The present invention is directed to methods for treating bioprosthetic tissue for implantation in a patient and, more particularly, to methods for contouring and shaping biological tissue for use in connection with a bioprosthetic implant.
Minimally-invasive or percutaneous techniques for implanting bioprosthetic implants are commonly used in vascular and cardiovascular procedures. Such techniques involve the use of a delivery device, such as a catheter, to access a desired location via the patient's vasculature rather than using an open surgical approach where internal organs or tissue are exposed. The benefit of percutaneous procedures is in the ease of introducing devices into the patient without large cut downs, which can lead to long recovery times for patients.
One limitation of percutaneous procedures is the delivery profile of the bioprosthetic implant and delivery device. Because access to the desired implantation site is gained via the patient's vasculature, the delivery profile of the bioprosthetic implant and the delivery device, combined, must be sufficiently small so as to permit passage.
One method of reducing the delivery profile is to crimp the bioprosthetic implant about the delivery device. Crimping, however, may not reduce the delivery profile to a desired size due to the inherent bulk or configuration of the bioprosthetic implant. Therefore, changes are often required to the material and/or construction of the implantable bioprosthesis to permit crimping to yet smaller delivery profiles.
Replacement heart valves, for example, comprise a leaflet structure and a support structure. The leaflet structure is typically made from biological tissue, such as bovine pericardium, and the thickness of the tissue that makes up the leaflet structure limits the extent to which the heart valve can be crimped. Additionally, biological tissue will typically exhibit variations in thicknesses and these variations often produce unpredictable results with respect to the delivery profile of the crimped valves.
While the use of artificial or polymeric materials can offer a greater degree of control and flexibility to the resulting thickness of the material used for bioprosthetic implants, such materials may not always be desirable from at least a hemodynamic standpoint and may require the patient to take anticoagulants to prevent adverse effects from the interaction of the artificial material and the blood.
Another option is to remove excess portions of biological tissue so as to provide a thinner tissue having a consistent thickness throughout. The loss of tissue, however, can undesirably compromise the fiber structure and therefore the strength of the tissue. Compression of the tissue to produce a thinner tissue may be desirable. The compressed tissue, however, may spring back to its original and uneven thickness after compressive forces are released.
Therefore, what is needed are methods and devices for preparing a biological tissue adapted for a bioprosthetic implant and which reliably reduces the delivery profile for use in minimally-invasive and percutaneous procedures.
The preferred embodiments described herein are directed to methods for treating biological tissue for use in connection with an implantable bioprosthesis. The entire disclosure of U.S. Patent Pub. No. 2011/0238167, published Sep. 29, 2011, to Edwards Lifesciences, Inc. is incorporated herein by reference in its entirety.
In one embodiment, an assembly for providing a contoured biological tissue is provided. The assembly comprises a first plate and a second plate. The first plate is configured to receive a biological tissue. The second plate is configured to contact and compress the biological tissue received on the first plate. One or both of the first and second plates comprise a defined shape and a contoured area within the defined shape. The contoured area comprises at least first and second elevations to achieve at least two different thicknesses in the biological tissue upon compression thereof. One or more energy sources is associated with one or both of the first and second plates. The one or more energy sources are configured to deliver energy upon compression of the biological tissue.
In some embodiments, the contoured area comprises a continuous transition between the first and second elevations.
In some aspects, the defined shape can be one or a plurality of heart valve leaflets, having a substantially straight free edge and an arcuate cusp edge.
In some aspects, the first elevation can be located at least along the arcuate cusp edge and the second elevation can be located between the arcuate cusp edge and the substantially straight edge.
In some aspects, the second elevation can contact a portion of the substantially free edge.
In some aspects, the contoured area further comprises a third elevation located within an area defined by the second elevation. The third elevation can comprise a substantially triangular shape, one side of which can contact a portion of the substantially straight edge.
In some aspects, the first elevation can substantially surround the second elevation.
In some aspects, the first elevation further comprises one or more radial regions extending from the substantially straight free edge to the arcuate cusp edge.
In some aspects, the defined shape is a parallelogram comprising a peripheral region and a central region, the first elevation being located along at least a portion of the peripheral region and the second elevation being located in the central region.
In some aspects, the defined shape is a parallelogram in which the first elevation is located in a portion constituting about half of the parallelogram and the second elevation is located in a remaining portion of the parallelogram
In some aspects, the assembly can further comprise a spacer disposed between the first and second plates, the spacer controlling a thickness of the compressed biological tissue.
In some embodiments, one of the first and second plates comprises a blade corresponding substantially to the defined shape, and the other of the first and second plates comprises a recess configured to receive the blade.
In some embodiments, the first plate can comprise a gap region corresponding substantially to the defined shape. The assembly can also include a third plate comprising a blade corresponding substantially to the defined shape, and which is configured to pass through the gap region of the first plate. The second plate can additionally include a recess configured to receive the blade.
