The present invention relates to a method and apparatus for performing intra prediction mode decoding on digital video data that has been encoded using an intra prediction mode. The present invention also relates to a method and apparatus for signaling the proper intra prediction mode to a decoding unit.
Generally, there are two methods for accomplishing video compression encoding in order to eliminate temporal and spatial redundancy. Eliminating temporal and spatial redundancy is an important requirement to increase a compression ratio of a video signal in order to decrease an overall size of a video data transmission.
An inter prediction encoding method is able to predict a current video data block based on similar regions found on a previously encoded picture that temporally precedes a current picture that includes the current video data block. And an intra prediction encoding method is able to predict a current video data block based on previously encoded blocks that are adjacent to the current video data block and within a same picture. The inter prediction method is referred to as a temporal prediction method, and the intra prediction method is referred to as a spatial prediction method.
Video data comprised of inter predicted and intra predicted video data pictures are transmitted to a receiver and then decoded to reproduce the video data. A decoding unit must perform the proper prediction mode processing in order to reconstruct the received video data.
Pertaining to the intra prediction method of encoding, there exists various modes for accomplishing the spatial prediction that defines the intra prediction method. And within both the inter and intra prediction methods, the prediction for a luminance (luma) sample is handled separately from a prediction of a chrominance (chroma) sample. Luminance can be defined as the brightness of an image, and chrominance can be defined as a representation of color difference within an image. Although both luma and chroma are important components in any picture image, due to the human visual system being more sensitive to variances in luminance as compared to variances in chrominance, prediction modes have generally been more concerned with luma prediction modes compared to chroma prediction modes.
Accordingly, none of the currently recognized chroma prediction modes contemplate reconstructing a chroma sample by utilizing a linear combination of interpolated luma samples. By taking advantage of the interpolation of luma samples, where the luma samples have been previously reconstructed, a new mode for efficiently predicting the chroma sample can be achieved.
There also exists a need to conserve a number of codeword bits when transmitting binary codewords related to information transmitted along with video data as part of the overall video data signal. When transmitting large amounts of video data, it becomes even more important to conserve the number of codeword bits that are transmitted along with the video data in order to conserve the number of overall bits being transmitted. This allows for a more efficient compression of the video data signal as a whole.
It is an object of the present invention to introduce a method and apparatus for prediction processing an intra chroma sample that is able to reconstruct a chroma sample by using a linear combination of previously reconstructed luma samples that have been interpolated.
It is also an object of the present invention to provide a more efficient method and apparatus for signaling and identifying a proper current prediction mode by relying on prediction mode information previously identified. By relying on previously identified prediction mode information to determine a proper current prediction mode, a reduction in overall codeword bits that need to be transmitted by an encoding unit may be accomplished.
The present invention provides a new model for performing chroma prediction on a current chroma sample that is based on a linear combination of previously reconstructed luma samples that have been interpolated. This new model for performing chroma prediction also utilizes previously reconstructed luma samples that have been interpolated and previously reconstructed chroma samples, where these samples are taken from blocks that neighbor the current chroma sample. By utilizing a linear combination of previously reconstructed luma samples from the same block as the current chroma sample, previously reconstructed luma samples that have been interpolated and are from a block neighboring the current chroma sample, and previously reconstructed chroma samples that are from a block neighboring the current chroma sample, a higher prediction accuracy for the chroma sample can be achieved.
The present invention also accomplishes a reduction in overall codeword bits that need to be transmitted, thus reducing an overall transmission of bits in a bitstream. This is accomplished by making information transmitted later in time dependent on information transmitted prior in time when possible.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims thereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a method for decoding digital video data includes receiving a sequence of pictures that comprise the video data, each picture of video data being comprised of at least one slice, and each slice being comprised of at least one treeblock. Each treeblock being partitioned into a number of prediction units, and performing a prediction on each prediction unit according to a corresponding prediction mode in order to reconstruct the video data. The corresponding prediction mode should be the same prediction mode used for encoding the prediction unit prior to transmission.
According to the present invention, prediction mode type information is received along with the video data for identifying a prediction mode of each prediction unit of the video data. The prediction mode type information distinguishes between inter prediction modes and intra prediction modes. The prediction mode type information also distinguishes between prediction modes corresponding to luma prediction units and prediction modes corresponding to chroma prediction units.
