Method and apparatus for processing recording media having embedded information

Information

  • Patent Grant
  • 6350005
  • Patent Number
    6,350,005
  • Date Filed
    Thursday, August 6, 1998
    26 years ago
  • Date Issued
    Tuesday, February 26, 2002
    22 years ago
Abstract
An apparatus includes a passage along which a recording medium with magnetic information recorded thereon can travel and an information read head disposed along the passage for reading the magnetic information. The apparatus also includes a first print head disposed on the first side of the passage and a second print head disposed on the second side of the passage. The first print head prints information on a first surface of the recording media based on data obtained by the information read head and the second print head prints information on a second surface of the recording media based on the data obtained by the information read head. Methods of processing a recording medium with magnetic information recorded thereon also are disclosed.
Description




BACKGROUND OF THE INVENTION




The present invention relates generally to methods and apparatus for reading embedded information such as magnetic ink characters recorded on a recording medium and printing information on the recording medium.




Checks such as personal checks are widely used in business transactions and for personal shopping. Generally, an amount of money and a signature are inscribed on the front surface of the check. Such an inscription can be referred to as a “front surface inscription”. In addition, specified information such as the number of a bank, an individual bank account number, the number of the check and the like are inscribed on the check using magnetic ink characters.




Conventionally, the owner of the check writes the front surface inscription on the check. However, in recent years, it has become popular to execute the front surface inscription using a printer.




The presence of magnetic ink on a check can be detected, for example, by a magnetic head using magnetic ink character recognition (MICR) techniques. Thus, magnetic ink character readers which can read magnetic ink characters inscribed on a check have been developed and are currently used, for example, in retail stores. Upon receiving a check, store personnel can operate such a reader to detect the magnetic ink, read the items inscribed on the check, and confirm the validity of the check. The operator then uses a printer to print items to be endorsed on the checks, such as a certification, the name of a store which has received the check, and the like.




When the reading of the MICR characters and printing of the endorsement and front surface inscription are executed by separate devices, a relatively long time is required to execute all the necessary steps. Moreover, difficulties exist even in devices capable of reading the MICR characters and printing the endorsement and front surface inscription. For example, after printing the endorsement inscription, the check typically must be turned over and loaded into the printer again to execute the front surface inscription. Such techniques unnecessarily complicate and lengthen the overall process.




SUMMARY OF THE INVENTION




In general, according to one aspect, an apparatus for processing a recording media with embedded information such as recorded magnetic information includes a passage along which the recording media can travel and an information read head disposed along the passage for reading the recorded magnetic information. The apparatus also includes a first print head disposed on a first side of the passage and a second print head disposed on a second side of the passage. The first print head prints information on a first surface of the recording media based on data obtained by the information read head and the second print head prints information on a second surface of the recording media based on the data obtained by the information read head.




One or more of the following features are present in some implementations. The apparatus can include a first opening through which the recording media is inserted into the passage and a second opening through which the recording media can be discharged from the passage. The first print head can be located on the same side of the passage as the information read head and can be closer to the second opening than the second print head. The first opening can be substantially horizontal and located in a side of the apparatus, with the second opening located in the top of the apparatus.




In some implementations, the apparatus includes a first pair of rollers and a second pair of rollers for moving the recording media along the passage. The first pair of rollers can be located between the first opening and the second print head, and the second pair of rollers can be located between the first and second print heads.




The apparatus also can include a stopper which can be moved into the passage to prevent movement of the recording media along the passage. The stopper can be located at a position along the passage between the first and second pairs of rollers. Additionally, the apparatus can include a sensor for detecting the presence of the recording media at a specified position in the passage. The sensor can be located between the first pair of rollers and the stopper.




The apparatus further can have a controller for controlling the first print head to print information on the recording media while the recording media moves along the passage in a first direction and for controlling the second print head to print information on the recording media while the recording media moves along the passage in a second direction opposite the first direction. Alternatively, the controller can control the first and second print heads to print information on the recording media at substantially the same time, for example, as the recording media moves along the passage.




In yet other implementations, the second print head can include a removable print unit and a rotatable paper feed part can be provided for feeding paper past the print position of the first print head.




According to another aspect, a method of processing a recording media with recorded magnetic information includes feeding the recording media in a first direction along a passage and reading the magnetic information recorded on the recording media while moving the recording media along the passage in a second direction opposite the first direction. Information is printed on two opposite surfaces of the recording media based on data obtained during the reading step. The information can be printed while moving the recording media along the passage in the first direction. The method also includes discharging the recording media from the passage.