In some aspects, the energy delivered by the one or more energy sources is preferably one or a combination selected from the group consisting of: thermal, ultrasound, electromagnetic, vibrational, hydraulic, piezoelectric, pneumatic, and acoustic and sound energy.
In another embodiment, a method for preparing a contoured biological tissue is provided. The method comprises compressing a layer of biological tissue between two plates to reduce a thickness of at least a portion of the biological tissue, delivering energy from an energy source to at least one of the two plates during the compressing, and cutting the biological tissue into a defined shape. The biological tissue following the compressing has at least two areas of different thicknesses.
In some aspects, the biological tissue following the compressing has a continuous transition between the at least two areas of different thicknesses.
In some aspects, the method comprises cutting the biological tissue into the defined shape via a blade associated with at least one of the two plates.
In some aspects, the method can further comprise treating the biological tissue with one or more fixatives to at least partially fix the tissue before, during, and/or after the compressing.
In some embodiments, the method can further comprise immersing the biological tissue disposed between the two plates in a solution comprising at least one fixative during and/or after the compressing.
In some aspects, the method can further comprise treating the biological tissue following the compressing with a capping agent, a reducing agent, and/or a collagen preserving agent. The capping agent can comprise an amine, the reducing agent can comprise a borohydride, and/or the collagen preserving agent can comprise glycerol.
In some aspects, provided is a contoured biological tissue prepared in accordance with the aforementioned method.
Other objects, features and advantages of the described preferred embodiments will become apparent to those skilled in the art from the following detailed description. It is to be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present disclosure, are given by way of illustration and not limitation. Many changes and modifications within the scope of the present disclosure may be made without departing from the spirit thereof, and the disclosure includes all such modifications.
Illustrative embodiments of the present disclosure are described herein with reference to the accompanying drawings, in which:
Like numerals refer to like parts throughout the several views of the drawings.
Specific, non-limiting embodiments of the apparatus and methods for contouring bioprosthetic tissue will now be described with reference to the drawings. It should be understood that such embodiments are by way of example only and merely illustrative of but a small number of embodiments within the scope of the present disclosure. Various changes and modifications obvious to one skilled in the art to which the present disclosure pertains are deemed to be within the spirit, scope and contemplation of the present disclosure as further defined in the appended claims.
Either one or both of the first and second plates 110, 120 can comprise a defined shape. In the embodiment depicted in
A contoured area is provided within the defined shape 140a,b. The contoured area comprises first and second elevations 142a,b and 144a,b and a transition defined therebetween. In the embodiment depicted in
A blade 150 can additionally be provided on one of the first and second plates 110, 120. The blade 150 is depicted in
Compression of a biological tissue between the first and second plates 110, 120 results in a tissue having two different thicknesses, as indicated by A and B, and a continuous transition 158 between A and B. A continuous transition, as used herein, can be broadly understood to mean a transition which is curved or devoid of any sharply angled surfaces which are 90 degrees or less or, alternatively, devoid of any angled surfaces. The embodiments depicted in
Static compression is not believed to be sufficient to restructure the collagen fiber density and orientation to produce a tissue that is uniform and that maintains the reduced thickness in the compressed state. Accordingly, an energy source 130 is depicted as being coupled to the first plate 110. It is understood that the energy source 130 can be connected to either one or both of the first and second plates 110, 120. The energy source 130 is configured to deliver one or a combination of thermal, ultrasound, electromagnetic, vibrational, hydraulic, piezoelectric, pneumatic, and acoustic and sound energy. The provision of energy to the biological tissue during compression is believed to facilitate a more effective collagen restructuring, as static compression without the provision of energy is believed to produce a tissue of non-uniform thickness over the compressed sample. This may be the case because the collagen fibers may not realign during static compression and thus do not become more isotropic after compression. As a more uniform tissue across a given compressed area is desired, the provision of energy during compression is believed to produce this result.
In accordance with a first aspect, the energy source 130 delivers vibrational energy to the tissue during compression. The application of directed vibrational energy during compression is believed to influence collagen fiber restructuring and also to make the collagen fiber alignment and density more uniform and predictable. While the tissue is being compressed under a high load, e.g., 1,000 lbs, vibrational energy can be sent through the tissue by one or both of the compression plates 110, 120. The vibration source can be a vibrating clamp (480,
As with all the embodiments described herein, vibrational energy, thermal energy, ultrasound energy, electromagnetic energy, hydraulic energy, piezoelectric energy, pneumatic energy, and acoustic or sound energy can also be delivered to the tissue individually, sequentially, or in any number of combinations during compression and contouring.
Thermal energy is believed to weaken bonds in the tissue and to allow it to be compressed more easily. The tissue can be cooled during or after compression to set the new thickness. The heating source can be provided in multiple ways, such as by providing heated coils within or on top of one or both of the contoured plates, or lay using a heated liquid bath.
