This disclosure generally relates to method and apparatus for handling moist smokeless tobacco (MST) products. More particularly, the invention relates to method and apparatus for precision dispensing of MST.
With conventional machines, methods for dosing and pouching MST include drying, pouching, rewetting and/or flavoring the MST, and then packaging the pouches for delivery to consumers. Typically, unless the MST is first dried, the MST cannot be accurately dosed or dispensed and then pouched on conventional pouching machines because the high moisture content of the tobacco causes clumping and non-uniform delivery of tobacco to the pouches. After drying, the MST is typically pouched and then rewetted. However, rewetting after pouching causes MST to clump, which causes non-uniform flavor delivery due to the higher density of the clumps within the pouch as compared to non-clumped portions of MST contained within the pouch. In addition, when the MST has been dried, the flavor and organoleptic characteristics may be undesirably changed when compared to loose, fibrous MST. Thus, it is desirable to pouch MST using a method and apparatus that can provide more uniform and accurate dosing of MST from a dosing cavity without the need for drying and/or rewetting steps.
There has existed a need for a method and apparatus for accurately dosing MST that obviates the need for drying MST prior to pouching, substantially reduces or prevents the need for rewetting MST after pouching, and provides substantially accurate dosing of oral tobacco pouch products.
An apparatus for dispensing moist smokeless tobacco includes a rotary metering device. In a preferred embodiment, the rotary metering device includes a lower disk which rotates in a horizontal plane and includes a plurality of through openings, a metering disk which rotates in a horizontal plane, and includes a plurality of through openings aligned with the plurality of through openings in the lower disk so as to define a plurality of cavities, pins mounted in the through openings of the lower disk and extending into the through openings of the metering disk and a vacuum housing located around the periphery of the lower disk and applying a vacuum to the cavities during loading of the cavities but not applying vacuum to the cavities when at the discharge station. Preferably, the pins have an upper screen defining bottoms of the plurality of cavities within the metering disk. Also preferably, the pins are vertically movable within the metering disk to raise and lower the screen so as to increase or decrease a fill volume of the plurality of cavities. Moreover, the rotary metering device includes a bowl surrounding the metering disk and adapted to hold a quantity of to be loaded into the cavities.
Preferably, the vacuum housing is in communication with the plurality of cavities so as substantially completely fill the cavities with MST during loading. In the preferred embodiment, the vacuum housing applies vacuum pressure in the cavities in an amount less than about 1 inch mercury, preferably about ⅛ inch mercury to about ¾ inch mercury, more preferably at or about ½ inch mercury. Preferably, the vacuum housing is connected to a frame and is stationary during rotation of the lower disk and metering disk. In the preferred embodiment, the rotary metering device includes two vacuum housings separated by at least two gaps which provide two applications of vacuum pressure to the cavities during rotation of the metering disk.
In the preferred embodiment, the apparatus also includes a hopper for containing moist smokeless tobacco prior to delivery to the bowl of the rotary metering device and a tobacco feed drive system for conveying moist smokeless tobacco from the hopper to the rotary metering device. In the preferred embodiment, when one of the cavities is at the discharge station, a charge of MST in the cavity is discharged from the cavity via a discharge opening, which leads to a feed tube. Preferably, the feed tube communicates with the cavity for delivering a charge of loose moist smokeless tobacco from the rotary metering device to a pouching apparatus.
Also preferably, the discharge opening comprises a stationary funnel adjacent the upper surface of the metering disk. The outer surface of the funnel aids in skimming excess MST off the top of each cavity as the metering disk rotates thereunder. When the metering disk rotates such that the funnel is positioned over one of the cavities, the funnel directs the MST to the feed tube via an air blast. A blast of air from an air discharge mechanism, which is in fluid communication with the cavity at the discharge station effects discharge of MST from the cavity and into the feed tube. Also preferably, the feed tube comprises at least one pressure release hole to allow pressurized air to escape the feed tube during ejection of MST from the cavity. The pressure release hole can be opened as needed to aid in passing the MST through the feed tube and to the pouching apparatus.
Also provided is a method of pouching moist smokeless tobacco. The method includes loading moist smokeless tobacco (MST) with a moisture content greater than about 30% into a cavity in a rotatable metering disk, applying a vacuum to the cavity so as to substantially fill the cavity as the cavity rotates to a discharge station and removing the MST from the cavity at the discharge station. Preferably, the method can also include conveying moist smokeless tobacco to a reservoir such as a bowl above the metering device wherein the MST can fill the cavities via gravity and under action of the vacuum applied to the cavity. A charge of moist smokeless tobacco can be ejected from the cavity and delivered to a pouching apparatus through a feed tube. Also preferably, the method can include placing the charge of moist smokeless tobacco in a pouch and sealing the pouch to contain the moist smokeless tobacco therein and form an oral tobacco pouch product.