According to the present invention, when the prediction mode type information indicates that a linear method (LM) prediction mode is to be implemented to intra predict a current chroma prediction unit for reconstruction, the LM prediction mode includes obtaining a linear combination of previously reconstructed luma samples that have been interpolated from within a same block of the current chroma prediction unit. The LM mode further includes obtaining a linear interpolation of previously reconstructed luma samples from blocks neighboring the current chroma prediction unit, and obtaining previously reconstructed chroma samples from blocks neighboring the current chroma prediction unit.
Also according to the present invention, when the prediction mode type information indicates that a linear method prediction mode is to be made for inter predicting a current chroma prediction unit, a method is provided for obtaining a linear combination of previously reconstructed luma samples that have been interpolated, where the luma samples are obtained from reference pictures that are different from a current picture including the current chroma prediction unit. For the inter prediction method of the LM prediction mode, utilized reconstructed chroma samples may be obtained from luma samples that have been reconstructed from reference pictures that are different from the current picture or luma samples that are previously reconstructed on the current picture. Also, reconstructed chroma samples may be directed obtained from a reference picture of the inter prediction mode of the LM prediction mode for inter prediction. The inter prediction method for the linear method prediction mode is also applicable for B-picture references that are reconstructed at a future time.
The LM prediction mode of the present invention also applies to cases where a prediction unit may be partitioned into both intra prediction partition blocks and inter prediction partition blocks.
According to the present invention, the LM prediction mode identifying a prediction process for a chroma sample may be signaled in a manner that relies on a previously signaled prediction mode relating to a luma sample. This is done in order to conserve the amount of binary codeword bits needed to identify a proper prediction mode.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. First of all, terminologies or words used in this specification and claims are not construed as limited to the general or dictionary meanings and should be construed as the meanings and concepts matching the technical idea of the present invention based on the principle that an inventor is able to appropriately define the concepts of the terminologies to describe the inventor's invention in an intended way. The embodiments disclosed in this disclosure and configurations shown in the accompanying drawings are exemplary in nature and are not intended to be inclusive in nature. The preferred embodiments do not represent all possible technical variations of the present invention. Therefore, it is understood that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents at the timing point of filing this application.
For instance a picture may be referred to as a frame, where a frame or picture represents a single instance of video data. A sequence of pictures, or frames, comprise the video data. A picture is generally comprised of a plurality of slices, but it is possible for a single slice to comprise an entire picture. Also a block can also be referred to as a unit.
Each slice is generally partitioned into a plurality of treeblocks. The size of a treeblock is variable, and may have a size as large as 64×64 pixels. Alternatively, a treeblock may have a size corresponding to any one of 32×32, 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, 4×4, 4×2, 2×4 and 2×2 pixels. The size of a treeblock is influenced by a variety of factors such as, but not limited to, a chosen video resolution of a video picture. An encoder may also adaptively determine an optimal size for a treeblock throughout the sequence of pictures that comprise the video data. Another basic unit for processing a video picture is a macroblock. A macroblock has a size of 16×16.
Prior to decoding a transmission of video data, the video data must first be encoded.
Prediction processing is performed by a prediction processing unit 3 of the transmission unit 1. Prediction processing of the original video data is necessary to attain a sequence of video data pictures that represents the original video data from the video source. It is while the video data is undergoing various prediction processing in the prediction processing unit 3 that prediction mode information is associated to each prediction unit of video data. The prediction mode information identifies under which available prediction mode each prediction unit was prediction processed. This way, later upon reception of the video data at a decoding unit, each prediction unit can be successfully re-predicted and reconstructed for display by undergoing the same prediction mode processing as identified by the prediction mode information. After going through the prediction processing, a transform unit 4 performs a transform operation on the predicted video data. It is most likely a Discrete Cosine Transform (DCT) is performed on the predicted video data. Then the video data is encoded by the encoder unit 5 and transmitted.
Chroma Intra-Prediction Modes
First, intra prediction modes for predicting chroma samples will be explained.
A receiver's decoding unit that receives actual video data will also receive intra chroma prediction mode information that corresponds to each chroma prediction unit of the video data. The chroma sample that requires prediction processing at a decoding unit can be referred to as the chroma prediction unit. The intra chroma prediction mode information indicates the prediction mode used by an encoder to encode video data prior to transmission of the video data. This is required so that at the receiving decoding unit side, the corresponding prediction mode may be processed on a prediction unit of video data in order to ensure successful reproduction of the video data. Thus upon receiving the transmission of video data, the decoding unit is then tasked with reading the intra chroma prediction mode information and then performing the appropriate prediction on the prediction unit according to the value indicated by the intra chroma prediction mode information.
