The present invention relates to a method and apparatus for producing energy and more particularly, the present invention contains enhancements in segregated and integrated well loop circuits for generating geothermal power.
A wide variety of methods have been proposed regarding heat extraction from geological formations and the prior art is quite extensive in this area.
Halff, in U.S. Pat. No. 6,301,894, issued Oct. 16, 2001 teaches a general flash geothermal plant within a closed system. The patent is focused on benefits related to generator location, water conservation and purity and efficiency with multiple loops. The teachings relate to a flash power plant on surface with water/steam as a working fluid. This technology is limited since it requires much higher temperatures and does not work in a low temperature, closed loop setting.
There are several methods for generating power from a closed-loop geothermal system, namely with an integrated power cycle or with a separate segregated (binary) power cycle such as Organic Rankine Cycle, Kalina Cycle, Supercritical Carbon Dioxide Cycle, or Carbon Carrier Cycle.
In respect of the segregated system, this has been applied in traditional open geothermal systems, where the cooling temperature of the segregated cycle is limited by the reservoir brine properties. The segregated method in conjunction with a closed-loop system is briefly taught in the prior art, examples of which are United States Patent Publication, 20110048005, McHargue, published Mar. 3, 2001 and Mickelson, in United States Patent Publication 20070245729, published Oct. 25, 2007, with no discussion on how to increase net efficiency.
McHargue also teaches an integrated closed loop system with variation in the production fluid choice to address temperature fluctuation within the formation. The text states:
“A novel aspect of this embodiment is the opportunity it affords to use a wide variety of potential fluids as the production fluid as well as the ability to rapidly and easily change production fluids as subterranean temperatures change or as conditions in the power plant change. The user has the option to use fluids or gasses other than water as production fluids in order to optimize the thermal properties of the production fluid to the local thermal conditions of the earth's subsurface, and the thermal requirements of the power plant. For example, one may choose to utilize supercritical fluids (U. S. Pat. No. 6,668,554 by D. W. Brown, 2003) or any hydrocarbon or refrigerant as the production fluid to feed a power plant. The potential to use fluids or gasses other than water as the production fluid will save money by providing the potential to drill cooler subterranean rocks at shallower depths where porosity and permeability are higher, and by reducing the need to artificially fracture the subterranean rock formations.”
There is no discussion of multilateral wellbores sealed without the use of casing. Additionally, no discussion is provided on the selection of working fluid properties to increase efficiency.
Mickelson teaches a multiple leg geothermal recovery system. The publication expresses a concern about geo-fluid loss and thus temperature loss and does not provide any teachings to seal the wellbores without casing or to mitigate the east-west problems associated with directional drilling, i.e. magnetic interference, inter alia.
Riahi et al, in a paper entitled, Innovative Closed-Loop Geothermal Well Designs Using Water and Super Critical Carbon Dioxide as Working Fluids, from PROCEEDINGS, 42nd Workshop on Geothermal Reservoir Engineering,Stanford University, Stanford, Calif., Feb. 13-15, 2017, disclose sensitivity studies regarding injection temperature and flow rate for GSL design with water as the working fluid. The results of this segregated configuration were compared to results for the ECO2 integrated system technology under identical conditions (Oldenburg et al., 2016). The authors discovered that the systems had similar efficiencies in a basic form. The paper did not examine methods to increase efficiency of a segregated closed-loop geothermal system.
There has been a wide body of academic work around using carbon dioxide in an “enhanced geothermal system” within basement rock (below the sedimentary column). In this concept, the hot dry rock is fractured and carbon dioxide flows through the fissures within the rock itself. Several pilot projects using water (not carbon dioxide) have been implemented and suffered from unpredictability of the fracture matrix and high costs. Further, since these are not truly closed-loop systems, there is a requirement for continuous replenishment of carbon dioxide which is prohibitively expensive.
In light of the prior art activity, there still remains areas in closed loop geothermal technology which can be improved on. As referenced generally above, many of the issues can be solved by using multilateral wellbores sealed without casing, enhancements to a segregated power cycle, and an integrated power cycle with a working fluid containing a mixture of polar and non-polar molecules which undergo a phase-change in the lateral portion of the well-loop.
The present invention unifies thermodynamic principles, power generation and well loop technology with fluid heat exchange in a unique manner to maximize power generation in a variety of conditions. Specifically, loop properties and features are optimized for maximum efficiency. Applicability is this is noted in segregated and non segregated systems. Improvements are further provided in multilateral systems with sealing of the loop without casing and working fluids are provided which complement the other improvements.
One object of one embodiment of the present invention is to provide unique protocol to render closed loop geothermal energy recovery energy efficient for widespread implementation.
This can be achieved by using a segregated power cycle with multilateral wellbores sealed without casing and sub-zero cooling and further with friction reducers added to the primary working fluid. In addition, as a further aspect, an integrated power cycle with multilateral wellbores sealed without casing can be employed where the working fluid is a mixture of polar and non-polar molecules which undergoes a phase change in the lateral portion of the well loop.