Ultrasound transducers can also be coupled to or otherwise associated with one or both of the first and second plates, or a liquid bath. Ultrasound energy is believed to create small cavities in the tissue to help break some of the bonds in the tissue. Prolonged exposure to ultrasound energy will also increase the temperature of the tissue, making it easier to break bonds. Applying a mechanical compression load while heating and/or applying ultrasound energy to the tissue can increase compressibility and reduce rebound. Ultrasound energy can be applied to the tissue before, during and/or after the compression. In a preferred embodiment, ultrasound energy is applied at least during the compression.
Electromagnetic energy can also be provided as an energy source during compression and contouring. The electromagnetic energy can be microwave or RF or infrared and provided by a source such as an RF or microwave antenna embedded in a non-conducting plate or a printed circuit antenna insulated from the tissue itself. The electromagnetic energy can be delivered alone or in combination with any one or more of the other energy sources. In a preferred embodiment, electromagnetic energy is applied before, during and/or after the compression. In a preferred embodiment, electromagnetic energy is applied at least during the compression.
In
In another embodiment, the defined shape can be a rectilinear polygon in which about the first elevation is defined in an area constituting about half of the rectilinear polygon and the second elevation is defined on a remaining portion of the rectilinear polygon.
In
One contemplated sequence for conditioning tissue includes first cross-linking the tissue (e.g., bovine pericardium) with a glutaraldehyde-buffered solution. Next, the tissue can be heat treated using a process such as disclosed in U.S. Pat. No. 5,931,969 to Carpentier, issued Aug. 3, 1999, the disclosure of which is expressly incorporated herein by reference in its entirety. Subsequently, the thickness of the tissue can be reduced using any of the methods disclosed in the present application. Finally, the thinner tissue can be treated with a capping and/or reducing agent to mitigate later in vivo calcification; this can also include treating with a glycerol/ethanol solution such as is disclosed in U.S. Pat. No. 7,972,376, issued Jul. 5, 2011 to Edwards Lifesciences Corp., the content of which is incorporated herein by reference in its entirety. The thinner tissue can also be at least partially dehydrated or dried by other chemical or non-chemical means to permit storage of the compressed and contoured tissue in a non-fluid environment. Alternatively, the tissue can be at least partially dehydrated or dried prior to compression. Methods of treating tissue to at least partially dehydrate or dry the tissue, as compared to its native state, are disclosed in U.S. Pat. No. 8,007,992, issued Aug. 30, 2011 to Edwards Lifesciences, Corp. and U.S. Pat. No. 6,534,004, issued Mar. 18, 2003 to The Cleveland Clinic Foundation, the entire contents of which are incorporated herein by reference in their entireties.
For prosthetic heart valve leaflets, the compressed and contoured leaflets are attached to a surrounding heart valve support frame or other such components, and sterilized such as with ethylene oxide. After the tissue has been compressed and contoured to reduce its thickness, calcification nucleation sites (e.g., aldehydes and Schiff bases) can be exposed which creates a propensity for calcification. Treating with a capping agent (e.g., ethanolamine) a reducing agent (e.g., sodium borohydride) and a collagen preserving agent (e.g., glycerol) caps the nucleation sites and preserves the collagen integrity. This allows the tissue to be as durable as it was before it was reduced in thickness. Furthermore, this process will also allow the tissue to be stored in a non-liquid environment. In other words, the process is especially suitable for dry storage of the tissue.
As noted above, the tissue can be at least partially cross-linked or “fixed.” Cross-linking the collagenous matrix provides stability prior to implantation to retard degeneration. Further, the fixation process generally operates by blocking reactive molecules on the surface of and within the donor tissue, thereby rendering it substantially non-antigenic and suitable for implantation. Fixing bioprosthetic tissue typically involves contacting the tissue with a cross-linking agent, normally a solution. Exemplary fixing solutions for bioprosthetic tissue such as bovine pericardium include glutaraldehyde, formaldehyde, other aldehydes, EDC, polyethylene glycol, etc. Other ways to fix tissue exist, including heating, irradiating, etc. The fixing step can help maintain the pericardium in a particular three-dimensional form if undertaken after the membrane is otherwise prepared.
It should be understood that although cross-linking the tissue results in a somewhat easier to handle work piece, the compressing and contouring can occur prior to cross-linking as well. Likewise, bulk tissue sheet can be compressed and contoured first before or after fixing, or leaflets can first be cut from the bulk membrane which are then compressed and contoured before or after fixing.
Accordingly, the biological tissue can first be fixed with glutaraldehyde or other fixing agent before the compression and contouring. In one embodiment, the tissue can be soaked with a fixative before the compressing. The fixative can be glutaraldehyde and/or a 0.1% polyetheramine solution having an average molecular weight of about 600 and a pH of about 6 to 9. The tissue can be rinsed with a saline before the soaking and after the compression.