A method and apparatus for uniformly pouching high OV tobacco is provided herein that is capable of repeatedly and consistently feeding a predetermined amount of high OV tobacco, such as moist smokeless tobacco (MST) having a moisture content of at least about 35% to about 50% or more and/or doing the same with tobacco that is tacky and difficult to feed with conventional devices, because of the presence of elevated levels of humectants, flavors, or other additives in the tobacco. Also preferably, the apparatus includes a feed system for delivering a substantially accurate quantity of moist smokeless tobacco to individual pouch wrappers in the course of their manufacture. The feed system includes a rotary metering device having at least one vacuum housing which applies a slight vacuum to cavities in a metering disk to draw a uniform amount of MST into each cavity. The vacuum is not applied at a discharge station where MST is sequentially ejected from the cavities into a feed tube for delivery of predetermined portions to the pouching apparatus at the discharge station.
As used herein, the term “moist smokeless tobacco” (“MST”) refers to loose, fibrous leaf tobacco that is optionally fermented and/or optionally flavored. Preferably, the MST includes a blend of tobaccos that are cut, optionally fermented, optionally pasteurized, and/or optionally flavored. With practice of teachings herein, the MST can be fed into pouches without being dried and/or rewetted so as to substantially avoid altering the flavor and/or organoleptic properties of the MST after processing and placement in pouched products for oral use. Preferably, the MST is in the form of fine cut, loose tobacco fibers having short strands ranging in length from about 0.2 mm to about 15 mm (e.g., about 0.2 mm to about 12 mm, about 0.5 mm to about 10 mm, about 1.0 mm to about 8 mm, about 2.0 mm to about 6.0 mm, or about 3.0 mm to about 5.0 mm) and having a width of about 0.2 mm to about 2.5 mm (e.g., about 0.2 mm to about 2.0 mm, about 0.5 mm to about 1.5 mm, or about 0.75 mm to about 1.0 mm).
As used herein, the term “fermented” refers to the transformation of a material (such as tobacco) using one or more microorganisms, such as bacteria.
As used herein, the value of “oven volatiles” or “OV” is determined by placing a weighed sample of moist botanical material in an air-circulating oven and maintaining the sample in the oven, at a temperature of 100° C., for a period of three hours, after which the sample is again weighed. The difference in the two weight values expressed as a percentage of the original weight is defined as “oven volatiles” or “OV.” Oven volatiles include water and anything that boils at a temperature of less than about 100° C.
In a preferred embodiment, an apparatus for pouching moist smokeless tobacco includes a feed system for accurately, consistently, and repetitively dosing or dispensing a predetermined quantity of MST to a pouching apparatus, such as the pouching apparatus sourced from Merz Verpackungsmaschinen GmbH, Lich, Germany, described in commonly assigned U.S. Patent Application Publication No. 2007/0261707, filed May 2, 2006, the entire content of which is incorporated herein by reference thereto. In the preferred embodiment, the pouching apparatus forms individual pouches, places a predetermined quantity of MST in each pouch, and forms at least one seal to contain the MST within the pouch so as to form an oral tobacco pouch product.
In the preferred embodiment, the apparatus includes a feed system that is designed to accurately dose MST so that a predetermined amount (charge) of MST is delivered to the pouching apparatus for placement in a pouch. Preferably, the feed system includes a hopper for containing or holding a supply of MST prior to conveyance to the rotary metering device. In the preferred embodiment, the tobacco feed drive is connected to a controller, which operates the tobacco feed drive.
As shown in
In the preferred embodiment, the metering disk 12 includes a plurality of vertically extending through holes. Also preferably, the plurality of vertically extending through holes define cavities 14 within the metering disk 12. For example, the metering disk 12 can include eight substantially cylindrical cavities 14 therein. Preferably, each cavity 14 is designed to hold a predetermined amount of MST.
Also preferably, the metering disk 12 overlies and is connected to a rotatable lower disk 18, which rotates in unison with the metering disk 12. Preferably, through holes extend through the lower disk 18 and are aligned with the through holes in the metering disk 12. A series of pins 38 (shown in
As shown in
In the preferred embodiment, the pins also include the screen 36 at the top of each pin 38, a shoulder 34, and a interior threading at the end 52 for receiving a bolt. In operation, each pin 38 is fixed to the lower disk 18 and extends into the aligned through opening in the metering disk 12. Preferably, the pins 38 can be moved vertically within the metering disk 12 to adjust the volume of the cavities 14 via the location of the screen 36, which forms the bottom of each of the cavities 14. Also preferably, each pin 38 is connected to the lower disk 18 by a bolt 70 (shown in
Also preferably, to adjust the location of the screens 36 the metering disk 12 can be moved vertically in relation to the lower disk 18 by adjusting a shaft 68 via a knob 40, which raises and lowers the metering disk 12 in relation to the lower disk 18. By adjusting the distance between the lower disk 18 and the metering disk 12, the cavity 14 fill volume 32 can be adjusted as the position of the screen 36 moves vertically within the through holes in the metering disk 12. Thus, by moving the disks 12, 18 farther apart, the fill volume 32 can be increased while moving the disks 12, 18 closer together will decrease the fill volume 32. Preferably, the drive shaft 68 is at the center axis of each of the lower disk 18 and the metering disk 12.
