 and a constant weighting factor α(n)=αfα and outputs a result value αfαĥi,j(n)


The weighting block provides the channel estimate value αfαĥi,j(n) to which a weight has been applied to the pilot regenerator 106.



FIG. 3 is a block diagram illustrating a weighting block according to an exemplary embodiment of the present invention.


Referring to FIG. 3, the weighting block includes a complex conjugate multiplier 302, a power calculator 303, averaging units 304 and 305, a real number unit 306, a noise canceller 307, a divider 308, and a multiplier 309. The complex conjugate multiplier 302 includes a complex conjugate unit 302-1 for outputting a complex conjugate of an input value.


The complex conjugate unit 302-1 of the complex conjugate multiplier 302 obtains a complex conjugate h*i,ĵ(n) of an output hi,ĵ(n) of the channel estimator 104, and the complex conjugate multiplier 302 multiplies the obtained complex conjugate h*i,ĵ(n) and a signal xi,j(n) to be input to the channel estimator 104 to provide a result value thereof to the averaging unit E( ) 304.


The averaging unit 304 obtains an average E[xi,j(n)hi,ĵ(n)*] for a short time from an output value of the complex conjugate multiplier 302 to provide the same to the real number unit Re( ) 306.


The real number unit Re( ) 306 selects only a real part Re{E[xi,j(n)hi,ĵ(n)*]} from the output E[xi,j(n)hh i,ĵ(n)*] of the averagi unit 304 and provides the same to the noise canceller 307.


The noise canceller 307 cancels a noise from the output Re{E[xi,j(n)hi,ĵ(n)*]} provided by the real number unit 306 and provides a result thereof Re{E[xi,j(n)hi,ĵ(n)*]}−w(0)σi,j2 to the divider 308.


The power calculator 303 determines a square |ĥi,j(n)|2 of an absolute value of an output of the channel estimator 104and provides the same to the averaging unit E( ) 305.


The averaging unit 305 determines an average E[|hi,j(n)|2 ] for a short time from the value |ĥi,j(n) provided by the power calculator 303 and provides the same to the divider 309.


Here, the averaging units E( ) 304 and 305 perform a function of determining an average for a short time, that is, determining an instantaneous average. The averaging units 304 and 305 may use an IIR filter having a coefficient of αIIR as in FIG. 4 which will be described later.


The divider 308 outputs a value








α

i
,
j




(
n
)


=




Re


{

E


[



x

i
,
j




(
n
)






h

i
,
j




(
n
)


*


]


}


-


w


(
0
)




σ

i
,
j

2



^


E


[






h
^


i
,
j




(
n
)




2

]







obtained by dividing an output Re{E[xi,j(n)hi,ĵ(n)*]}−w(0)σi,j2 of the noise canceller 307 by an output E[|ĥi,j(n)|2] of the averaging unit 305.


The multiplier 309 outputs a value αi,j(n)hi,ĵ(n) obtained by multiplying an output value αi,j(n) of the divider 308 by an output value hi,ĵ(n) of the channel estimator 104.



FIG. 4 is a block diagram illustrating an IIR filter for an averaging unit according to an exemplary embodiment of the present invention.


Referring to FIG. 4, the averaging units 304 and 305 include a multiplier 1401, a multiplier 2402, and a shift register 403.


The multiplier 1401 multiplies an input signal by αIIR, and the multiplier 2402 multiplies an output of the shift register 403 by 1−αIIR.


The output of the multiplier 1401 and the output of the multiplier 2402 are added to each other, and the added value is input to the shift register 403.


Generally, the channel estimate value estimated by the channel estimator 104 may be expressed by Equation (1).






h
i,j(n)=ŴTXi,j(n)   (1)


where WT is a matrix represented by approximation using a FIR filter having a sufficiently large Tap number (=2L+1), and may be expressed by Equation (2).









W
=

[




w


(
L
)












w


(
0
)












w


(

-
L

)





]





(
2
)







In Equation (2), w(1) is an 1-th channel estimate coefficient when approximation has been performed using a FIR filter.


In addition, in Equation (1), Xi,j(k) is an input symbol signal xi,j(n) represented in terms of a matrix and has a structure as in Equation (3).











X

i
,
j




(
n
)


=

[





x

i
,
j




(

n
+
L

)













x

i
,
j




(
n
)













x

i
,
j




(

n
-
L

)





]





(
3
)







In Equation (3), xi,j(n) may be expressed by Equation (4).






x
i,j(n)=hi,j(n)+gi,j(n)   (4)


In Equation (4), hi, j(n)is a channel matrix, and gi,j(n) is a Gaussian noise having a dispersion of σi,j2.


When an MSE is minimized (or reduced) in a short term, an MSE is minimized (or reduced) in a long term, so that a weighting factor α(n) minimizing (or reducing) an MSE for a short term can be determined. An MSE for a short term may be expressed by Equation (5). Here, a unit of a short term denotes a unit of n in Equation.