This first fixation step stabilizes the biomechanics of the tissue and preserves the natural “crimp” structure of the collagen.
In a preferred embodiment, a second fixation step is provided after the first fixation step and before, during and/or after the compressing and contouring. Infusion with a second fixing agent of sufficient chain length to allow spanning of large inter-fibril domains can result in a stable tissue membrane. Second fixative agents include di- or poly-amine material of substantial chain length can be employed. Other cross-linking material to span large interfibril domains include both linear and branched polyethyleneimine, polyvinyl alcohol and various Jeffamine polymers, polyetheramines, di- and poly-amines, polyurethanes, polyepoxies, polysiloxanes, polyacrylates, polyesters, poly block isobutylene-co-maleic acid, collagen, elastin, fibrin, hyaluronic acid, dextrin, genapin, di or poly-alkynes, di- or poly-azides, and tannins. Alternatively, the tissue can be oxidized with, for example, sodium chlorite to convert the newly formed aldehydes to carboxylic acids. These can then be coupled with the above amines using EDC chemistry. Compression can occur either at the beginning of the process, after infusion with a second fixing material, or both. The tissue can be capped and reduced following the first fixation step, or alternatively, the compressed and cross-linked tissue can be stabilized by capping and borohydride reduction after the contouring.
In a preferred embodiment, the tissue is treated with a first fixative before the compressing and then treated with a second fixative before, during or after the compressing, preferably during and, more preferably both during and after the compressing. To that end, one or both of the first and second plates used to compress the tissues, as disclosed herein, can be made of a porous substrate to permit the infusion of or submission in a solution comprising one or both of the first and second fixative during the compression.
In a preferred embodiment, the second fixing cross-links the biological tissue by utilizing a combination of an anchor compound and a difunctional linking compound, each one of which comprises complementary ones of a bio-orthogonal binding pair. One advantage is that the reaction between the bio-orthogonal binding pair is highly specific only to each other, thereby reducing or even eliminating the possibility of undesired side reactions between any one of the bio-orthogonal binding pair with tissue functional groups present in or native to biological tissue.
As used herein, “bio-orthogonal binding pair” refers to a pair of functional groups which react with and couple one another within a biological tissue. The reaction and coupling between complementary ones of the bio-orthogonal binding pair is mutually exclusive such that each one of the bio-orthogonal binding pair does not react with any tissue functional groups or with any functional groups found inside living systems.
As used herein, “tissue functional groups” refer to functional groups which are native to biological tissue and, more particularly, in collagenous tissue, such as, for example, cardiac valves, blood vessels, skin, dura mater, pericardium, small intestinal submucosa (“SIS tissue”), ligaments and tendons. Exemplary tissue functional groups include amines, hydroxyls, sulfhydryls, aldehydes, and carboxylic acids.
In a preferred embodiment, the bio-orthogonal binding pair comprises an azide and an acetylene. It is understood that the azide and acetylene groups of the bio-orthogonal binding pair can be present as either a terminal or an internal group within an anchor compound or a linking compound used in accordance with the method. While the reaction of the bio-orthogonal binding pair itself is specific to one another, one or both of the anchor compound or the linking compound can comprise additional functional groups, such as those which react with tissue functional groups which can be reactive with other functional groups, such as tissue functional groups. However, it is understood that the additional functional groups of the first or linking compound are not reactive with either one of the bio-orthogonal binding pair.
