The present invention relates generally to a method and an apparatus for forming individual center-filled confectionery pieces from a continuous rope or strand. More particularly, the present invention relates to a method and apparatus for forming such center-filled confectionery pieces including the use of a rope sizer and/or a relaxation conveyor.
Center-filled confectionery products are well known. These products typically have a solid or semi-solid exterior shell and a soft liquid or semi-liquid center. One well known example of such center-filled confectionery products are liquid-filled gum pieces.
One typical process for forming such center-filled confectionery products is to extrude a continuous rope or strand into a hollow-tubular configuration. The hollow rope is then filled with the soft or liquid confectionery product. Thereafter, the rope is processed in a longitudinally continuous fashion so as to size the rope and pass the rope between dies which continuously cut the rope into individual center-filled pieces. The process for forming such pieces and an apparatus for affecting the process is more fully shown and described in U.S. Pat. Nos. 6,838,098; 6,558,727; 6,472,001 and 6,284,291. Each of these patents is incorporated by reference herein for all purposes.
While these processes and similar processes serve adequately to form center-filled confectionery products such as center-filled gum, the speed and efficiency of the process is limited due to the fact that the rope is formed and processed in a linear fashion. In a typical process, the rope is extruded at a first diameter and then must be reduced to a smaller diameter by using rollers or another similar apparatus. The rope, being a rubbery material, has a tendency to longitudinally contract after it is extruded, due to natural forces, this is comparable to a relaxation. The faster the product is extruded and reduced, the more likely it is to relax. With center filled products any longitudinal contraction after cutting may cause the center fill material to leak out of the product. Thus, there is a need to allow for an efficient process to produce gum, while avoiding center-fill leakage after cutting.
It is desirable to provide a process and apparatus which more efficiently processes ropes of confectionery material, while avoiding the problems associated with shrinkage and/or leakage of the center-filled confectionery products.
The present invention provides an apparatus which prepares center-filled consumable products, including chewing gums and other confectionery products. In one aspect, the invention includes an extruder, which extrudes a continuous tubular rope of consumable product, a rope sizer, a relaxation conveyor and a cutting apparatus.
In another aspect of the invention, there is provided a method for preparing center-filled consumable products, including the steps of extruding a continuous tubular rope of the consumable product, passing the rope through a rope sizer, passing the rope along a relaxation conveyor, and passing the rope into a cutting apparatus, wherein the cutting apparatus cuts the rope into individual pieces.
In another aspect of the invention, there is provided a method of forming a center fill consumable product including the steps of extruding a continuous tubular rope of consumable product, reducing the diameter of the extruded continuous tubular rope, transporting the reduced diameter extruded rope along a movable relaxation conveyor, and cutting the extruded continuous rope into individual pieces of consumable product
In another aspect of the invention, there is provided a method for forming a center-filled consumable product including the steps of extruding a continuous tubular rope of consumable product, passing the extruded rope through a rope sizer, and passing the rope into a cutting apparatus, where the cutting apparatus cuts the rope into individual pieces.
In a further aspect of the invention, there is provided a method for forming a center-filled consumable product including the steps of extruding a continuous tubular rope of consumable product, passing the rope along a relaxation conveyor, and passing the rope into a cutting apparatus, where the cutting apparatus cuts the rope into individual pieces.
In another aspect of the invention, there is an apparatus for preparing a center-filled consumable product including a rope sizer for reducing the diameter of the center-filled consumable product, the rope sizer including at least one pair of rollers.
In yet another aspect of the invention, there is an apparatus for preparing a center-filled consumable product including a relaxation conveyor for moving the center-filled consumable product.
The method and apparatus of the present invention may include an extruder for extruding continuous tubular ropes or strands of a first confectionery product. The extruder may be capable of extruding multiple tubular ropes of the first confectionery product, or it may extrude a single continuous rope. The ropes may be of any shape or size desired, including circular, rectangular, or any other formation desired. One such potential extruder is described in Applicant's co-pending patent application (entitled, “Method and Apparatus for Processing Multiple Confectionery Ropes”, Attorney Docket No. 1421-250P, Filed Jul. 27, 2007), which is incorporated by reference herein.
Embodiments described herein provide a multi-component composition which includes at least one center-fill region and a confectionery region. The individual confectionery piece may also include an outer coating or shell, which typically provides a crunchiness to the piece when initially chewed. The individual confectionery pieces may form a variety of shapes including pellet, tablet, ball, pillow, chunk, stick and slab, among others.