Information can be printed on the first surface using a first print head and information can be printed on the second surface using a second print head. The surfaces of the recording media can be printed at substantially the same time.




Additionally, feeding the recording media in a first direction can include moving the recording media to a specified location in the passage. Reading the magnetic information can be performed after the recording media reaches the specified location. The method also can include determining whether the recording media is valid based on reading the magnetic information. Furthermore, discharging the recording media from the passage can include moving the recording media in the first direction.




In yet a further aspect, a method of processing a recording media with recorded magnetic information includes reading the magnetic information while moving the recording media in a first direction along a passage. The method further includes printing information on a first surface of the recording media based on data obtained during the reading step. Printing information on the first surface is performed while the recording media travels in a second direction opposite the first direction. The method also includes printing information on a second surface of the recording media based on data obtained during the reading step. Printing information on the second surface is performed while the recording media travels in the first direction. The recording media then can be discharged from the passage.




According to some implementations of the latter method, the recording media is fed along the passage in the first direction to a specified position in the passage. The step of feeding can be performed after reading the magnetic information and before printing information on the first surface of the recording media. The method also can include determining whether the recording media is valid based on reading the magnetic information. A first print head can be used to print information on the first surface of the recording media, and a second print head can be used to print information on the second surface of the recording media. The recording media can be moved in the first direction to discharge it from the passage.




Various implementations include one or more of the following advantages. The first and second print heads can be used, respectively, to perform front surface inscription and back surface endorsement printing operations on opposite surfaces of a recording media such as a personal check. For example, the front surface inscription and the back surface endorsement printing operations can be performed after reading the MICR characters. Therefore, simply by loading a check into the apparatus once, all the necessary operations can be executed. The processing time can be reduced, and because it is not necessary to turn over the check S, the entire operation is simplified. Additionally, since the check S can be loaded so that the surface with the MICR characters recorded thereon faces up, the operator can set the check S while observing the front surface. That facilitates mounting of the check S in the apparatus.




Other features and advantages will be apparent from the following detailed description, the accompanying drawings and the claims.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic view of the internal structure of a composite processor according to the invention.





FIG. 2

is a perspective view of the interior portion of the composite processor of FIG.


1


.





FIG. 3

is a partial schematic view of the composite processor.





FIG. 4

is a flow chart of a method of controlling a composite processor according to one embodiment of the invention.





FIG. 5

is a flow chart of a method of controlling a composite processor according to a second embodiment of the invention.





FIG. 6

shows a control system for the composite processor of FIG.


1


.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to

FIGS. 1

,


2


and


3


, a composite processor


1


includes a roll of paper R disposed in the rear portion of a main body cover


2


formed of resin or the like. A roll paper feed mechanism


3


is located in front of the roll of paper R.




A first print part


4


is disposed in front of the roll paper feed mechanism


3


and is configured to perform a printing operation using, for example, an ink ribbon system. The first print part


4


is used to print information on a medium such as the roll paper R, a check S or another recording media. The first print part


4


is covered with a main body front cover


5


formed of resin or the like. The roll paper R, the roll paper feed mechanism


3


and the first print part


4


are mounted on a main body frame


6


which is formed of metal or other rigid materials.




The first print part


4


also is configured so that it can be moved freely between the two side portions of the main body frame


6


along a guide rail


7


mounted on the main body frame. A ribbon cassette


40


which carries an ink ribbon


40




a


is mounted on the main body frame


6


. The first print part


4


is positioned so that a print head


4




a


is disposed opposite a platen


8


provided in the roll paper feed mechanism


3


.




The roll paper R is rotatably supported by a pair of support rollers


10


and


11


which are arranged parallel to a core portion


9


. The roll paper R also is configured so that the leading end of the roll paper R can be drawn upwardly out from the lower side of the main body cover


2


.




The roll paper feed mechanism


3


can be rotated freely about a support shaft


12


so that it is removed from an operative position shown by the solid line in

FIG. 1

to expose a second print part


23


explained in detail below. A feed passage for the roll paper R is formed in the roll paper feed mechanism


3


. Specifically, the roll paper R is pulled in by a paper guide roller


13


which reduces a load caused by a rotational moment of the paper roll R, and paper feed rollers


14


,


15


provided in the roll paper feed mechanism


3


. While the roll paper R is guided in the upward direction by a guide portion


17


(FIG.