The invention described and claimed herein is not to be limited in scope by the specific preferred embodiments disclosed herein, as these embodiments are intended as illustrations of several aspects of the invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 14/485,576, filed Sep. 9, 2014, now U.S. Pat. No. 9,615,922, which claims the benefit of U.S. patent application No. 61/884,775, filed Sep. 30, 2013, the entire disclosures of which are incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2393580 | Weiskopf | Jan 1946 | A |
3532016 | Lane | Oct 1970 | A |
4120649 | Schechter | Oct 1978 | A |
4323358 | Lentz et al. | Apr 1982 | A |
4350492 | Wright et al. | Sep 1982 | A |
4372743 | Lane | Feb 1983 | A |
4378224 | Nimni et al. | Mar 1983 | A |
4402697 | Pollock et al. | Sep 1983 | A |
4405327 | Pollock | Sep 1983 | A |
4481009 | Nashef | Nov 1984 | A |
4553974 | Dewanjee | Nov 1985 | A |
4624822 | Arru et al. | Nov 1986 | A |
4647283 | Carpentier et al. | Mar 1987 | A |
4648881 | Carpentier et al. | Mar 1987 | A |
4758151 | Arru et al. | Jul 1988 | A |
4770665 | Nashef | Sep 1988 | A |
4776853 | Klement et al. | Oct 1988 | A |
4786287 | Nashef et al. | Nov 1988 | A |
4838888 | Nashef | Jun 1989 | A |
4865871 | Livesey et al. | Sep 1989 | A |
4885005 | Nashef et al. | Dec 1989 | A |
4958008 | Petite et al. | Sep 1990 | A |
4976733 | Girardot | Dec 1990 | A |
5002566 | Carpentier et al. | Mar 1991 | A |
5051401 | Sikes | Sep 1991 | A |
5080670 | Imamura et al. | Jan 1992 | A |
5094661 | Levy et al. | Mar 1992 | A |
5104405 | Nimni | Apr 1992 | A |
5116564 | Jansen et al. | May 1992 | A |
5147514 | Mechanic | Sep 1992 | A |
5154007 | Piunno et al. | Oct 1992 | A |
5200399 | Wettlaufer et al. | Apr 1993 | A |
5215541 | Nashef et al. | Jun 1993 | A |
5279612 | Eberhardt | Jan 1994 | A |
5329846 | Bonutti | Jul 1994 | A |
5376110 | Tu | Dec 1994 | A |
5397353 | Oliver et al. | Mar 1995 | A |
5437287 | Phillips et al. | Aug 1995 | A |
5447536 | Girardot et al. | Sep 1995 | A |
5460962 | Kemp | Oct 1995 | A |
5476516 | Seifter et al. | Dec 1995 | A |
5509932 | Keogh et al. | Apr 1996 | A |
5558875 | Wang | Sep 1996 | A |
5595571 | Jaffe et al. | Jan 1997 | A |
5613982 | Goldstein | Mar 1997 | A |
5645587 | Chanda et al. | Jul 1997 | A |
5674298 | Levy et al. | Oct 1997 | A |
5697972 | Kim et al. | Dec 1997 | A |
5713953 | Vallana et al. | Feb 1998 | A |
5720777 | Jaffe et al. | Feb 1998 | A |
5720894 | Neev et al. | Feb 1998 | A |
5733339 | Girardot et al. | Mar 1998 | A |
5746775 | Levy et al. | May 1998 | A |
5766520 | Bronshtein | Jun 1998 | A |
5769780 | Hata et al. | Jun 1998 | A |
5782914 | Schankereli | Jul 1998 | A |
5782931 | Yang et al. | Jul 1998 | A |
5843180 | Jaffe et al. | Dec 1998 | A |
5843181 | Jaffe et al. | Dec 1998 | A |
5855620 | Bishopric et al. | Jan 1999 | A |
5862806 | Cheung | Jan 1999 | A |
5873812 | Ciana et al. | Feb 1999 | A |
5899936 | Goldstein | May 1999 | A |
5911951 | Girardot et al. | Jun 1999 | A |
5919472 | Trescony et al. | Jul 1999 | A |
5921980 | Kim | Jul 1999 | A |
5931969 | Carpentier et al. | Aug 1999 | A |
5935168 | Yang et al. | Aug 1999 | A |
5945319 | Keogh | Aug 1999 | A |
5977153 | Camiener | Nov 1999 | A |
5993844 | Abraham et al. | Nov 1999 | A |
6008292 | Lee et al. | Dec 1999 | A |
6017741 | Keogh | Jan 2000 | A |
6093530 | McIlroy et al. | Jul 2000 | A |
6106555 | Yang | Aug 2000 | A |
6117979 | Hendriks et al. | Sep 2000 | A |
6121041 | Mirsch, II et al. | Sep 2000 | A |
6132472 | Bonutti | Oct 2000 | A |
6132473 | Williams et al. | Oct 2000 | A |
6132986 | Pathak et al. | Oct 2000 | A |
6156030 | Neev | Dec 2000 | A |
6156531 | Pathak et al. | Dec 2000 | A |
6165215 | Rottenberg et al. | Dec 2000 | A |