Table 1 depicts one embodiment of the values and names for the various intra chroma prediction modes according to one embodiment of the present invention. By applying one of these intra chroma prediction modes, a current chroma prediction unit can be accurately predicted and reconstructed by a decoding unit.
Table 1 specifically lists a series of values that correspond to a specific intra chroma prediction mode. Therefore, the intra chroma prediction mode information will include at least a value that identifies the corresponding intra chroma prediction mode. When intra chroma prediction mode information has a value of ‘1’, a DC mode for prediction will be applied to a current chroma prediction unit. For a DC prediction mode, previously reconstructed blocks to the left and top of a current prediction unit, commonly referred to as neighboring blocks, will be utilized to process the prediction of the current prediction unit.
When intra chroma prediction mode information has a value of ‘2’, a horizontal mode for prediction will be applied to a current chroma prediction unit. For a horizontal prediction mode, a previously reconstructed neighboring block to the left of the current prediction unit will be utilized to process the prediction of the current prediction unit.
When intra chroma prediction mode information has a value of ‘3’, a vertical prediction mode will be applied to a current chroma prediction unit. For a vertical prediction mode, previously reconstructed neighboring blocks to the top of the current prediction unit will be utilized to process the prediction of the current prediction unit.
When intra chroma prediction mode information has a value of ‘4’, a plane mode for prediction will be applied to a current chroma prediction unit.
The explanation for the Estimation prediction mode corresponding to when the intra chroma prediction mode information has a value of ‘0’ will be explained in detail later in the disclosure. For future reference, the Estimation mode is considered to be the same as the LM mode prediction mode described in Table 2 below.
Table 2 depicts a second embodiment for identifying intra prediction modes to be applied to chroma prediction units according to the present invention. Table 2 is considered the preferred embodiment for intra chroma prediction modes for the present invention.
When intra chroma prediction mode information has a value of ‘1’, a vertical prediction mode will be applied to a current chroma prediction unit. The vertical prediction mode described in Table 2 operates in the same manner as the vertical prediction mode described in Table 1 above.
When intra chroma prediction mode information has a value of ‘2’, a horizontal prediction mode will be applied to a current chroma prediction unit. The horizontal prediction mode described in Table 2 operates in the same manner as the horizontal prediction mode described in Table 1 above.
When intra chroma prediction mode information has a value of ‘3’, a DC prediction mode will be applied to a current chroma prediction unit. The DC prediction mode described in Table 2 operates in the same manner as the DC prediction mode described in Table 1 above.
In addition, although not specifically identified in Table 2, an intra angular prediction mode is available for processing a prediction of a current chroma prediction unit. The description for the intra angular prediction mode is described below in reference to intra luma prediction modes. The intra angular prediction mode available for processing chroma prediction units operates in the same manner as the intra luma prediction mode. Including all of the angular prediction modes, there are thirty four (34) available intra chroma prediction modes according to the preferred embodiment of the invention.
When intra chroma prediction mode information has a value of ‘4’, an intra DM prediction mode will be applied to a current chroma prediction unit. The DM prediction mode is not available in Table 1. The DM prediction mode processes a prediction on a current chroma prediction unit according to a prediction mode applied to a luma sample found in the same prediction unit as the current chroma prediction unit.
So the intra luma prediction mode information is transmitted and received by a decoding mode prior to the intra chroma prediction mode information. Thus according to the DM prediction mode, the value corresponding to the intra chroma DM prediction mode will simply indicate a decoding unit to prediction process the current chroma prediction unit in the same mode identified by the intra luma prediction mode information corresponding to luma samples of the same prediction unit. Available intra prediction modes for a luma prediction unit can be found in
When intra chroma prediction mode information has a value of ‘0’, an LM (Linear Method) prediction mode will be applied to a current chroma prediction unit. As mentioned above, the LM prediction mode and Estimation prediction mode are to be understood to operate in the same manner, and may be referenced according to either name throughout the disclosure.
Intra LM Prediction Mode
A detailed description for the intra LM chroma prediction mode will now be given. When receiving a video data transmission, a decoder will first predict and reconstruct (ie. decode), luma prediction units of a given block prior to predicting and reconstructing chroma prediction units of the same block.