Preferably, the rotary metering device also includes at least one vacuum housing. In the preferred embodiment, two vacuum housings 16, 17 (shown in
In the preferred embodiment, as shown in
As shown in
Preferably, the feed tube 58 comprises at least one pressure release hole 60 and a rotatable closure ring 62 having an aperture to adjust the size of the opening and closure of the pressure release hole 60. The pressure relief hole 60 is opened incrementally if the MST is found to clump in the pouch until it is found that the MST is more uniformly distributed within the pouch. Preferably, the pressure release hole 60 is about ⅛ inch in diameter.
In the preferred embodiment, as discussed above, gaps 62, 76 may lie between the vacuum housings 16, 17. The gaps 62, 76 are positioned such that vacuum pressure is not applied when each cavity 14 is positioned adjacent the gaps 62, 76. Thus, the MST is allowed to relax between applications of vacuum as the bowl 100 rotates through the gap 62 so as to allow for substantially uniformly filled cavities. The interruption of vacuum is believed to help prevent the MST from being delivered to a pouch in an overly compacted condition.
In operation, tobacco of high moisture content is loaded into the bowl 100 which undergoes rotation together with the metering disk 12 and the lower disk 18. As an empty metering cavity 14 is rotated beyond the discharge station (position) 72, vacuum is communicated to the metering cavity 14 as it rotates through the angular positions in communication with vacuum applied by the vacuum housings 16.
Referring now to
Although it is preferred to use two vacuum housings 16, 17, a single vacuum housings 16 might be employed instead. The use of two (2) vacuum housings 16, 17 facilitates placement and removal of the vacuum housings 16, 17 for cleaning or other purposes.
In a preferred embodiment, a method of pouching moist smokeless tobacco material includes loading MST into a cavity in a rotatable metering disk, applying a vacuum to each cavity so as to substantially fill the cavity as the cavity rotates to a discharge station, and removing the MST from the cavity at the discharge station. Preferably, at the discharge station, the quantity of moist smokeless tobacco is ejected from the cavity through a funnel leading to a feed tube. Preferably, the method also includes conveying the moist smokeless tobacco to a reservoir above the metering disk using a tobacco feed drive system. In the preferred embodiment, the method can also include delivering the predetermined quantity of moist smokeless tobacco (MST) to a pouching apparatus using a feed tube. Moreover, the method can include placing the predetermined quantity of moist smokeless tobacco in a pouch and sealing the pouch to contain the predetermined quantity of moist smokeless tobacco therein and form a tobacco pouch product for oral use.
The pouch forming operations can be executed by feeding a ribbon of porous outer web material through a poucher machine, such as those manufactured by Merz Verpackungsmaschinen GmbH, Lich, Germany. Such systems typically include a folding horn or shoe, a cutter and a feeder, which cooperate to repetitively fold the ribbon of porous outer web into a tube, close-off and seal an end portion of the tube, feed a measured amount of MST into the closed-off tube to create a filled portion of the tube and seal and sever the filled portion of the tube to repetitively form individual pouch products.
The disclosed embodiment is particularly suited for dispensing botanical material of high moisture content such as MST tobacco of 35% to about 50% moisture of more. The tacky nature of such materials requires the application of vacuum on the metering cavities to achieve consistent loading of the cavities because gravity alone is not sufficient. However, too much vacuum will tend to cause the botanical material to stick to the screen 36 and interferes with proper functioning of the feeder.
Additionally, such material when discharged into the funnel 56 tends to clump together to form a bolus instead of entraining with the pulse of compressed air as does a drier material. To counteract this tendency, pressure is partially relieved at a location along the feed tube via a partial or complete opening of the hole 60. The tendency of the material to form a bolus is reduced and the material is more uniformly distributed along the pouch.
As used herein, the term “about” when used in conjunction with a stated numerical value or range denotes somewhat more or somewhat less than the stated value or range, to within a range of ±10% of that stated.
In this specification the words “generally” and “substantially” are sometimes used. When used with geometric terms, the words “generally” and “substantially” are intended to encompass not only features which meet the strict definitions but also features which fairly approximate the strict definitions.
While the foregoing describes in detail a preferred apparatus and methods for pouching moist smokeless tobacco with reference to a specific embodiment thereof, it will be apparent to one skilled in the art that various changes and modifications may be made to apparatus and equivalent methods may be employed, which do not materially depart from the spirit and scope of the foregoing description. Accordingly, all such changes, modifications, and equivalents that fall within the spirit and scope of the appended claims are intended to be encompassed thereby.
This application is a continuation application of U.S. application Ser. No. 13/071,959 entitled METHOD AND APPARATUS FOR POUCHING TOBACCO HAVING A HIGH MOISTURE CONTENT, filed Mar. 25, 2011 which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 61/318,212, filed on Mar. 26, 2010, the entire content of each is incorporated herein by reference thereto.
Number | Date | Country | |
---|---|---|---|
61318212 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13071959 | Mar 2011 | US |
Child | 14100599 | US |