6166184 | Hendriks et al. | Dec 2000 | A |
6174331 | Moe et al. | Jan 2001 | B1 |
6177514 | Pathak et al. | Jan 2001 | B1 |
6190407 | Ogle et al. | Feb 2001 | B1 |
6193749 | Schroeder et al. | Feb 2001 | B1 |
6203755 | Odland | Mar 2001 | B1 |
6206917 | Williams et al. | Mar 2001 | B1 |
6210957 | Carpentier et al. | Apr 2001 | B1 |
6214054 | Cunanan et al. | Apr 2001 | B1 |
6214055 | Simionescu et al. | Apr 2001 | B1 |
6231608 | Stone | May 2001 | B1 |
6231614 | Yang | May 2001 | B1 |
6251579 | Moore et al. | Jun 2001 | B1 |
6254635 | Schroeder et al. | Jul 2001 | B1 |
6267786 | Stone | Jul 2001 | B1 |
6277555 | Duran et al. | Aug 2001 | B1 |
6287338 | Sarnowski et al. | Sep 2001 | B1 |
6293970 | Wolfinbarger, Jr. et al. | Sep 2001 | B1 |
6302909 | Ogle et al. | Oct 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6322593 | Pathak et al. | Nov 2001 | B1 |
6328762 | Anderson et al. | Dec 2001 | B1 |
6334873 | Lane et al. | Jan 2002 | B1 |
6352708 | Duran et al. | Mar 2002 | B1 |
6364905 | Simpson et al. | Apr 2002 | B1 |
6375680 | Carlyle | Apr 2002 | B1 |
6383732 | Stone | May 2002 | B1 |
6391538 | Vyavahare et al. | May 2002 | B1 |
6394096 | Constantz | May 2002 | B1 |
6448076 | Dennis et al. | Sep 2002 | B2 |
6468660 | Ogle | Oct 2002 | B2 |
6471723 | Ashworth et al. | Oct 2002 | B1 |
6475239 | Campbell et al. | Nov 2002 | B1 |
6479079 | Pathak et al. | Nov 2002 | B1 |
6482199 | Neev | Nov 2002 | B1 |
6491511 | Duran et al. | Dec 2002 | B1 |
6506339 | Girardot et al. | Jan 2003 | B1 |
6509145 | Torrianni | Jan 2003 | B1 |
6534004 | Chen et al. | Mar 2003 | B2 |
6547827 | Carpentier et al. | Apr 2003 | B2 |
6561970 | Carpentier et al. | May 2003 | B1 |
6569200 | Woltinbarger, Jr. et al. | May 2003 | B2 |
6582464 | Gabbay | Jun 2003 | B2 |
6589591 | Mansouri et al. | Jul 2003 | B1 |
6605667 | Badejo et al. | Aug 2003 | B1 |
6617142 | Keogh et al. | Sep 2003 | B2 |
6630001 | Duran et al. | Oct 2003 | B2 |
6652594 | Francis et al. | Nov 2003 | B2 |
6653062 | DePablo et al. | Nov 2003 | B1 |
6682559 | Myers et al. | Jan 2004 | B2 |
6696074 | Dai et al. | Feb 2004 | B2 |
6734018 | Woltinbarger, Jr. et al. | May 2004 | B2 |
6753181 | Atala | Jun 2004 | B2 |
6790229 | Berreklouw | Sep 2004 | B1 |
6797000 | Simpson et al. | Sep 2004 | B2 |
6872226 | Cali et al. | Mar 2005 | B2 |
6878168 | Carpentier et al. | Apr 2005 | B2 |
6908591 | MacPhee et al. | Jun 2005 | B2 |
6911043 | Myers et al. | Jun 2005 | B2 |
6919172 | DePablo et al. | Jul 2005 | B2 |
7008763 | Cheung | Mar 2006 | B2 |
7029434 | Carpentier et al. | Apr 2006 | B2 |
7037333 | Myers et al. | May 2006 | B2 |
7063726 | Crouch et al. | Jun 2006 | B2 |
7078163 | Torrianni | Jul 2006 | B2 |
7141064 | Scott et al. | Nov 2006 | B2 |
7143769 | Stoltz et al. | Dec 2006 | B2 |
7214344 | Carpentier et al. | May 2007 | B2 |
7238200 | Lee et al. | Jul 2007 | B2 |
7318998 | Goldstein et al. | Jan 2008 | B2 |
7338757 | Wolfinbarger, Jr. et al. | Mar 2008 | B2 |
7354749 | Fisher et al. | Apr 2008 | B2 |
7367969 | Stoltz et al. | May 2008 | B2 |
RE40570 | Carpentier et al. | Nov 2008 | E |
7498565 | Silberberg et al. | Mar 2009 | B2 |
7579381 | Dove | Aug 2009 | B2 |
7594974 | Cali et al. | Sep 2009 | B2 |
7648676 | Mills et al. | Jan 2010 | B2 |
7682304 | Heyninck-Jantz et al. | Mar 2010 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
7919112 | Pathak et al. | Apr 2011 | B2 |
7972376 | Dove et al. | Jul 2011 | B1 |
8007992 | Tian et al. | Aug 2011 | B2 |
8043450 | Cali et al. | Oct 2011 | B2 |
8075615 | Eberhardt et al. | Dec 2011 | B2 |
8105375 | Navia et al. | Jan 2012 | B2 |
8136218 | Millwee et al. | Mar 2012 | B2 |
8308797 | Paniagua et al. | Nov 2012 | B2 |
8361144 | Fish et al. | Jan 2013 | B2 |