In order to perform an intra chroma prediction for a current chroma prediction unit in block C according to an LM mode, a linear interpolation of previously reconstructed luma samples within the current prediction block C must first be attained.
According to a preferred embodiment of the intra LM prediction mode, two previously reconstructed luma samples are obtained from within block C. A previously reconstructed luma sample is denoted by PL(x,y), where x and y correspond to location references for a current chroma prediction unit within block C that is currently being prediction processed according to the LM prediction mode. A first luma sample is taken at PL(2x,2y) and a second luma sample is taken at PL(2x,2y+1) within block C. Then according to the preferred embodiment of the intra LM prediction mode, the linear combination of interpolated luma samples, PL*(x,y), can be attained by
PL*(x,y)=0.5*[PL(2x,2y)+PL(2x,2y+1)] [Math Figure 1]
Now with the attained linear combination of interpolated luma samples, PL*(x,y), the intra LM prediction for the current chroma prediction unit, denoted by P′c, can be attained by
P′c=α*0.5*+β [Math Figure 2]
where alpha, α, and beta, β, can be attained by
According to Math Figure 3, R(*,*) represents a correlation between the two references variables, and M(*) represents an average for the variable referenced within. P{circumflex over ( )}L* represents a linear interpolation of a previously reconstructed luma sample taken from either one of neighboring blocks A or B. According to
As mentioned above,
Similarly, the ‘X’ found in between luma sample 3 and 4 represents the resulting linear combination of interpolated luma samples according to PL*(1,0). The remaining ‘X’ marks seen in
Now in order to process the actual intra chroma prediction, the linear combination of interpolated luma samples attained above, PL*(x,y), are collaborated along with the calculated α and β coefficients to then attain the intra chroma LM prediction, P′c(x,y), for the current chroma prediction unit. The exact calculation for the current chroma prediction unit according to the intra chroma LM prediction mode can be seen in Math Figure 3.
However, the present invention is not limited to only include a linear combination of interpolated luma samples as depicted in
So by shifting the luma samples from which to take the linear interpolation with, the second embodiment is able to provide further flexibility to the LM prediction mode.
The PL*(x,y) according to the second embodiment is attained by
PL*(x,y)=0.5*[PL(2x+1,2y)+PL(2x+1,2y+1)] [Math Figure 4]
The calculations for the coefficients α and β remain the same as seen in Math
In a third embodiment for attaining a linear combination of interpolated luma samples, PL*(x,y), four different luma samples may be taken from within the current block C.
Thus the PL*(x,y) according to the third embodiment can be attained by
PL*(x,y)=0.25*[PL(2x,2y)+PL(2x+1,2y)+PL(2x,2y+1)+PL(2x+1,2y+1)] [Math Figure 5]
The calculations for the coefficients α and β remain the same as seen in Math
It is to be understood that the methods for attaining PL*(x,y) are not limited to the embodiments disclosed above. The above disclosed embodiments for attaining PL*(x,y) have been made to demonstrate preferable embodiments thereof, however it will be understood by those skilled in the art that various methods for attaining a linear interpolation of reconstructed luma samples are possible under the present invention without departing from the scope and spirit of the present invention.
Chroma Inter Prediction Modes
Chroma samples of inter prediction blocks did not previously have their own prediction modes. It was the case that chroma samples of an inter prediction block were prediction processed simply by following a prediction mode for a corresponding luma sample in a same prediction unit. However, according to the present invention, the LM prediction mode described in terms of intra chroma prediction is made available for inter chroma prediction.
Inter predictions also involve prediction processing the luma samples prior to processing the chroma samples of any given prediction unit. This means that previously reconstructed luma samples are available when processing a prediction on a current chroma prediction unit. Therefore the basic processing for inter chroma LM prediction will be processed the same as described above for intra chroma LM prediction. The only difference is that for inter prediction, luma samples belonging to the same prediction unit as the current chroma prediction unit, are reconstructed by making reference to reference pictures that are different from a current picture that includes the current chroma prediction unit.