MSEi,j(n)=E[|hi,j(n)−αi,j(n)hi,ĵ(n)   (5)


Equation (5) may be changed into Equation (6).





MSEi,j(n)=E[|i,j(n)|2]−2αi,j(n)Re{E[hi,j(n)hi,j(n)*]}+αi,ĵ(n)3E[|hi,ĵ(n)|2]  (6)


Equation (6) is differentiated to determine αi, j(n) minimizing (or reducing) MSE(n) as in Equation (7).














α

i
,
j




(
n
)


=




Re



{

E


[



h

i
,
j




(
n
)






h

i
,
j




(
n
)


*


]


}

^



E


[






h
^


i
,
j




(
n
)




2

]









=






Re


{

E


[



x

i
,
j




(
n
)






h

i
,
j




(
n
)


*


]


}


-


w


(
0
)




σ

i
,
j

2



^


E


[






h
^


i
,
j




(
n
)




2

]










(
7
)







In Equation (7), w(0) is a zero-th coefficient of WT.


A flowchart for Equation (7) is illustrated in FIG. 5 which will be described below.



FIG. 5 is a flowchart illustrating a process for determining a weighting factor according to an exemplary embodiment of the present invention.


Referring to FIG. 5, when a weighting factor determining algorithm of the weighting block starts, the channel estimator 104 performs channel estimation using a received signal xi,j(n) and outputs a result value hi,ĵ(n) (step 502).


The power calculator 303 determines a square (power) |hi,ĵ(n)|2 of an output value of the channel estimator 104 (step 503), and the averaging unit 305 obtains an instantaneous average value E[|hi,ĵ(n)|2] (step 504).


Simultaneously (or at about a similar time) with the processes of steps 503 and 504, a process for determining a numerator of a weighting factor using Equation (7) may be performed (steps 505-508).


The complex conjugate multiplier 302 multiplies an input value xi,j(n) for the channel estimator 104 by a complex conjugate of a channel estimate value hi,ĵ(n) and outputs a result value xi,j(n)hi,ĵ(n)* (step 505).


The averaging unit 304 obtains an instantaneous average E[xi,j(n)hi,ĵ(n)*] of an output value of the complex conjugate multiplier 302 (step 506).


The real number unit 306 selects only a real part Re{E[xi,j(n)hi,ĵ(n)*]} from the instantaneous average (step 507).


The noise canceller 307 outputs a value Re{E[xi,j(n)hi,ĵ(n)*]}−w(0)σi,j2 obtained by canceling a noise from an output value of the real number unit 306 (step 508).


The divider 308 divides the output value Re{E[xi,j(n)hi,ĵ(n)*]}−w(0)σi,j of the noise canceller 307 by the output E[|hi,ĵ(n)|2] of the averaging unit 305 and outputs a result value







α


(
n
)


=




Re


{

E


[



x

i
,
j




(
n
)






h

i
,
j




(
n
)


*


]


}


-


w


(
0
)




σ

i
,
j

2



^


E


[






h
^


i
,
j




(
n
)




2

]







(step 509).


The multiplier 309 multiplies the output hi,ĵ(n) of the channel estimator 104 by the determined weighting factor α(n) and outputs a result thereof αi,j(n)hi,ĵ(step 510).


Since exemplary embodiments of the present invention use a structure that applies an instantaneously optimized (or improved) weighting factor without using a structure that uses a constant weighting factor, they may prevent a problem that an MSE gets large. In addition, exemplary embodiments of the present invention reduce remaining pilot power when canceling a pilot interference by improving an MSE performance of a channel estimator used in a PIC. Since quality of a signal from which a pilot has been cancelled improves, a cell throughput of an uplink improves.


Although the present disclosure has been described with an exemplary embodiment, various changes and modifications may be suggested to one skilled in the art. It is intended that the present disclosure encompass such changes and modifications as fall within the scope of the appended claims.