8377143 | Hamby et al. | Feb 2013 | B2 |
8475827 | Hamby et al. | Jul 2013 | B2 |
20010000804 | Goldstein et al. | May 2001 | A1 |
20010025196 | Chinn et al. | Sep 2001 | A1 |
20010027344 | Bonutti | Oct 2001 | A1 |
20010032024 | Cunanan et al. | Oct 2001 | A1 |
20010039459 | Stone | Nov 2001 | A1 |
20020001834 | Keogh et al. | Jan 2002 | A1 |
20020091441 | Guzik | Jul 2002 | A1 |
20020111532 | Pathak et al. | Aug 2002 | A1 |
20030035843 | Livesey et al. | Feb 2003 | A1 |
20030125805 | Johnson et al. | Jul 2003 | A1 |
20030135284 | Crouch et al. | Jul 2003 | A1 |
20030167089 | Lane | Sep 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20040030381 | Shu | Feb 2004 | A1 |
20040082991 | Nguyen et al. | Apr 2004 | A1 |
20040086543 | Keogh et al. | May 2004 | A1 |
20040158320 | Simionescu et al. | Aug 2004 | A1 |
20050010773 | Lapstun et al. | Jan 2005 | A1 |
20050119736 | Zilla et al. | Jun 2005 | A1 |
20050136510 | Hendriks et al. | Jun 2005 | A1 |
20050211680 | Li et al. | Sep 2005 | A1 |
20060084957 | Delfyett et al. | Apr 2006 | A1 |
20060099326 | Keogh et al. | May 2006 | A1 |
20060110370 | Pathak et al. | May 2006 | A1 |
20060159641 | Girardot et al. | Jul 2006 | A1 |
20060193885 | Leonard Neethling et al. | Aug 2006 | A1 |
20060210960 | Livesey et al. | Sep 2006 | A1 |
20060217804 | Dove | Sep 2006 | A1 |
20060217805 | Dove | Sep 2006 | A1 |
20070050014 | Johnson | Mar 2007 | A1 |
20070073392 | Heyninck-Jantz et al. | Mar 2007 | A1 |
20070203576 | Lee et al. | Aug 2007 | A1 |
20070254005 | Pathak et al. | Nov 2007 | A1 |
20080302372 | Davidson et al. | Dec 2008 | A1 |
20080319166 | Shen | Dec 2008 | A1 |
20090041729 | Woltinbarger, Jr. et al. | Feb 2009 | A1 |
20090130162 | Pathak et al. | May 2009 | A2 |
20090137999 | Silberberg et al. | May 2009 | A1 |
20090171424 | Britva et al. | Jul 2009 | A1 |
20090188900 | Cali et al. | Jul 2009 | A1 |
20090326524 | Cali et al. | Dec 2009 | A1 |
20100018447 | Holecek | Jan 2010 | A1 |
20100023119 | Yeo | Jan 2010 | A1 |
20100036484 | Hariton et al. | Feb 2010 | A1 |
20110092966 | Guo et al. | Apr 2011 | A1 |
20110177150 | Pathak et al. | Jul 2011 | A1 |
20110214398 | Liburd et al. | Sep 2011 | A1 |
20110238167 | Dove et al. | Sep 2011 | A1 |
20110251598 | Ozaki | Oct 2011 | A1 |
20110295363 | Girard et al. | Dec 2011 | A1 |
20110300625 | Paniagua et al. | Dec 2011 | A1 |
20110306124 | Strasly et al. | Dec 2011 | A1 |
20110311493 | Dove et al. | Dec 2011 | A1 |
20120035720 | Cali et al. | Feb 2012 | A1 |
20120059487 | Cunanan et al. | Mar 2012 | A1 |
20120067855 | Guo et al. | Mar 2012 | A1 |
20120078356 | Fish et al. | Mar 2012 | A1 |
20120095551 | Navia et al. | Apr 2012 | A1 |
20120123557 | Carpentier et al. | May 2012 | A1 |
20120185038 | Fish et al. | Jul 2012 | A1 |
20120328905 | Guo et al. | Dec 2012 | A1 |
20130012767 | Nguyen et al. | Jan 2013 | A1 |
20130122583 | Neethling | May 2013 | A1 |
20130134632 | Snedeker | May 2013 | A1 |
20130238088 | Navia et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
0169259 | Jan 1986 | EP |
2394673 | Dec 2011 | EP |
8401894 | May 1984 | WO |
9511047 | Apr 1995 | WO |
95022361 | Aug 1995 | WO |
95034332 | Dec 1995 | WO |
96013227 | May 1996 | WO |
98007452 | Feb 1998 | WO |
98043556 | Oct 1998 | WO |
00032252 | Jun 2000 | WO |
04082536 | Sep 2004 | WO |
2006026325 | Mar 2006 | WO |
2006099334 | Sep 2006 | WO |
2013009851 | Jan 2013 | WO |
Entry |
---|
Carpentier, A., et al., “Biological Factors Affecting Long-Term Results of Valvular Heterografts,” Forty-ninth Meeting of the American Association for Thoracic Surgery, San Francisco, CA, Mar. 31-Apr. 2, 1969. |
