1. Field
The present invention relates generally to communication, and more specifically to power control in a wireless communication system.
2. Background
Increasing demand for wireless data transmission and the expansion of services available via wireless communication technology have led to the development of systems capable of handling voice and data services. One spread spectrum system designed to handle the various requirements of these two services is a Code Division Multiple Access, CDMA, system referred to as cdma2000, which is specified in “TIA/EIA/IS-2000 Standards for CDMA2000 Spread Spectrum Systems.”
As the amount of data transmitted and the number of transmissions increase, the limited bandwidth available for radio transmissions becomes a critical resource. There is a need, therefore, for an efficient and accurate method of transmitting information in a communication system that optimizes use of available bandwidth.
Embodiments disclosed herein address the above stated needs by a remote station apparatus having a link quality estimation unit operative to generate a link quality estimate in response to a first power control instruction received on a common channel, and a power control unit coupled to the link quality estimation unit, the power control unit operative to generate a second power control instruction in response to the link quality estimate.
According to an alternate aspect, a base station apparatus includes a decoder, and a determination unit coupled to the decoder, the determination operative to determine a power control instruction for base station transmission on a common channel, and an adjustment unit coupled to the determination unit, the adjustment unit operative to adjust a power level of the power control instruction.
According to still another aspect, a base station apparatus includes a control processor for power control of transmission of power control instructions on a common channel, and an amplifier operative to adjust a power level of the power control instructions.
In one aspect, a wireless communication system includes a first power control unit operative to transmit reverse link power control instructions on a common channel, and a second power control unit operative to adjust transmission power of the reverse link power control instructions in response to forward link power control instructions received on a reverse link.
In another aspect, a method for power control in a wireless apparatus operative in a communication system having a forward link and a reverse link, the system transmitting power control bits on a forward link common channel, includes measuring a SNR of at least one power control bit for controlling a reverse link, and determining a power control decision for the forward link based on the SNR.
In still another aspect, a method for power control in a wireless communication system, the system having a forward link and a reverse link, the system transmitting power control instructions on a forward link common channel, includes determining a first power control instruction for control of the reverse link, in response to receiving a second power control instruction on the reverse link, the second power control instruction for control of the forward link, determining a first transmission power level, and transmitting the first power control instruction at the first transmission power level on the common channel.
In yet another aspect, a method for power control in a wireless communication system, the system having a forward link and a reverse link, the system transmitting power control instructions on a forward link common channel, includes generating a reverse link power control instruction, generating a forward link power control instruction, and adjusting a power level for transmission of the forward link power control instruction according to the reverse link power control instruction.
The word “exemplary” is used exclusively herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
In a spread-spectrum wireless communication system, such as a cdma2000 system, multiple users transmit to a transceiver, often a base station, in the same bandwidth at the same time. The base station may be any data device that communicates through a wireless channel or through a wired channel, for example using fiber optic or coaxial cables. A user may be any of a variety of devices including but not limited to a PC card, a compact flash, an external or internal modem, or a wireless or a wireline phone. A user is also referred to as a remote station. The communication link through which the user transmits signals to the transceiver is called a Reverse Link, RL. The communication link through which a transceiver sends signals to a user is called a Forward Link, FL. As each user transmits to and receives from the base station, other users are concurrently communicating with the base station. Each user's transmissions on the FL and/or the RL introduces interference to other users. To overcome interference in the received signals, a demodulator seeks to maintain a sufficient ratio of bit energy to interference power spectral density, Eb/N0, in order to demodulate the signal at an acceptable probability of error. Power Control, PC, is a process that adjusts the transmitter power of one or both of the Forward Link, FL, and the Reverse Link, RL, to satisfy a given error criteria. Ideally, the power control process adjusts the transmitter power(s) to achieve at least the minimum required Eb/N0 at the designated receiver. Still further, it is desirable that no transmitter uses more than the minimum Eb/N0. This ensures that any benefit to one user achieved through the power control process is not at the unnecessary expense of any other user.