Center-filled confectionery pieces, such as center-filled gum, have a desired length of about 18 mm to about 20 mm, and a desired width of about 10 mm to about 12 mm. There is some degree of longitudinal shrinkage after the pieces have been cut. In a preferred embodiment, the degree of shrinkage is kept below about 10%, and preferably below at least 5%. Greater shrinkage has a higher tendency to cause the gum piece to break or crack, and thus leak the center-filled composition out of the product.
The extrusion may take place at any speed desired. The speed of the extrusion relates to the speed of the other elements of the invention, including sizing, relaxation, and cutting. Preferably, the rope is extruded at a speed of about 10 m/min to about 150 m/min, and more specifically at about 75 to about 100 m/min. For center-filled products, the center fill composition may be injected directly into the continuous tubular rope as it is being extruded. Alternatively, the center-fill composition may be injected into the continuous tubular rope at a point after extrusion, but before cutting.
The apparatus 10, which may be used in conjunction with the present invention, is schematically shown in
In one aspect, the present invention includes an apparatus to size the confectionery ropes after they are extruded. This apparatus is referred to as a “rope sizer.” In traditional extrusion, the tubular rope product is extruded at a size that is much thicker and larger than the desired end product. Thus, there is a need for a proper sizing apparatus, which extends the product, stretching it out so that it is the right thickness and size, while still maintaining the structural integrity of the rope, avoiding unwanted cracking and leakage of the center-fill composition. Rope sizers disclosed herein reduce the size of the extruded rope by any amount desired, and most preferably by about 30% to about 70%.
With reference to
Thus, in one aspect of the invention, the pair of proximal rollers 24a has a large groove opening 26 and moves at a slow rate of speed. The pair of distal rollers 24b has a small groove opening 26 and moves at a fast rate of speed. The pairs of rollers 24 in between the proximal and distal pairs of rollers have increasingly smaller grooves, as well as increasing speed as the rope 14 travels through the rope sizer 16.
When the chewing gum ropes are extruded from the extruder 12, they may have an initial diameter of about 10 mm to about 40 mm, and more specifically from about 22 to about 26 mm. The pairs of rollers 24 have grooved openings 26 ranging from about 5 mm to about 50 mm in diameter, and more specifically from about 9 mm to about 36 mm in diameter.
In addition, the speed at which the rollers 24 move may vary. In one embodiment, manufacture of center-filled confectionery pieces, the rope 14 exits the rope sizer 16 at a velocity of at least 100 m/min; however it may exit the rope sizer 16 at any desired velocity from about 50 m/min to about 150 m/min. When the rope 14 first enters the rope sizer 16, it moves through the first pair of rollers 24a at a much slower velocity, generally from about 5 m/min to about 30 m/min. The pairs of rollers in between the proximal and distal ends feed the rope 14 through at varying velocities from about 20 m/min to about 140 m/min, with the last pair of rollers 24b moving the rope 14 at about 20 m/min to about 150 m/min.
Optionally, an anti-sticking agent may be used in conjunction with the rope sizer 16, to prevent the rope 14 from adhering to the rollers and getting stuck, which would decrease productivity. Generally, anti-sticking agents may be in the form of powders such as talc, calcium carbonate, or oils. For example, a fine mist of a food grade oil or an oil-based material may be sprayed on the rollers and material engaging surfaces of the rope sizer 16 before or as the rope of gum material 14 makes contact with the rollers 24. The oil temporarily reduces or eliminates the stickiness of the gum material and allows it to be sized without the need to cool the rollers with cooled air or nitrogen gas. In the alternative or in addition, it is also possible to apply the oil material directly on the rope of gum material 14. Suitable food grade oil or oil-based materials include, but are not limited to almond oil, apricot kernel oil, avocado oil, black cumin seed oil, borage seed oil, camellia oil, castor oil, cocoa oil, coconut oil, corn oil, cottonseed oil, evening primrose seed oil, grapeseed oil, hazelnut oil, hemp seed oil, jojoba oil, karanja seed oil, kukui nut oil, macadamia nut oil, meadowfoam seed oil, neem seed oil, olive oil, palm oil, peanut oil, pumpkin seed oil, rosehip seed oil, safflower oil, sea buckthorn oil, sesame seed oil, shea nut oil, soybean oil, sunflower oil, tamanu oil, vitamin E oil, and wheat germ oil. Synthetic oils may also be used.