Claims
  • 1. A method for applying an adaptive weight in a wireless communication system, the method comprising: performing channel estimation;determining a weighting factor that reduces a Mean Square Error (MSE) with respect to a channel in a specific section; andmultiplying a channel estimate value by the weighting factor.
  • 2. The method of claim 1, wherein determining the weighting factor that reduces the MSE with respect to the channel in the specific section comprises: a first process of multiplying a complex conjugate of the channel estimate value and a signal input for the channel estimation;a second process of determining an average value for the specific section with respect to an output value of the first process;a third process of extracting only a real part from an output value of the second process; anda fourth process of canceling a noise from an output value of the third process.
  • 3. The method of claim 2 further comprising: a fifth process of determining power of the channel estimate value; anda sixth process of determining an average value for the specific section with respect to an output value of the fifth process.
  • 4. The method of claim 3 further comprising: a seventh process of determining the weighting factor by dividing an output value of the fourth process by an output value of the sixth process.
  • 5. An apparatus for applying an adaptive weight in a wireless communication system, the apparatus comprising: a channel estimator configured to perform channel estimation; anda weighting block configured to determine a weighting factor that reduces a Mean Square Error (MSE) with respect to a channel in a specific section, and multiply a channel estimate value by the weighting factor.
  • 6. The apparatus of claim 5, wherein the weighting block comprises: a complex conjugate multiplier configured to multiply a complex conjugate of the channel estimate value and a signal input for the channel estimation;a first averaging unit configured to determine an average value for the specific section with respect to an output value of the complex conjugate multiplier;a real number unit configured to extract only a real part from an output value of the first averaging unit; anda noise canceller configured to cancel a noise from an output value of the real number unit.
  • 7. The apparatus of claim 6 further comprising: a power calculator configured to determine power of the channel estimate value; anda second averaging unit configured to determine an average value for the specific section with respect to an output value of the power calculator.
  • 8. The apparatus of claim 7 further comprising: a multiplier configured to determine the weighting factor by dividing an output value of the noise canceller by an output value of the second averaging unit.
  • 9. A method for canceling a pilot interference in an uplink of a Code Division Multiple Access (CDMA) communication system, the method comprising: over-sampling a received sample;generating a Pseudo Noise (PN) sequence;despreading the over-sampled sample by a Spreading Factor (SF) to generate a signal of a symbol basis;performing channel estimation on the signal of the symbol basis; anddetermining a weighting factor reducing a Mean Square Error (MSE) with respect to a channel in a specific section and multiplying a channel estimate value by the weighting factor.
  • 10. The method of claim 9 further comprising: generating a pilot to be cancelled using the channel estimate value multiplied by the weighting factor, a pilot pattern, and a Pseudo Noise (PN) sequence; andcanceling a pilot from the received sample using the generated pilot.
  • 11. The method of claim 9, wherein the determining of the weighting factor that reduces the MSE with respect to the channel in the specific section comprises: a first process of multiplying a complex conjugate of the channel estimate value and a signal input for the channel estimation;a second process of determining an average value for the specific section with respect to an output value of the first process;a third process of extracting only a real part from an output value of the second process; anda fourth process of canceling a noise from an output value of the third process.
  • 12. The method of claim 11 further comprising: a fifth process of determining power of the channel estimate value; anda sixth process of determining an average value for the specific section with respect to an output value of the fifth process.
  • 13. The method of claim 12 further comprising: a seventh process of determining the weighting factor by dividing an output value of the fourth process by an output value of the sixth process.
  • 14. An apparatus for canceling a pilot interference in an uplink of a Code Division Multiple Access (CDMA) communication system, the apparatus comprising: an interpolator configured to over-sampling a received sample;a Pseudo Noise (PN) generator configured to generate a Pseudo Noise (PN) sequence;a despreader configured to despread the over-sampled sample by a Spreading Factor (SF) to generate a signal of a symbol basis;a channel estimator configured to perform channel estimation on the signal of the symbol basis; anda weighting block configured to determine a weighting factor reducing a Mean Square Error (MSE) with respect to a channel in a specific section and multiply a channel estimate value by the weighting factor.
  • 15. The apparatus of claim 14 further comprising: a pilot regenerator configured to generate a pilot to be cancelled using the channel estimate value multiplied by the weighting factor, a pilot pattern, and a PN sequence; anda pilot canceller configured to cancel a pilot from the received sample using the generated pilot.
  • 16. The apparatus of claim 14, wherein the weighting block is further configured to determine the weighting factor reducing the MSE with respect to the channel in the specific section, and multiply the channel estimate value by the weighting factor.
  • 17. The apparatus of claim 16, wherein the weighting block comprises: a complex conjugate multiplier configured to multiply a complex conjugate of the channel estimate value and a signal input for the channel estimation;a first averaging unit configured to determine an average value for the specific section with respect to an output value of the complex conjugate multiplier;a real number unit configured to extract only a real part from an output value of the first averaging unit; anda noise canceller configured to cancel a noise from an output value of the real number unit.
  • 18. The apparatus of claim 17 further comprising: a power calculator configured to determine power of the channel estimate value; anda second averaging unit configured to determine an average value for the specific section with respect to an output value of the power calculator.
  • 19. The apparatus of claim 18 further comprising: a multiplier configured to determine the weighting factor by dividing an output value of the noise canceller by an output value of the second averaging unit.
  • 20. The apparatus of claim 14, wherein the weighting factor determined minimizes the MSE with respect to the channel in the specific section.
Priority Claims (1)
Number Date Country Kind
10-2010-0109007 Nov 2010 KR national