Therefore, although the method for reconstructing luma samples are different according to the intra prediction mode and inter prediction mode, after obtaining reconstructed luma samples belonging to a same prediction unit, a chroma prediction unit can be prediction processed in an inter LM prediction mode. Then the reconstructed luma samples included in the same prediction unit can be taken to form a linear combination and then interpolated for processing of an inter chroma LM prediction mode. Similarly the α and β coefficients seen in Math Figure 3 may be attained by utilizing motion vector compensation to process the reconstruction of luma and chroma samples in prediction units neighboring the current chroma prediction unit. And a linear interpolation may be applied to a neighboring luma sample to obtain the α and β coefficients.
And once the linear combination of previously reconstructed luma samples are interpolated, and the necessary luma and chroma samples needed to calculate the α and β coefficients seen in Math Figure 3 are obtained, the inter chroma LM prediction mode can be processed on the current chroma prediction unit according to Math Figure 2.
Signaling for Intra Chroma LM Prediction Mode
Transmission of a video signal will include encoded video data arranged into block data formats, wherein the blocks contain luma samples and chroma samples that are a prediction from an original video source. Also included in the video signal along with the actual video data will be a variety of information data relating to various characteristics of the video data. The information data may include size information for blocks, instructional flags and block type information among other possible information data. Among the variety of information data included in the transmission signal, there will be prediction mode information relating to each block of encoded video data. The prediction mode information indicates which available prediction mode was used to encode video data. The prediction mode information is transmitted along with the encoded video data so that a decoder that receives the encoded video data can which prediction mode was used for prediction processing at the encoding unit, so that the same prediction mode can be used to accurately reconstruct the video data at the decoding unit.
In any prediction process for reconstruction of a block in a decoder, the luma samples are the first to be prediction processed. So for example in a 2×2 pixel size block found in 4:2:0 sampling, there will be four luma samples and a set of corresponding chroma samples. And in this case, the four luma samples will be prediction processed for reconstruction before the corresponding set of chroma samples.
In a preferred embodiment, there are thirty four (34) intra prediction modes available, when including each of the angular modes (3 . . . 33).
A more detailed description for the angular prediction mode will now be given. The intra Angular prediction mode, corresponding to intra prediction mode information values ‘3-33’, predicts a current prediction unit based on an angular representation of previously predicted samples that adjacently neighbors the current prediction unit at an angle corresponding to the angles depicted in
While the preferred embodiment for intra luma prediction modes depicted in
For instance, another alternative embodiment may assign the intra luma LM prediction mode a value of ‘3’. In this alternative embodiment the vertical prediction mode is assigned a value of ‘0’, the horizontal prediction mode is assigned a value of ‘1’, the DC prediction mode is assigned a value of ‘2’, the LM mode is assigned a value of ‘3’ and the angular prediction mode is assigned the remaining values ‘4 . . . 33’. A table for identifying this third alternative embodiment is detailed by Table 3 below.
While only the three embodiments for possible intra prediction modes for luma samples have been explained herein, it is within the scope of the present invention to switch the prediction mode values for any of the prediction modes shown to be available according to the intra luma prediction modes disclosed above. As long as each of the available prediction modes can be clearly distinguish and not confused with another prediction mode, any value may be assigned to each of the available prediction modes for intra luma prediction processing. This holds true for the numbering of the intra chroma prediction mode values as well.
For an intra luma prediction process, a luma Prediction Unit along with a corresponding IntraPredMode information is input to the selector 131. The available IntraPredMode are disclosed in
The mapping table depicted in
For example, if the previously received IntraPredMode is ‘0’, corresponding to an Intra_Vertical prediction mode, then the values that will be assigned to each of the available intra chroma prediction modes in this instance will be found below within the same column. So staying under the assumption that IntraPredMode identifies the Intra_Vertical prediction mode, if the selector 131 receives a value of ‘0’ for intra_chroma_pred_mode, then according to
Staying under the assumption that IntraPredMode still identifies the Intra_Vertical prediction mode, if the Intra_Vertical prediction mode is to be signaled for chroma prediction there is no need for the intra chroma prediction mode information to specifically transmit the value for Intra_Vertical prediction mode, thus the ‘n/a’ value. This is because information pertaining to the Intra_Vertical prediction mode is already known from the intra luma prediction, and Intra_Vertical prediction mode can be invoked by simply referring to the Intra_DM prediction mode. The Intra_DM prediction mode allows the chroma prediction mode to follow the corresponding luma prediction mode. So when IntraPredMode is the Intra_Vertical prediction mode, there is no need to specifically assign a value for Intra_Vertical prediction mode for the chroma sample due to the availability of the Intra_DM prediction mode. For all other prediction modes while IntraPredMode has a value ‘0’, a specific value must be assigned to specify the proper intra chroma prediction mode. So when IntraPredMode is still ‘0’ and the selector 131 subsequently receives an intra_chroma_pred_mode of ‘3’, then the selector 131 will know that an Intra_DC prediction mode is being signaled. Then referring back to
Now when IntraPredMode is the Intra_Horizontal prediction mode ‘1’, there is similarly no need for the intra_chroma_pred_mode information to specifically transmit the value relating to the Intra_Horizontal prediction mode, thus the ‘n/a’ value seen in Table 14A. Instead when IntraPredMode has a value ‘1’ and intra_chroma_pred_mode has a value ‘4’, then the resulting IntraPredModeC from Table 14A is ‘1’, which identifies the Intra_Horizontal prediction mode as seen in
Chroma prediction units may be prediction processed according to the Intra_Angular prediction mode when IntraPredMode indicates intra luma angular prediction mode, and intra_chroma_pred_mode identifies the Intra_DM prediction mode.