3


), the roll paper R is moved between the print head


4




a


of the first print part


4


and the platen


8


. The printed roll paper R is then discharged from an opening


20




a


formed in a main body upper cover


20


by a pair of feed rollers


18


and


19


. The main body upper cover


20


is mounted so that it can be rotated freely about a support shaft


22


.




A second print part


23


which is used, for example, to print an endorsement on the check S is disposed below the roll paper feed mechanism


3


. The second print part


23


performs a printing operation using, for example, an ink ribbon system. In the illustrated embodiment, the second print part


23


includes an impact shuttle-type print head


23




a


and includes a print unit which can be mounted on and removed from the main body of the processor.




Note that the impact shuttle-type print head


23




a


comprises a shuttle unit having a plurality of impact dot elements disposed in a line parallel to the print line with a predetermined distance from each other, and prints a single dot line by moving the shuttle unit for the predetermined distance. Thus multiple line printing is performed by repeating the single dot line printing and paper feeding for one dot.




Since the shuttle print head


23




a


requires only one line of dot print elements, a compact and especially thin print head can be obtained. Moreover, because of the simple structure required for moving the shuttle unit, a cost effective small printer can be realized. The detailed structure of the shuttle print head is explained in the U.S. Pat. No. 4,373,438 which is incorporated herein by reference.




A feed passage for the check S is partially formed below the first print part


4


. A recording media insertion opening


26


is defined by a pair of guide members


24


and


25


which extend up to the neighboring portion of the second print part


23


. A pair of first feed rollers


27


and


28


are located on either side of the guide members


24


and


25


. The feed passage for the check S also includes a second pair of feed rollers


29


and


30


which are disposed between the first and second print heads.




The first print part


4


is disposed on one side of the second feed rollers


29


and


30


, and the second print part


23


is


10


disposed on the other side of the second feed rollers


29


and


30


. When printing the front surface inscription and endorsement on the check S, the respective print heads


4




a


and


23




a


of the first and second print parts


4


and


23


can be positioned at optimum print positions in consideration of the endorsement print position limited within a predetermined position. An opening


21


is provided above the second feed rollers


29


and


30


for discharging the check S in a substantially vertical direction. The opening


21


is defined by the main body upper cover


20


and main body front cover


5


.




The check S can be fed along the passage, using the first feed rollers


27


,


28


and the second feed rollers


29


,


30


, in a first (forward) direction, indicated generally by arrow F in

FIG. 3

, or in a second (reverse) direction, indicated generally by arrow B in FIG.


3


. The feed rollers


27


and


29


are rotated in synchronization with each other by a drive mechanism (not shown).




The first feed rollers


27


and


28


are configured so that the lower feed roller


28


can be moved freely toward or away from the upper feed roller


27


. Also, the feed roller


30


can be moved freely toward or away from the feed roller


29


. Note that a known mechanism such as a plunger can be used for moving the feed roller


28


or


30


toward or away from the opposing feed roller.




A form stopper


31


(

FIG. 3

) is interposed between the first feed rollers


27


,


28


and second rollers


29


,


30


on the feed passage.




The form stopper


31


is used to stop the inserted check S temporarily and can be moved away from the feed passage.




A sensor


32


, which is used to detect the presence or absence of the check S, is disposed adjacent the form stopper. The sensor


32


can be a photo sensor such as a photo interrupter or photo reflector.




An magnetic head


33


is disposed adjacent the first feed rollers


27


and


28


and serves as an information read head to read MICR characters inscribed or recorded on the check S. The magnetic head


33


is configured such that, by pressing a pressure member (not shown) against the checks, the check Scan be brought into close contact with the head portion of the MICR read head. Known roller or pad having a relatively low friction coefficient with checks S is used as the pressure member. The pressure member is configured to move away from the magnetic head making an enough gap for slip sheets to pass the magnetic head without abutting thereto. Known plungers are utilized for moving the pressure member.




The processor


1


also includes drivers (not shown) for driving the first print part


4


, the second print part


23


, the first feed rollers


27


,


28


and the second feed rollers


29


,


30


, as well as the form stopper


31


, the sensor


32


and the magnetic head


33


. The drivers are connected through interfaces and buses (not shown) to a controller


50


(

FIG. 6

) which includes a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM). The controller recognizes and analyzes signals from the sensor


32


and the magnetic head


33


. Based on the results, the controller controls the operations of the respective parts of the processor


1


, including the various drivers.