For clarity PC information sent via the FL will be referred to as “FL PC commands” and PC information sent via the RL will be referred to as “RL PC commands.” The FL PC commands provide PC information for control of the RL transmit power. The RL PC commands provide PC information for control of the FL transmit power.
In a spread-spectrum system, such as a CDMA system, performance of the system is interference-limited. The capacity of the system and the quality of the system are, therefore, limited by the amount of interference power present in a transmission. Capacity is defined as the total number of simultaneous users the system can support, and quality as the condition of the communication link as perceived by the receiver. Power control impacts the capacity of the system by ensuring that each transmitter only introduces a minimal amount of interference to other users and thus increases “processing gain.” Processing gain is the ratio of the transmission bandwidth, W, to the data rate, R. A quality measure of the transmission link may be defined as the ratio of Eb/N0 to W/R, corresponding to the Signal-to-Noise Ratio, SNR. Processing gain overcomes a finite amount of interference from other users, i.e., total noise. System capacity is, therefore, proportional to processing gain and SNR.
The wired subsystem may include but is not limited to other modules such as an instrumentation unit, a video unit, etc. The wireless subsystem includes the base station subsystem, which involves the Mobile Switching Center, MSC 28, the Base Station Controller, BSC 30, the Base Transceiver Station(s), BTS(s) 32, 34, and the Mobile Station(s), MS(s) 36, 38. The MSC 28 is the interface between the wireless subsystem and the wired subsystem. It is a switch that talks to a variety of wireless apparatus. The BSC 30 is the control and management system for one or more BTS(s) 32, 34. The BSC 30 exchanges messages with the BTS(s) 32, 34 and the MSC 28. Each of the BTS(s) 32, 34 consist of one or more transceivers placed at a single location. Each of the BTS(s) 32, 34 terminates the radio path on the network side. The BTS(s) 32, 34 may be in co-located with BSC 30 or may be independently located.
The system 20 includes radio air interface physical channels 40, 42 between the BTS(s) 32, 34 and the MS(s) 36, 38. The physical channels 40, 42 are communication paths described in terms of the digital coding and RF characteristics. According to one embodiment, in addition to the physical channels 40, 42, the system 20 incorporates logical channels, such as that illustrated in
As discussed hereinabove, a FL is defined as a communication link for transmissions from one of the BTS(s) 32, 34 to one of the MS(s) 36, 38. An RL is defined as a communication link for transmissions from one of the MS(s) 36, 38 to one of the BTS(s) 32, 34. According to one embodiment, power control within system 20 includes controlling transmit power for both the RL and the FL. Multiple power control mechanisms may be applied to the FL and RL in system 20, including reverse open loop power control, reverse closed loop power control, forward closed loop power control, etc. Reverse open loop power control adjusts the initial access channel transmission power of MS(s) 36, 38, and compensates for variations in path loss attenuation of the RL. The RL uses two types of code channels: traffic channel(s), and access channel(s). FL and RL traffic channels typically include a Fundamental Code Channel, FCCH, and multiple Supplemental Code Channels, SCCHs. The FCCH serves as the primary channel for all traffic communications in the FL and RL. In one embodiment, each FCCH is associated with an instance of a spreading code, such as a Walsh code. RL Access Channel(s), RACH(s), are each associated with a Paging Channel, PCH.
According to one embodiment, within system 20, closed loop power control compensates for fading environments of both the FL and RL. During closed loop power control, the receiver measures the incoming Eb/N0 and provides feedback to the transmitter instructing either an increase or decrease in transmit power. In one embodiment the change is made in 1 dB steps. Alternate embodiments may employ alternate values of a constant value step, or may implement dynamic step size values, e.g., as a function of power control history. Still other embodiments may vary the step size based on performance and/or requirements of the system 20. Power control of the RL is performed by the BTS(s) 32, 34, wherein a measurement is made of received signals and compared to a threshold. A decision is then made as to whether the power received is above or below threshold. The decision is transmitted as FL PC command to a given user, such as MS(s) 36, 38, respectively. In response to the command, the RL transmit power is adjusted. During closed loop power control of the RL, FL PC commands may be punctured into the FL transmission periodically to provide the feedback to the MS(s) 36, 38. Puncturing replaces transmission signals with FL PC commands. The puncturing may be done within each frame, wherein a transmission is broken into frames of a given time duration.