In an embodiment, the apparatus 10 may be kept at a reduced temperature in order to prevent the confectionery material from sticking to the various parts described herein. For this purpose, cooled air or gas may be directed toward the rope sizer 16, the relaxation conveyor 18, the cutting apparatus 20, or any other part of the system in which the confectionery may potentially stick. The cooling air may flow directly at the surface of the parts to maintain it at a pre-determined temperature. In another embodiment, the parts themselves may be chilled, such as using a chilled extruder 12, a chilled rope sizer 16, a chilled relaxation conveyor 18 and/or a chilled cutting apparatus 20. Such chilling may be achieved through use of cooled fluid, such as water, liquid nitrogen, or other fluid. In an embodiment, the center fill material may be cooled upon exit from the filling apparatus. Using cooled center fill material has the effect of cooling the outer confectionery portion from the inside. The temperature of the parts is preferably maintained below −90.degree.F, although the actual temperature will vary with the material and production rate. The individual parts and/or the confectionery itself may be cooled at any temperature from about −100.degree.F to about 50.degree.F. In order to control costs of manufacture, the temperature should be just cold enough to support production, while inhibiting sticking of the confectionery.
The method and apparatus of the present invention may optionally use a relaxation conveyor 18 to aid in the formation of the gum pieces. It is generally known that after stretching and extending confectionery ropes, specifically chewing gums, the rope 14 has a tendency to “spring back” and shrink to its normal size. By “relaxation conveyor,” it is contemplated that any mechanism to allow the tubular confectionery to “relax” and shrink prior to cutting may be used. The relaxation conveyor 18 provides a sufficient time delay between extrusion and cutting, to allow the confectionery rope 14 to get to a more stable form.
When multiple ropes are extruded, the use of a very wide table relaxation conveyor 18 is contemplated, but the use of multiple conveyors may also be used. For example, when extruding four continuous and simultaneous confectionery ropes 14, the ropes may be spread on the same relaxation conveyor 18, which is wide enough to encompass all four ropes. Optionally, multiple individual relaxation conveyors may be used for simultaneous multiple extrusions.
The relaxation conveyor 18 is schematically shown in
Preferably, the relaxation conveyor 18 incorporates the use of an optional swing arm 32, which feeds the confectionery rope 14 onto the relaxation conveyor belt 30 in a non-linear path, such as a traditional wave 34 as depicted in
Using a wave pattern 34 to deposit the rope onto the relaxation conveyor belt 30 allows a greater time delay prior to the rope being fed into the cutting apparatus 20, without having to use an extremely long relaxation conveyor 18. Without the use of a wave pattern 34, the continuous rope 14 relaxes for a shorter period of time. By allowing more time to pass, the continuous rope 14 has more time to “spring back” and shrink prior to being cut, giving more stability and less tendency to leak prematurely. Thus, the wave pattern 34 gives increased stability over a non-wave pattern relaxation.
Optionally, an anti-sticking agent or cooled component system as described above may be used with the relaxation conveyor 18. Incorporation of the anti-sticking agent and cooling system aids in reducing the tendency of the rope to get stuck as it travels along the conveyor 18.
As can be seen in Table 1 below, the chewing gum cores exhibit significantly less shrinkage when a relaxation conveyor 18 is used. For each of batches 1-3, four independent tests were run. The first three (labeled LC 50 m/min; LC 75 m/min; and LC 100 m/min) tests in each batch all used a relaxation conveyor 18 as described herein. The fourth test in each batch (labeled CC 60 m/min) did not use a relaxation conveyor 18 as described herein. As shown in Table 1, the tests using the relaxation conveyor 18 only experienced shrinkage of about 4.0% to about 7.25%. The tests without a relaxation conveyor 18 showed shrinkage of about 13.5%, about 15%, and about 16%.
Similarly, as shown in Table 2 below, the chewing gum cores have a much greater length when a relaxation conveyor 18 as described herein is used. The same four tests were used for the three batches; with those tests using a relaxation conveyor 18 had final cores with lengths of about 19.2 mm to about 18.5 mm. Those tests without the relaxation conveyor 18 showed a final length of about 17.4 mm, 17.0 mm, and 16.8 mm.
Any conventional means to cut the confectionery product into individual pieces can be used with the present invention. Preferably the invention uses a chain cutter apparatus 20 shown schematically in
With reference to
In one embodiment, the rope 14 may be fed from the relaxation conveyor 18 (
The confectionery products described herein may be manufactured by use of the extruder 12, rope sizer 16, relaxation conveyor 18, and chain cutting apparatus 20, or they may be manufactured by use of any combination of these elements, including by use of only one of the elements. Further, the methods and apparatus described herein may be used to manufacture any number of confectionery ropes simultaneously.