By utilizing the Intra_DM prediction mode, bits of a binary codeword corresponding to each intra prediction mode can effectively be conserved and reduced. This savings in bits becomes more apparent when viewing
From a binary bit codeword standpoint, this allows for the use of max three bit codewords of ‘0’, ‘10’, ‘111’ and ‘110’ to assign to the four intra chroma prediction modes that need to be separately distinguished when the IntraPredMode corresponds to Intra_Vertical, Intra_Horizontal and Intra_DC prediction modes. If the Intra_DM prediction mode were not available, then in all instances five separate intra chroma prediction modes would need to be distinguished. If five distinct codewords are needed, then this increases the necessary codeword bit length to increase to a maximum of four bits. This can be seen in the case where the IntraPredMode is the Intra_Angular prediction mode. In this case, each intra prediction modes must be assigned one of ‘0’, ‘10’, ‘110’, ‘1111’, ‘1110’ binary codewords. During a binary bitstream it is difficult to distinguish between ‘1’,′11, ‘111’ and ‘1111’ and thus more than one of these codeword values are preferred not to be used when assigning to an intra chroma prediction mode for each IntraPredMode instance.
It is noted that each instance of the IntraPredMode may assign its own binary bit codeword to correspond to an intra chroma prediction mode. This is why for the case where IntraPredMode is ‘0’, the codeword value to signal Intra_DC prediction mode for chroma samples can be ‘110, and for the case where IntraPredMode is ‘2’, the codeword value to signal Intra_Horizontal prediction mode for a chroma sample can also be assigned ‘110’. Each instance of IntraPredMode can assign its own codeword value for the available intra chroma prediction modes. According to a preferred embodiment of the present invention, the Intra_DM prediction mode will be assigned the binary codeword ‘0’ corresponding to the shortest binary bit length. Also according to a preferred embodiment of the present invention, the Intra_LM prediction mode will be assigned the binary codeword having the second shortest binary bit length, ‘10’.
However, it is within the scope of the present invention to assign any one of the codewords to any one of the available prediction modes shown in
For example, if it is later determined that intra chroma samples are increasingly being predicted according to the Intra_DC mode, then the Intra_DC prediction mode may be assigned the codeword ‘0’ to conserve the amount of codeword bits that need to be transmitted. It is also within the scope of the present invention to adaptively change the assignment of prediction mode codewords during the transmission or reception of a video signal. For instance if it is determined that certain video sequences require a large number of Intra_LM mode prediction processing, then for those video sequences the Intra_LM prediction mode may be assigned the codeword with the smallest number of bits, ‘0’. Then later if another video sequence within the video signal finds that a large number of Intra_Horizontal prediction mode processing is required, then the Intra_Horizontal prediction mode may be assigned the codeword having the smallest number of bits, ‘0’. Therefore it is within the scope of the present invention to adaptively assign binary codeword values for prediction mode identification in an effort to conserve the total number of bits that need to be transmitted.