The system 20 is designed for transmission of voice information, data information, and/or both voice and data.
For power control of the FL, RL PC commands are provided to the BTS(s) 32, 34 from the MS(s), 36, 38, respectively. Closed loop power control of the FL counts the number of bad frames received during a given period and sends a report to the BTS(s) 32, 34. The message may be sent periodically, or when the error rate reaches a threshold, wherein the threshold is set by the system 20. In one embodiment, each frame transmitted by the MS(s) 36, 38 contains an Erasure Indicator Bit (EIB) that is set to indicate an erasure. The FL power is adjusted based on the EIB history.
Closed loop power control consists of two feedback loops: an inner loop and an outer loop. The outer loop measures the frame error rate and periodically adjusts a setpoint up or down to maintain the target frame error rate. If the frame error rate is too high, the setpoint is increased and if the frame error rate is too low, the setpoint is decreased. The inner loop measures the received signal level and compares it to the setpoint. Power control commands are then sent to increase or decrease power as needed to keep the received signal level close to the setpoint. The two loops operate in concert to ensure sufficient signal strength to demodulate the signal at an acceptable probability of error and to minimize the interference to other users.
The FL includes Common Channels, including but not limited to the Pilot Channel(s), the Common Control Channel, CCH, the Broadcast Channel, BCH, and the Common Power Control Channel, CPCCH. The CCH carries mobile directed messages for compatible mobiles. The BCH carries broadcast messages for compatible mobiles, including overhead messages. The CPCCH is used to send Power Control, PC, bits to the mobile so that ACH messages may be sent under power control.
Most multiple access wireless communication systems, such as spread spectrum systems, capable of voice and data transmissions seek to optimize the physical channel usage in order to serve high data rates to the users. Such systems may employ a low rate channel, referred to as a Fundamental Channel, FCH. The FCH is used for voice and signaling transmissions. Each FCH is associated with multiple high rate channels, referred to as Supplemental Channels. The Supplemental Channels are used for data transmissions. While the FCH use little energy, each FCH requires a dedicated Walsh code, resulting in a large aggregate energy over multiple FCH. For data communications the FCH are idle much of the time. In this condition, the FCH waste Walsh codes and power that could be used to increase the capacity and performance of the system. To avoid the waste, one embodiment assigns several FCH(s) to one or more common channels, shared by all users. The Walsh code usage, or Walsh space, is reduced to one Walsh code, and the power consumed by otherwise idle FCH(s) is reduced.
As power control instructions were previously transmitted on the individually assigned FCH(s), the introduction of the shared common channels brought about the use of a Common Power Control Channel, CPCCH. The CPCCH is used for power control of the RL, wherein different users share the channel in a time division manner. FL PC commands are sent via the CPCCH.
In the system 20 of
It is often desirable to continue power control of the FL, even when no data is transmitted. For example, if only a few frames of data are to be transmitted on the Supplemental Channel, updating power control of the FL enhances the transmission of the Supplemental Channel allowing transmission with the required power and saving power. Additionally, for data transmissions, continuing the power control of the FL provides the data scheduler with information regarding the quality of the link at a given time. This information allows the scheduler to take advantage of the channel using a given scheduling scheme.
Further, it is desirable for the mobile station to ascertain the response of the base station to RL PC commands. Using a shared common channel, the mobile station may not see the effect of the RL PC commands. For example, the mobile station may know the Eb/N0 of the FL subsequent to a series of RL PC commands. The RL PC commands may have been corrupted at the base station receiver. Ideally, the FL includes a power indication that echoes the RL PC commands received at the base station. Using the FCH, the mobile station was able to measure the FCH for such feedback. In one embodiment using the shared common channel, the feedback is provided as a function of the power level of RL PC commands.