Chanda, J., et al., “Heparin in Calcification Prevention of Porcine Pericardial Bioprostheses,” Biomaterials, Elsevier Science Publishers, vol. 18, No. 16, ISSN: 0142-9612, Aug. 1, 1997. |
Chvapil, M., et al., “Use of Chemically Purified and Cross-Linked Bovine Pericardium as a Ligament Substitute,” Journal of Biomedical Materials Research, vol. 21, No. 12, pp. 1383-1394, 1987, University of Arizona Health Science Center, Tucson, AZ. |
Dahm, Manfred, et al., “Effects of Surface Seeding with Vital Cells on the Calcium Uptake of Biological Materials for Heast Valve Replacement,” J Heart Valve Dis, vol. 5, No. 2, Mar. 1996, 148-151. |
Fahner, P., et al., “Systematic Review of Preservation Methods and Clinical Outcome of Infrainguinal Vascular Allografts,” Journal of Vascular Surgery, vol. 44, No. 3, pp. 518-524, 2006. |
Fumoto, H., et al., “Performance of Bioprosthetic Valves After Glycerol Dehydration, Ethylene Oxide Sterilization, and Rehydration,” Innovations, vol. 6, No. 1, Jan./Feb. 2011. |
Grabenwoger, M. et al. “Decreased Tissue Reaction to Bioprosthetic Heart Valve Material after L-glutaimc acid Treatment. A Morphological Study.” J. Biomed Mater. Res. Sep. 1992;26(9):1231-40. |
Grant, R.A., et al., “The Effects of Irradiation with High Energy Electrons on the Structure and Reactivity of Native and Cross-Linked Collagen Fibres,” J. Cell Sci. vol. 7, 99. 387-405, 1970. |
Hauschka, P., et al., “Direct Identification of the Calcium-Binding Amino Acid, y-Carboxyglutamate, in Mineralized Tissue,” Proc. Nat. Acad. Sci, vol. 72, No. 10, pp. 3925-3929, Oct. 1975. |
International Search Report from corresponding PCT case No. PCT/US2014/055647 dated Dec. 29, 2014. |
Jayakrishnan, A., et al., “Glutaraldehyde as a Fixative in Bioprostheses and Drug Delivery Matrices,” Biomaterials, vol. 17, Issue 5, 1996, pp. 471-484. |
Khora, Eugene, “Methods for the Treatment of Collagenous Tissues for Bioprostheses,” Biomaterials, vol. 18, Issue 2, Jan. 1997, pp. 95-105. |
Liao, K., et al., “Mechanical Stress: An Independent Determinant of Early Bioprosthetic Calcification in Humans,” Ann. Throac. Surg 2008;86:491-495. |
Neethling, W, et al. Enhanced Biostability and Biocompatibility of Decellularized Bovine Pericardium, Crosslinked with an Ultra-Low Concentration Monomeric Aldehyde and Treated with ADAPT®, J. Heart Valve Dis. 2008; 17:456-464. |
Olde Damink, L.H.H., et al., “Influence of Ethylene Oxide Gas Treatment on the in vitro Degradation Behavior of dermal Sheep Collagen,” Journal of Biomedical Materials Resarch, vol. 29, pp. 149-155, 1995. |
R Parker, et al. Storage of Heart Valve Allografts in Glycerol With Subsequent Antibiotic Sterilisation, Thorax, 1978, 638-645, vol. 33:5, British Thoracic Society, London, UK. |
Saegeman, V., et al., “Short and long term bacterial inhibiting effect of high concentrations of glycerol used in the prevention of skin allografts,” Science Direct, Burns, No. 34, Mar. 2008. |
Schmidt, C., et al., “Acellular Vascular Tissues: Natural Biomaterials for Tissue Repair and Tissue Engineering,” Biomaterials, vol. 21, pp. 2215-2231, 2000. |
Trantina-Yates AE, et al. “Detoxification of Top Enhanced, Diamine-Extended Glutaraldehyde Fixation Significantly Reduces Bioprosthetic Root Calcification in the Sheep Model,” J. Heart Valve Dis. Jan. 2003; 12 (1):93-100. |
Zilla, P., et al., “Carbodiimide Treatment Dramatically Potentiates the Anticalcific Effect of Alpha-Amino Oleic Acid on Glutaraldehyde-Fixed Aortic Wall Tissue,” The Annals of Thoracic Surgery, Elsevier, vol. 79, No. 3, ISSN: 0003-4975; Mar. 1, 2005. |
Number | Date | Country | |
---|---|---|---|
20170209263 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
61884775 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14485576 | Sep 2014 | US |
Child | 15483786 | US |