This invention relates to method and apparatus for plugging perforations in an oil or gas well and, more particularly, to plugging an oil or gas well which utilizes a fusible alloy for plugging the perforations.
In the oil and gas production industry, a perforated interval in the casing of the well is created to allow enhanced oil flow from the oil holding formation into the casing. The perforations are holes that extend from the inside of the well casing to the outside and are created by explosive shooting or other perforation techniques which techniques form no part of the present invention.
Following the long use of the perforations for oil or gas flow into the casing, water flow becomes a problem. The water is undesirable since it mixes with the oil and must be removed from the oil at the surface. Furthermore, when water increases its flow through the perforations, the oil or gas flow may diminish to a point where the well is not longer commercially viable. In addition, the water flow may hinder the recovery of oil or gas from other areas of the formation. It therefore becomes advantageous to plug the previously formed perforations.
In our earlier U.S. Pat. No. 6,828,531, the contents of which are incorporated herein by reference, there is disclosed a method and apparatus for plugging perforations using a squeeze procedure and a heating tool that melts a fusible alloy and squeezes the alloy into the perforations where the alloy cools and expands thereby closing the perforations and terminating flow therethrough. The use of such a technique, while useful to close the perforations, also results in an residue of alloy being left within the well as a solid alloy plug across the casing. The cost of the alloy to effect plugging in such an application is expensive. Further, the time to create the plugging in that application is unnecessarily time consuming.
It would advantageous to use less alloy for plugging the perforations and it further would be advantageous to enhance the efficiency of the plugging operation.
According to one aspect of the invention, there is provided a heating tool for use in plugging perforations in an oil or gas well comprising a heating element, a circumferential tube surrounding said heating element, a fusible alloy adjacent to and outside said circumferential tube and means for releasably connecting said circumferential tube and said fusible alloy to said heating element.
According to a further aspect of the invention, there is provided a method of plugging perforations in the casing of an oil or gas well comprising the steps of forming a bridge plug in said casing at a position lower than the lowermost perforation sought to be plugged, lowering a heating tool and a fusible metal alloy to a position above said bridge plug and adjacent said perforations sought to be plugged, melting said alloy and applying pressure to said molten alloy to force said molten alloy through said perforations in said casing, lowering the temperature of said heating tool to allow said molten alloy to solidify within said perforations, removing said pressure from said molten alloy and withdrawing said heating tool from said oil or gas well.
An embodiment of the invention will now be described, by way of example only, with the use of drawings in which:
Referring now to the drawings, an oil or gas well is generally illustrated at 10 in
Perforations 14 have been formed in the casing 11 and extend into the formation of interest 13.
It is desired to plug the perforations 14 and to terminate flow from the formation 13 through the perforations 14 and into the casing 11. To do so, a retrievable bridge plug 21 is set in the casing 11 below the lowest one of the perforations 14 as illustrated in
Referring to
The layer 34 of meltable fusible alloy is formed around the circumference of the tube 30 and is in solid form as the heating tool 23 is lowered from the surface. The fusible alloy 34 is conveniently a bismuth/tin alloy although other such suitable alloys are also contemplated. The volume of the alloy 34 surrounding the tube 30 is earlier calculated and is such that the perforations 14 will be completely filled when the alloy 34 is melted.
Referring to
Power to the heating tool 23 is then terminated and the latching mechanism 33 opens thereby allowing the tube 31 and flanged cap 32 to be released from the heating tool 23 where they remain on the bridge plug 21 and sand 22. The pressure remains on the molten alloy and the cessation of heating from the tool 23 causes the molten alloy 34 to solidify within the perforations 14. The bismuth/tin alloy 34 expands as it solidifies thereby creating a tight plug within the perforations 14 and blocking the entrance of the undesired water into the well 10. Following a sufficient time interval, the pressure on the alloy 34 within the well 10 is terminated and the heating tool 23 is withdrawn from the well 10. Any alloy remaining within the casing 11 is readily drilled out. The bridge plug 21 and sand 22 are likewise removed as is known. The solidified alloy 34 will remain in the perforations 14 thereby plugging the perforations 14.
Many modifications will readily occur to those skilled in the art to which the invention relates. It is desirable to have the tube 31 and solid alloy 34 brought into close proximity with the inside diameter of the casing 11 in order to enhance movement of the melted alloy into the perforations 14 and also to minimize the amount of alloy required for plugging the perforations 14. Accordingly, tubing 34 of various diameters could be accommodated by the heating tool 23. Likewise, while a latching mechanism 30 has been described, other mechanisms for allowing the release of the tubing 30 and alloy 34 such as shear pins, molded fusible metal which melts under the influence of heat from the heating tool 23 contemporaneously with the melting of the fusible alloy 34 used for plugging the perforations, and the like are likewise contemplated.
The alloy material 34 on the outside of the releasable tube of the heating tool 23 as is described and illustrated may be formed on the outside of the tube 31 or it may conveniently be pre-molded in segments which segments would be slipped over the tube 31 in the desired quantities. The segments would then rest against the flanged cap 32 but the operation of the heating tool 23 would be similar to the operation just described.
While a resistive type heating tool 23 has been described, it is contemplated that an inductive type heating tool such as that heating tool described in our U.S. Pat. No. 6,825,531 would also be useful. There would be no need for a hollow center in such a tool but the use of induction for heating the fusible alloy 34 is contemplated to be useful for the present application.
Many further embodiments will readily occur to those skilled in the art to which the invention relates and the specific embodiments described should be taken as illustrative of the invention only and not as limiting its scope as defined in accordance with the accompanying claims.
This application claims priority from U.S. Provisional Application Ser. No. 60/805,734 filed Jun. 24, 2006 entitled PERFORATION PLUGGING TOOL AND PROCEDURE (Spencer).
Number | Date | Country | |
---|---|---|---|
60805734 | Jun 2006 | US |