When the base station adjusts the power level of the FL PC command in response to RL PC command, such as according to the method 110 of
Continuing with
The method 100 is applicable to a variety of systems and scenarios. For example, the method 100 may be applied to data transmissions in which the base station receives more data from mobile stations than is transmitted on the FL. In one embodiment, a wireless banking system incorporates the method 100 of
The receive circuitry 202 is coupled to SNR estimator 204 operative to estimate the Eb/N0 of the received signals. The SNR estimator 204 generates an estimate of Eb/N0 and provides the estimate to a threshold comparator 206. The threshold comparator 206 compares the Eb/N0 estimate to a predetermined or precalculated threshold value, referred to as a setpoint. The setpoint is monitored and updated by a setpoint adjustment unit 212 coupled to the threshold comparator 206. As discussed hereinabove, the setpoint adjustment is a part of the outer loop of power control and is a function of the frame error rate. There are many decision criteria and methods for performing the operation of setpoint adjustment unit 212. The result of the comparison of threshold comparator 206 is provided to PC bit decision unit 208 to determine a next power control instruction to send to the base station. By determining the quality of the FL by way of the FL PC bits received on the CPCCH, the wireless apparatus 200 is able to provide accurate power control instructions to the base station.
The PC bit decision is then provided to generation unit 210 to generate the RL PC bit or RL PC message, for transmission on the RL. The generation unit 210 is coupled to amplifier 214, which receives the RL PC bit from generation unit 210. The amplifier 214 transmits the RL PC bit to transmit circuitry 216. The amplification level is provided by power control of the RL as a result of instructions from the base station. The signal information is provided from the receive circuitry 202 to a decoder 218 for extraction of the power control instruction for the RL. The decoder 218 decodes the information received on the CPCCH and determines the corresponding FL PC command. The FL PC command is then provided to an adjustment unit 222 that adjusts the transmit power of the RL. The adjustment is provided as a control input to amplifier 214, which applies the appropriate amplification factor to data and control information for transmission on the RL. The amplifier 214 also applies the power control to RL PC commands for transmission.
One embodiment of a base station 300 compatible with the wireless apparatus 200 is illustrated in
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
5507018 | Seppala | Apr 1996 | A |
5539728 | Gaiani et al. | Jul 1996 | A |
5542107 | Kay | Jul 1996 | A |
5548812 | Padovani et al. | Aug 1996 | A |
5566165 | Sawahashi et al. | Oct 1996 | A |
5740168 | Nakamura et al. | Apr 1998 | A |
5799005 | Soliman | Aug 1998 | A |
5809422 | Raleigh et al. | Sep 1998 | A |
5812938 | Gilhousen et al. | Sep 1998 | A |
5828659 | Teder et al. | Oct 1998 | A |
5881368 | Grob et al. | Mar 1999 | A |
5884196 | Lekven et al. | Mar 1999 | A |
5887023 | Mabuchi | Mar 1999 | A |
5893035 | Chen | Apr 1999 | A |
5943362 | Saito | Aug 1999 | A |