A further object of one embodiment of the present invention is to provide a method of generating power, comprising:
A significant benefit of the technology discussed herein relates to the fact that thermodynamic efficiency is enhanced in subzero ° C. ambient conditions, as the second working fluid is cooled to subzero temperatures prior to engaging in heat transfer with the first working fluid. Traditional geothermal power systems typically use reservoir brine (water) as a working fluid and accordingly, absent the technology disclosed herein, could not be effectively employed in cooler ambient conditions. Reservoir brine typically has a freezing point similar to water and precipitates scale as temperature is lowered.
Modification of the first working fluid facilitates operation in lower subsurface temperatures and may be dynamically altered during operation to accommodate changing environmental conditions.
A further object of one embodiment of the present invention is to provide a method of generating power in a sealed well loop absent casing having an inlet well and an outlet well and at least one lateral conduit within a geological formation and power generating apparatus in operative communication with said well loop, comprising:
The absence of casing clearly has a significant impact on costs as an entire unit operation is eliminated from the implementation. Further, this allows the possibility for the wellbore to be lined during drilling obviating formation permeability issues. The lining may be conditioned with thermally conductive compounds to augment thermal conductivity for maximum energy transfer from the formation to the working fluid. For clarity, the lateral segments or conduits with not have casing, since these are effectively acting as thermal pathways for direct interaction with the working fluid. The inlet and outlet sections will include conventional arrangements for strength and integrity.
In the integrated system, a plurality of lateral segments or conduits sealed without the use of casing may be connected commonly to the inlet and outlet for enhanced thermal recovery. Individual throttling is achievable for the lateral segments or legs.
Such fluids disclosed herein have particular use in elevating the efficiency of an integrated closed-loop geothermal system at low depths (<1500 m), supra heretofore not recognized. It has been found that the recognition of fluid dynamics in combination with the advancements briefly discussed herein, render the methods and apparatus particularly effective in a wide temperature range, but also create effective use in a host of geological formations.
It has also been found that marked efficiencies are realizable by incorporating drag reducing agents in the working fluid(s) that do not degrade under high pressure, high temperature, or high shear rates. This reduces the parasitic pumping load of the system and enables higher net efficiency. The drag reducing agents may comprise surfactants. Suitable examples include Arquad® 12-50, Arquad® S-50, Arquad® R-50, Ethoquad® C/12, Ethoquad® O/12, Ethoquad® O/13, Ethoquad® R/12 or combinations. Other suitable congeners will apparent to one skilled in the art.
In respect of immediate advantages attributable to the technology herein, the following are apparent:
Having thus generally described the invention, reference will now be made to the accompanying drawings.
Similar numerals used in the Figures denote similar elements.
As a preface, reference to loop cycle, horizontal segments, multilaterals, horizontal segments, will be understood to mean that the closed loop includes at least one horizontally oriented section which is in contact with the surrounding formation from which heat is transferred. The inlet, outlet and remaining section form the completed loop. The loop circuit may include a plurality of horizontal wells.
In
In the Figure, the well loop 12 comprises a closed loop system having an inlet well 14 and an outlet well 16, typically disposed within a geological formation, which may be, for example, a geothermal formation, low permeability formation, sedimentary formation, volcanic formation or “basement’ formation which is more appropriately described as crystalline rock occurring beneath the sedimentary basin (none being shown here—reference to
The well loop 12 and power cycle 10 are in thermal contact by heat exchanger 18 which recovers heat from the working fluid circulating in the loop circuit 20 in the formation which is subsequently used to generate power with generator (not shown) in power generation operation 22 in cycle 10. As an example, the temperature of the formation may be in the range of between 80° C. and 150° C. As an effective alternative, power generation operation 22, may be supplanted with a heat collection operation to allow for sale/distribution of heat for other uses/users.
In the arrangement illustrated, two distinct working fluids are used. By modifying the working fluid used within the well loop, operation of the system is possible at low temperatures.
The existing power cycles supra require a water-based fluid within the well loop itself which absorbs heat from the rock and then transfers this heat into the secondary power cycle working fluid in a heat exchanger. In conventional geothermal projects, the water chemistry is set by the reservoir conditions. In most cases the water is a heavy brine with high total dissolved solids (TDS) content above 10,000 ppm that causes two problems, namely corrosion and scaling. Corrosion issues in the downhole pipes, tools, and within the surface facility and surface flow lines are common and expensive to manage. In addition, there is usually significant silica or other precipitates in solution at the reservoir conditions. When the brine is brought to surface and cooled in the primary heat exchanger (to transfer energy into the power cycle's working fluid), silica or other minerals precipitate out of solution and adhere to the internal surfaces of pipes, valves, heat exchangers, etc. These scales are very expensive to manage and usually set a limit on how much heat can be extracted from the source water.