The composite processor


1


is configured so that it can feed a regular size slip sheet and the like, as well as a check S, and allows printing operations to be performed on the slip sheet.




Referring to

FIG. 4

, the operation of the composite processor


1


according to a first embodiment is explained. As indicated by step S


1


, the processor


1


starts waiting the check S with moving the lower roller


28


to the position shown by the dotted lines in

FIG. 3

to place the first rollers


27


,


28


in an open state. At the same time, the form stopper


31


extends across the feed passage. As shown in

FIG. 2

, the check S is inserted through the opening


26


with the front surface of the check S facing up and the right side edge thereof abutting with a guide wall


6




a


of the main body frame


6


. The leading edge of the check S thereby abuts against the form stopper


31


, and the check S is positioned at a predetermined location in the feed passage defined by the form stopper


31


and the guide wall


6




a


. The predetermined position is a reference position of the check S based on which the following processes such as MICR reading and printing on the upper or reverse side are performed. When the sensor


32


detects the leading edge of the check S, the processor starts executing a process in step S


2


assuming that the check S has been set accurately.




In step S


2


, the check S is fed in the forward direction by moving the lower feed roller


28


to the position indicated by the solid line in

FIG. 3

, thereby placing the first feed rollers


27


,


28


in a closed state. At the same time, the form stopper


31


is moved away from the feed passage, and the first feed rollers


27


,


28


are rotated to feed the check S in the forward direction.




In the processor of this embodiment, the form stopper


31


is used to define the reference position of the leading edge of the check S. The present invention is not limited to the structure. That is, in absence of the form stopper


31


, the first feed rollers


27


,


28


hold the check S when the sensor


32


detects the check S. And then the check S is fed backward to the position where the sensor


32


no more detects the check S. After then, the check S is fed forward gradually and stopped where the sensor


32


detects presence of the check S. Thus, the leading edge of the check S can be positioned at the sensor position, the reference position.




As indicated by step S


3


, when the check S arrives at a specified position where the trailing edge of the MICR character string inscribed on the check S has passed a detecting portion of the magnetic head


33


, the feeding of the check S is stopped. Hereinafter, his process is referred as a MICR character positioning.




In step S


4


, the first feed rollers


27


,


28


are rotated to feed the check S in the reverse direction. While feeding the check S, the magnetic head


33


is driven to read the MICR characters recorded or inscribed on the front surface of the check S. The magnetic head


33


is driven to generate magnetic field to biasing magnetic field changes caused by the MICR character passing the magnetic head. After finishing MICR reading, the magnetic head stops generating bias magnetic field and the transportation of the check S is stopped.




In step S


5


, a determination is made, based on the data obtained from the MICR read head, as to whether the check S is valid or invalid. If the check S is judged to be invalid, then the processing moves to step S


6


. If, however, the check S is judged to be valid, then the processing moves to step S


8


. An inserted recording media may be judged invalid, for example, because it is inserted improperly, because a recording media other than a check S is inserted, or because the check S itself is invalid.




Note that this judgment can be made by a host device to which the processor of this embodiment is connected. That is, the processor sends to the host device the MICR reading results such as character codes and status data of the processor, the host device judges whether the check S is valid or not based on the results received from the processor, and the processor then receives the judgment made by the host device. Thus more accurate judgment can be made by executing more complicated processes such as making an inquiry to a bank which issues the check S.




If the inserted check S is determined to be invalid, then, as indicated by step S


6


, the check S is fed in the reverse direction. The check S is discharged from the insertion opening


26


,as indicated by step S


7


. Although these steps can be executed automatically by the processor, it is possible for the processor to execute these steps in response to control commands issued by the host device. Thus, more flexible operations by the system including both the processor and host device are made possible.




If, on the other hand, the inserted check S is determined to be valid, then, as indicated by step S


8


, the first feed rollers


27


,


28


are rotated to feed the check S in the forward direction in preparation of a succeeding print process. The check S is delivered from the first feed rollers


27


,


28


to the second feed rollers


29


,


30


. With the roller


30


moved to the position shown by the dotted line in

FIG. 3

, movement of the check S is stopped temporarily when the leading edge of the check S reaches the second feed rollers


29


,


30


. The feed roller


30


is then moved to the position shown by the solid line in

FIG. 3

to hold the check S with the second feed rollers


29


,


30


. The second feed rollers


29


,


30


are rotated to feed the check S in the forward direction. Note that the movement of the check S is not necessarily stopped if the mechanism for opening and closing the first and second feed rollers can operate quickly.