5982760 | Chen | Nov 1999 | A |
6014565 | Bonta | Jan 2000 | A |
RE36591 | Hayashi et al. | Feb 2000 | E |
6034971 | Love et al. | Mar 2000 | A |
6035196 | Hengeveld et al. | Mar 2000 | A |
6038220 | Kang et al. | Mar 2000 | A |
6044070 | Valentine et al. | Mar 2000 | A |
6047015 | Watanabe et al. | Apr 2000 | A |
6058107 | Love et al. | May 2000 | A |
6067458 | Chen | May 2000 | A |
6070085 | Bender et al. | May 2000 | A |
6072778 | Labedz et al. | Jun 2000 | A |
6072990 | Agrawal et al. | Jun 2000 | A |
6075974 | Saints et al. | Jun 2000 | A |
6085106 | Sendonaris et al. | Jul 2000 | A |
6112080 | Anderson et al. | Aug 2000 | A |
6137789 | Honkasalo | Oct 2000 | A |
6144646 | Bohlmann et al. | Nov 2000 | A |
6148216 | Osaki | Nov 2000 | A |
6151512 | Chheda et al. | Nov 2000 | A |
6160999 | Chheda et al. | Dec 2000 | A |
6233439 | Jalali | May 2001 | B1 |
6256301 | Tiedemann et al. | Jul 2001 | B1 |
6269239 | Hashem et al. | Jul 2001 | B1 |
6330456 | Hashem et al. | Dec 2001 | B1 |
6396867 | Tiedemann et al. | May 2002 | B1 |
6405021 | Hamabe | Jun 2002 | B1 |
6434367 | Kumar et al. | Aug 2002 | B1 |
6483816 | Tsunehara et al. | Nov 2002 | B2 |
6498785 | Derryberry et al. | Dec 2002 | B1 |
6512931 | Kim et al. | Jan 2003 | B1 |
6539234 | Hiramatsu et al. | Mar 2003 | B1 |
6603773 | Laakso et al. | Aug 2003 | B2 |
6615053 | Lee et al. | Sep 2003 | B1 |
6636746 | Hashem et al. | Oct 2003 | B1 |
6788937 | Willenegger et al. | Sep 2004 | B1 |
20020105929 | Chen et al. | Aug 2002 | A1 |
20030123413 | Moon et al. | Jul 2003 | A1 |
20040066772 | Moon et al. | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
1200008 | Nov 1998 | CN |
1130963 | Mar 2002 | CN |
1126930 | Apr 2002 | CN |
1134913 | Sep 2001 | EP |
8032513 | Feb 1996 | JP |
10-173594 | Jun 1998 | JP |
11-331072 | Nov 1999 | JP |
11-340909 | Dec 1999 | JP |
2000286793 | Oct 2000 | JP |
2000349704 | Dec 2000 | JP |
9604718 | Feb 1996 | WO |
9818212 | Apr 1998 | WO |
9849785 | Nov 1998 | WO |
WO9849785 | Nov 1998 | WO |
9949595 | Sep 1999 | WO |
9953630 | Oct 1999 | WO |
WO 9953630 | Oct 1999 | WO |
9956405 | Nov 1999 | WO |
WO0027045 | May 2000 | WO |
0031893 | Jun 2000 | WO |
0036762 | Jun 2000 | WO |
WO 0031893 | Jun 2000 | WO |
WO 0036762 | Jun 2000 | WO |
0054430 | Sep 2000 | WO |
WO0054430 | Sep 2000 | WO |
WO0108323 | Feb 2001 | WO |
0265663 | Feb 2002 | WO |
0223764 | Mar 2002 | WO |
0243273 | May 2002 | WO |
Entry |
---|
3GPP TS.25.214 V7.20 (Sep. 06). |
International Search Report-PCT-US02-03729-International Search Authority—European Patent Office Sep. 16, 2002. |
European Search Report—EP08011856—Search Authority—The Hague—Jul. 30, 2008. |
European Search Opinion—EP08011856—Search Authority—The Hague—Jul. 30, 2008. |
International Preliminary Report on Patentability—PCT/US2002/003729, International Search Authority—IPEA/US—Alexandria, Virginia—Nov. 9, 2004. |
European Search Report—EP08011855, Search Authority—The Hague—Jul. 22, 2008. |
European Search Opinion- EP08011855, Search Authority—The Hague—Jul. 22, 2008. |
Translation of Office Action in Japanese application 2002-564856 corresponding to U.S. Appl. No. 09/782,751, citing JP11331072, WO9949595, JP10173594, JP11340909 and JP2000286793 dated Apr. 11, 2002. |
Number | Date | Country | |
---|---|---|---|
20020111183 A1 | Aug 2002 | US |