As such, currently available power generation modules usually limit the input temperature of the working fluid to above 0° C. in the primary heat exchanger. A higher turbine pressure ratio is enabled by dropping the working fluid temperature below zero. However, conventional geothermal projects are limited by potential freezing of the geothermal on the other side of the heat exchanger.
These limitations in present technology are traversed by implementing a binary working fluid system within a closed loop well. The working fluid in the power cycle may be modified with additives to prevent freezing at subzero ° C. temperatures. Suitable additives include supercritical carbon dioxide, anti-scaling agents, anti-corrosion agents, friction reducers, and anti-freezing chemicals, refrigerants, hydrocarbons, alcohols, organic fluids and combinations thereof.
A substantial benefit of the binary working fluid in combination with the well loop is that it is unaffected by very cold ambient temperatures and thus facilitates use of any generic power cycle (including ORC, Kalina, carbon carrier cycle) to be used to increase higher net power production when used in conjunction with a well loop as set forth in
Optional arrangements with the segregated circuit are illustrated in
Turning to
In the prior art, geothermal systems could not take advantage of the agents, since they are open systems which would require continuous purchase and injection of the agents, which is cost prohibitive. Further more, for closed systems, these recirculate fluid continuously at high shear rates, especially within the primary heat exchanger, requiring suitable drag reducing agents that do not degrade under such conditions.
It will appreciated by those skilled in the art that the dimensions are exemplary only and will vary depending on the properties of the formation, area, surface anomalies, tectonics, etc.
As will be evident, owing to advances in engineering, intrusiveness for establishing the multilateral arrangement is minimal and simplified to provide a substantial increase in surface area for the loops to contact the formation. Further, retrofit applications are possible for unused or suspended oil wells to repurpose same with negligible environmental impact. Referring back to
Having discussed the segregated circuit, reference to
The integrated well loop power cycle is a closed loop system in which the selected working fluid is circulated within the well loop and then flows into a turbine on surface as shown in
As is known, a Rankine cycle is a thermodynamic cycle where the working fluid goes through a phase change at both the upper and lower pressure of the cycle. An ethane-ammonia mixture is an ideal example of a mixture of polar and non-polar molecules employed in an integrated well-loop circuit. Due to the immiscibility of these molecules at high pressures it is possible to design a system which enables a phase change even at low geothermal temperatures (<150° C.) and high subsurface pressure. Thus, ethane-ammonia mixture enables an integrated well-loop Rankine cycle, which in many conditions has higher efficiency than prior art.
The apparatus further includes a cooling device, shown in the example as an aerial cooler 32 and turbine 34 with generator 36. The aerial cooler is used to cool the working fluid to a temperature between 1° C. and 15° C. above ambient temperature. It is also to be noted that the working fluid can be cooled to a subzero° C. temperature. Reference to
The driving mechanism in this integrated cycle is a very strong thermosiphon which arises due to the density difference between the inlet vertical well 14 and the outlet vertical well 16. The fluid is in a liquid state in the inlet well 14, heats up as it travels along the lateral section 20, exits in a predominately gas state in the outlet well 16, which creates significant pressure.
Working in concert with the integrated well loop circuit is the use of customized fluids and mixtures tailored to the wellbore layout, depth, length, and ambient temperature. The prior art only discusses the use of carbon dioxide or pure hydrocarbon fluids. With a closed-loop system such as that discussed herein, the initial cost and complexity of a fluid mixtures is only a minor factor in the overall economics. So other fluids such as refrigerants, hydrocarbons, alcohols or organic fluids, or any combinations thereof are useful.
In the Figure, the effectiveness of specific fluids and mixtures is illustrated. It is evident that there is a pronounced effect on power gain using the ethane-ammonia mixture, which is an example of a mixture of polar and non-polar molecules.
To use a single turbine and have adequate efficiency over an entire range of ambient conditions is problematic. It has been found that use of two or more turbines in series or parallel which are optimized for different ambient conditions addresses the problem. During periods of colder temperatures, control logic (not shown) automatically shifts the working fluid to the appropriate turbine to maintain high efficiency throughout the year.
In conclusion, new technology has been presented for generating power in a unique closed loop arrangement within a variety of geological formations.
Segregated loops with a binary working fluid system with improved fluids has been delineated resulting in enhanced efficiency in prior art power cycles. Integrated cycles have been shown using a single working fluid and presenting thermosiphon drive to substantially reduce or eliminate parasitic load to enhance efficiency.
Multilateral segments in the loop commonly connected to the inlet and outlet of the loop have been discussed in many terms not the least of which is the improvement to existing loop arrangements.
Finally, the integration or retrofitting of unused or suspended wells with the instant technology has been promulgated.
Number | Date | Country | |
---|---|---|---|
62588328 | Nov 2017 | US |