With reference to
Thus, pursuant to the present invention, the relative velocities of the rope as it travels through the rope sizer 16, through the conveyor 18 and through the cutting apparatus 20 have a relationship relative to each other. The velocity differential between the rope 14 through the rope sizer 16 and the cutting apparatus 20 dictate the length of time needed for relaxation. The greater the differential, the greater the length of time delay, and vice versa. In a preferred embodiment, the rope 14 moves through the cutting apparatus 20 at about 100 m/min, to achieve a desired amount of finished, cut confectionery pieces 22.
As described herein, the rope sizer 16 includes several pairs of rope sizing rollers 24, each pair varies in speed, with the slowest roller pair being located at the entry point 24a of the confectionery rope 14, and the fastest roller pair being located at the exit point 24b of the confectionery rope 14. After the confectionery rope 14 leaves the rope sizer 16, it is deposited onto the relaxation conveyor 18, to allow for a time delay prior to being fed into the cutting apparatus 20. Thus, the speed of the rope sizing roller closest to the exit point of the confectionery rope, i.e., the pair of distal rollers 24b, plays the most important role with respect to the relative speeds of the other elements.
The rope sizer 16 passes the continuous rope 14 at a velocity faster than the velocity at which the rope is fed into the cutting apparatus 20, to allow for time delay to give a sufficient relaxation of the rope prior to being cut. The difference in the relative velocities of the rope traveling through the two determines the amount of time needed for the rope 14 to remain on the relaxation conveyor 18. Thus, if the rope 14 is fed into the cutting apparatus 20 at a velocity that is about 10 m/min slower than the velocity at which the rope 14 passes through the rope sizer 16, the time for relaxation on the conveyor 18 should be enough to compensate for the 10 m/min difference. Preferably, the fastest pair of rollers in the rope sizer 24b move the rope 14 at about 5% to about 300% faster than the velocity at which the rope 14 is fed into the cutting apparatus 20, and more specifically about 10% to about 20% faster than the velocity at which the rope 14 is fed into the cutting apparatus 20.
Preferably, the rope sizer 16 and cutting apparatus 20 are related by Vrope sizer>Vcutting apparatus; and Arope sizer<Acutting apparatus, where V is the velocity that the rope travels, and A is the cross sectional area of the rope. The rate of elongation between two rollers (E′2-1) can be understood by the equation: E′2-1=V2−V1. The total elongation between two rollers (E′2-1) is understood by the equation: E2-1=L2/L1=V2/V1, wherein L1 is the unit of rope that is stretched at the first pair of rollers 24a in the rope sizer, L2 is the unit of rope that is stretched in the rope sizer at the second pair of rollers 24b in the rope sizer, V1 is the velocity of the rope between the extruder 12 and the first pair of rollers 24a in the rope sizer, and V2 is the velocity of the rope between the first pair of rollers 24a in the rope sizer 16 and the second pair of rollers 24 in the rope sizer 16. Alternatively, V2 and L2 may be the velocity and unit of stretch, respectively, of the rope 14 in the cutting apparatus 20. The total elongation represents the amount of stretch per length of rope that entered the rope sizer 16. The rate of elongation between rollers 24 may be any desired rate from about 1 to about 30 m/min, and preferably is about 10-15 m/min. The total elongation between rollers 24 may be any elongation from about 1.1 to about 10, and more specifically about 1.5 to about 3. Thus, for every unit of length that is introduced into the rope sizer 16, the elongated rope that has been sized may be about 1.1 to about 10 times as long, and more specifically about 1.5 to about 3 times as long. Optionally, the rope 14 can be elongated more at the beginning of the rope sizer 16 than at the end, it may be elongated more at the end of the rope sizer 16 than at the beginning, or the rope 14 may be substantially uniformly elongated as it travels through the rope sizer 16.
The total elongation is determined by the total of the elongations as defined above, and is represented by the equation Etotal=E1-0×E2-1×E3-2× . . . Ef-(f-1), and the total elongation rate E′total=ΣE′i=E′1-0+E′2-1+E′3-2+ . . . Ef-(f-1), wherein f is the total number of pair of rollers 24 in the rope sizer 16. The relationship between the operating gaps and elongation is squared: Δgap˜(ΔE)2. The specific gum elongation profile used greatly affects the propensity to shrinkage and seal failure. An ideal profile is the one that minimizes the amount of mechanical energy input. Elongation is controlled by the velocity of the rope as it travels though the individual components of the apparatus. The total elongation of the rope 14 according to the invention may be any elongation from about 1.1 to about 20, and more specifically about 1.5 to about 5.
This application claims priority to U.S. Provisional Application No. 60/952,255 filed Jul. 27, 2007; the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60952255 | Jul 2007 | US |