In step S


9


, the second print part


23


is driven to print an endorsement on the back surface of the check S. At substantially the same time or in parallel, the first print part


4


is driven to print the front surface inscription on the front surface of the check S. These print processes can be executed in accordance with print data and control commands received from the host device. In this case, feeding direction of the check S is determined based on the print data and the control commands. Next, in step S


10


, the check S is fed further in the forward direction to discharge it from the opening


21


. This process can be done in response to a predetermined control command received from the host device.




The first and second print parts


4


,


23


are used respectively to execute the front surface inscription and back surface endorsement printing operations on the two opposite surfaces of the check S. In particular, after reading the MICR characters, the front surface inscription printing operation and the back surface endorsement printing operation are performed simultaneously or in parallel while feeding the check S in the forward direction. Therefore, simply by loading the check S into the composite processor


1


and operating the composite processor once, all necessary operations can be executed. The processing time can be reduced and, because it is not necessary to turn over the check S, the entire operation is simplified. Additionally, since the check S can be loaded so that the surface with the MICR characters recorded thereon faces up, the operator can set the check S while observing the front surface. That facilitates mounting of the check S in the apparatus.




Furthermore, by rotating the roll paper feed mechanism


3


, an inking member such as the ribbon cassette of the second print part


23


can be replaced easily. In addition, since the second print part


23


includes a print unit which can be mounted onto and removed from the processor main body, the processor


1


provides greater versatility and permits a user to select the print unit to be used. Moreover, by incorporating an impact shuttle-type print head in the second print part


23


, the second print part can be made thin and compact, thereby making the entire processor more compact.




In some implementations, the first feed rollers


27


,


28


are disposed upstream of the magnetic head


33


. When the check S is drawn out from the magnetic head


33


, the feed speed of the check S as it passes the magnetic head


33


can be stabilized even if the check S is thin and not very rigid. The reading precision of the magnetic head


33


can, thus, be enhanced.




Referring to

FIG. 5

, the operation of the composite processor


1


is described according to a second embodiment. As indicated, respectively, by steps S


21


and S


22


, the processor waits the check S to be set, and the check S is held as previously explained with respect to steps S


1


and S


2


. The check S may be fed so that the leading edge of the MICR character string is positioned at the detecting portion of the magnetic head


33


if necessary. In step S


23


, the MICR characters on the front surface of the check S are read by the magnetic head


33


while feeding the check paper S in the forward direction. It is desirable that the second feed rollers


29


,


30


are in the open state before the MICR reading begins. Because, if the second feed rollers


29


,


30


are in the closed state, the change in the check transfer speed caused when the check S abuts on the rollers may disturb the reading data acquisition to increase reading error rate.




Next, as indicated by step S


24


, a determination is made as to whether the check S is valid or invalid based on the data obtained from the MICR read head. If the check S is judged to be invalid, then the processing moves to step S


25


. If, on the other hand, the check S is judged to be valid, then the processing moves to step S


27


. As before, an inserted recording media may be determined to be invalid because it is inserted improperly, because a slip sheet other than a check S is inserted or because the check S itself is invalid.




Note that this judgment can be made by a host device to which the processor of this embodiment is connected. That is, the processor sends to the host device the MICR reading results such as character codes and status data of the processor, the host device judges whether the check S is valid or not based on the results received from the processor, and the processor then receives the judgment made by the host device. Thus more accurate judgment can be made by executing more complicated processes such as making an inquiry to a bank which issues the check S.




If the inserted check S is determined to be invalid, then, as indicated by step S


25


, the check S is fed in the reverse direction. The check S is discharged from the opening


26


, as indicated by step S


26


. This process can be done in response to a predetermined control command received from the host device.




If, on the other hand, the check S is determined to be valid, then, as indicated by step S


27


, the check S is fed in the forward direction to a specified position where the second print part


23


can print a portion of the check S near its trailing edge.




This process can be done in response to a predetermined control command received from the host device. In step S


28


, the second print part


23


prints an endorsement on the back surface of the check S while the check S is fed in the reverse direction. This print process can be executed in accordance with print data and control commands received from the host device. In this case, feeding direction of the check S is determined based on the print data and the control commands. After completion of the endorsement printing, the check S is then fed further in the reverse direction as indicated by step S


29


.




In Step S


30


, the trailing edge or the lower end portion of the check S is detected by the sensor


32


to confirm the head portion searching position of the check S. After the head portion of the check S is searched, then, as indicated by step S


31


, the first print part


4


prints the front surface inscription on the front surface of the check S while the check S travels in the forward direction. This print process can be executed in accordance with print data and control commands received from the host device. In this case, feeding direction of the check S is determined based on the print data and the control commands. The check S is fed further in the forward direction and is discharged from the opening


21


. This process can be done in response to a predetermined control command received from the host device.




According to the second embodiment, all necessary operations can be executed simply by inserting a check S into the composite processor


1


and operating the composite processor a single time. Even when slip sheets or recording media of different sizes are to be processed, the front surface inscription and back surface endorsement can be printed accurately. Also, the peak current of the process can be reduced because the first and second print heads are configured so that they do not print at the same time. The reduced current makes it possible to reduce the cost and size of the power source of the composite processor


1


as well as other circuit elements. In some implementations, the first feed rollers


27


,


28


are disposed downstream of the magnetic head


33


. When the check S is drawn out from the magnetic head


33


, the speed of the check S as it passes the magnetic head


33


can be stabilized even if the check S is thin and not very rigid. The reading precision of the magnetic head


33


can, thus, be enhanced.




As previously noted, the first and second print parts


4


,


23


, can execute their respective their respective printing operations using ribbon cassette-type printers. Alternatively, the printing operations can be performed using ink jet printers or the like to reduce the printing sound of the print head and to obviate the need to provide a large gap between the print head and the platen


8


. In yet other implementations, a thermal printer, in which ink is fused from a ribbon and transferred to the recording media, can be used. An ink ribbon which is capable of printing two or more times also can be used. In some implementations, only the second print part


23


includes an ink jet-type printer or a thermal transfer-type printer. Use of such printers is advantageous because the number of printed lines for the endorsement on the back surface of the check is small, and the second print part is not required to print a large number of sheets. In addition, such printers provide better print quality than an impact type printer.




Although the foregoing embodiments have been described with respect to a recording medium such as a check S, other types of recording media also can be used, provided that printing can be performed on both surfaces of the recording media. For example, the paper or sheet material can be formed in a roll shape, or it may include a film-shaped sheet formed of printable resin. When a recording medium including resin is used, an ink jet-type print head can be used as the first and second print heads.




As disclosed in the foregoing description, a pressure roller is used to bring the check S into close contact with the magnetic head


33


. However, other non-rotating member can be used as well. To reduce the feed load, the member for bringing the check S into contact with the magnetic head


33


should provide a small friction coefficient with respect to the check S.




In the processor of the present embodiment, the roll paper feed mechanism


3


is disposed so that it can rotate about pivot


12


and supplies the roll paper R to the first print head


4




a


for printing when the roll paper feed mechanism


3


is positioned as shown by the solid line in FIG.


1


. However, the present invention is not limited to this configuration. The roll paper feed mechanism


3


can be further provided with a third print head dedicated on printing the roll paper R fed in the mechanism


3


. Preferably the third print head is a thermal line print head explained in detail in the U.S. patent application Ser. No. 08/752,782 which is incorporated herein by reference. Other implementations are within the scope of the following claims.



Claims
  • 1. An apparatus for processing a recording medium with embedded information, the apparatus comprising:a passage along which the recording media can travel; an information read head disposed along the passage for reading the recorded information; a first print head disposed on a first side of the passage for printing information on a first surface of the recording medium; a second print head disposed on a second side of the passage opposing to the first side of the passage for printing information on a second surface of the recording medium opposite to the first surface of the recording medium; an insertion opening connecting to the passages through which the recording medium is inserted; and a discharge opening connecting to the passage, through which the recording medium is discharged, the insertion opening and the discharge opening being, respectively, disposed at each end of the passage; wherein the information read head is disposed between the insertion opening and the second print head; and wherein the first print head is disposed between the second print head and the discharge opening.
  • 2. The apparatus according to claim 1 further comprising a pair of rollers disposed along the passage and between the insertion opening and the second print head for feeding the record medium along the passage.
  • 3. The apparatus according to claim 2 further comprising a sensor disposed along the passage and between the pair of rollers and the discharge opening for detecting presence or absence of the recording medium.
  • 4. The apparatus according to claim 3 further comprising a stopper disposed along the passage and between the sensor and the discharge opening for blocking the recording medium at a predetermined position in the passage.
  • 5. The apparatus according to claim 1 further comprising a pair of rollers disposed along the passage and between the first and second print heads for feeding the recording medium along the passage.
  • 6. The apparatus according to claim 1 wherein:the insertion opening is disposed substantially horizontal allowing the recording medium to be inserted in a horizontal manner; and the discharge opening is disposed substantially vertical allowing the recording medium to be discharged in a vertical manner.
  • 7. The apparatus according to claim 1 wherein the first print head is disposed on the same side of the passage as the information read head.
  • 8. The apparatus according to claim 1 further comprising a roll medium feed mechanism disposed opposing to the first print head for feeding a roll medium for printing, the roll medium feed mechanism movably fixed so as to expose the second print head.
  • 9. The apparatus according to claim 8 wherein the roll medium feed mechanism comprises a third print head for printing the roll medium.
  • 10. A method of processing a recording medium with embedded information, the method comprising the steps of:feeding the recording medium along a passage in a first direction towards a discharge opening; feeding the recording medium along a passage in a second direction towards an insertion opening; and reading the magnetic information recorded on the recording medium while moving the recording medium along the passage; and after reading the magnetic information printing information on a first surface of the recording medium while moving the recording medium along the passage after the reading step; and printing information on a second surface of the recording medium opposite to the first surface thereof while moving the recording medium along the passage after the reading step, wherein the medium feeding direction in the reading step is the second direction; the medium feeding direction in the first and second printing step is the first direction; and printing the first surface and printing the second surface are performed at substantially the same time or in parallel.
  • 11. A method of processing a recording medium with embedded information, the method comprising the steps of:feeding the recording medium along a passage in a first direction towards a discharge opening; feeding the recording medium along a passage in a second direction towards an insertion opening; and reading the magnetic information recorded on the recording medium while moving the recording medium along the passage; and after reading the magnetic information printing information on a first surface of the recording medium while moving the recording medium along the passage after the reading step; and, without flipping the recording medium, printing information on a second surface of the recording medium opposite to the first surface thereof while moving the recording medium along the passage after the reading step, wherein: the second printing step is executed before execution of the first printing step; the medium feeding direction in the reading step is the first direction; the medium feeding direction in the first printing step is the first direction; and the medium feeding direction in the second printing step is the second direction.
  • 12. A method of processing a recording medium with embedded information, the method comprising the steps of:feeding the recording medium along a passage in a first direction towards a discharge opening; feeding the recording medium along a passage in a second direction towards an insertion opening; and reading the magnetic information recorded on the recording medium while moving the recording medium along the passage; and after reading the magnetic information printing information on a first surface of the recording medium while moving the recording medium along the passage after the reading step; and, without flipping the recording medium, printing information on a second surface of the recording medium opposite to the first surface thereof while moving the recording medium along the passage after the reading step; and discharging the recording medium in accordance with a result of the reading step when the reading result has been failure wherein the discharge step is executed before execution of both the first and second printing steps.
  • 13. The method according to claim 12 wherein the medium feeding direction in the discharge step is the second direction.
Priority Claims (1)
Number Date Country Kind
9-212259 Aug 1997 JP
Parent Case Info

The present invention is based on Japanese patent application no. Hei. 9-212259 which is incorporated herein by reference in its entirety. The U.S. Pat. No. 4,373,438 and The U.S. patent application Ser. No. 08/752,782, now U.S. Pat. No. 5,833,380, and U.S. Pat. No. 08/919,950, now U.S. Pat. No. 6,118,469, are also incorporated herein by reference.

US Referenced Citations (5)
Number Name Date Kind
4027142 Paup et al. May 1977 A
4786789 Gaucher Nov 1988 A
5049898 Arthur et al. Sep 1991 A
6017161 Harris et al. Jun 1998 A
6118469 Hosomi Sep 2000 A
Foreign Referenced Citations (7)
Number Date Country
0 115 189 Aug 1984 EP
0 441 964 Aug 1991 EP
0 492 900 Jul 1992 EP
0 677 392 Oct 1995 EP
3-36054 Feb 1991 JP
3-224760 Oct 1991 JP
3-297670 Dec 1991 JP
Non-Patent Literature Citations (1)
Entry
European Search Report.