In the alternative embodiment where the Intra_LM prediction mode is made available for the prediction processing of luma samples, the mapping table may be depicted as shown below in Table 4. According to Table 4, the Intra_LM prediction mode corresponds to IntraPredMode having a value of ‘3’, whereas the values for intra_chroma_pred_mode remain the same as seen in
The steps for determining which binary codeword value to transmit from an encoder with respect to an intra chroma prediction mode according to a preferred embodiment is outlined in
If neighboring blocks A and B are not available, then the chroma_prediction_mode is automatically identified as the Intra_DC prediction mode S1904. A neighboring block is considered not to be available when the neighboring block is not within the same slice as the current block C, or if the neighboring block is not an intra predicted block. At the end of the processing in S1904, whatever the current value determined for chroma_prediction_mode will be transmitted to identify an intra chroma_prediction_mode for prediction processing the current chroma sample.
If the most_probable_chroma_mode_flag has a second value, then the chroma_prediction_mode is compared against the most_probable_chroma_mode S1903. If the chroma_prediction_mode has a value less than the most_probable_chroma_mode, then the current value for chroma_prediction_mode is transmitted for prediction processing S1905. If the chroma_prediction_mode has a value that is not less than the most_probable_chroma_mode, then an intra chroma_prediction_mode corresponding to an identification value of one less than the chroma_prediction_mode will be transmitted for prediction processing. Or as an alternative, if the chroma_prediction_mode has a value that is not less than the most_probable chroma_mode, then an intra chroma_prediction_mode corresponding to an identification value of one more than the chroma_prediction_mode will be used for prediction processing. And in yet another alternative, if the chroma_prediction_mode has a value that is not less than the most_probable_chroma_mode, then any of the available intra chroma prediction modes available may be set as a default mode for prediction processing. For example an Intra_DC mode may be used in this alternative.
While the description has thus far been made for all cases of intra chroma prediction processing, the present invention also considers making the Intra_LM prediction mode only available for certain sizes of chroma transform units. A chroma transform unit is determined during the encoding process and refers to the size of the chroma sample that will be transformed (ie. during the DCT transform process). Thus the chroma transform unit size must be determined by an encoding unit prior to assigning a prediction mode type when preparing the information for transmission. For instance the Intra_LM prediction mode may be unavailable for chroma prediction when the chroma sample transform unit size is larger than 8 (ie. 8×8 pixels). In this case the size of the chroma transform unit must first determined before assigning the prediction mode type. Likewise, when receiving the video data transmission, the decoding unit will receive and read the chroma transform unit size information before reading the prediction mode type. This ensures that the decoding unit will realize when an Intra_LM prediction mode will not be made available.
If the availability of the Intra_LM is set to depend on the size of a chroma transform unit, it stands that information identifying the size of the chroma transform unit must be transmitted prior to the transmission of the information indicating the prediction mode type.
Although the transform unit size of 8 is specifically mentioned, it is within the scope of the invention to choose a different transform size for determining when to cut off the availability of the Intra_LM prediction mode for chroma prediction processing. In the event that the Intra_LM prediction mode is not made available, an alternative prediction mode such as an Intra_Vertical8 prediction mode may be assigned. It is within the scope of the present invention that instead of the Intra_Vertical8 prediction mode, another available intra prediction mode is assigned.
Also, according to a preferred embodiment the chroma transform unit size is set to automatically equal the transform unit size of a corresponding luma transform unit size. Thus according to the preferred embodiment seen in
While the present invention has been described and illustrated herein with reference to the preferred embodiments thereof, it will be apparent to those skilled in the art that various modifications and variations can be made therein without departing from the spirit and scope of the invention. Thus, it is intended that the present invention covers the modifications and variations of this invention that come within the scope of the appended claims and their equivalents.
This application is a continuation of U.S. application Ser. No. 16/411,283, filed on May 14, 2019, now allowed, which is a continuation of U.S. application Ser. No. 15/915,211, filed on Mar. 8, 2018, now U.S. Pat. No. 10,321,156, which is a continuation of U.S. application Ser. No. 15/212,390, filed Jul. 18, 2016, now U.S. Pat. No. 9,918,106, which is a continuation of U.S. application Ser. No. 14/478,586, filed Sep. 5, 2014, now U.S. Pat. No. 9,426,472, which is a continuation of U.S. application Ser. No. 13/083,896, filed Apr. 11, 2011, now U.S. Pat. No. 8,861,594, which claims the benefit of U.S. Provisional Patent Application No. 61/322,292 filed on Apr. 9, 2010; U.S. Provisional Patent Application No. 61/322,293 filed on Apr. 9, 2010; U.S. Provisional Patent Application No. 61/453,955 filed on Mar. 17, 2011; U.S. Provisional Patent Application No. 61/453,981 filed on Mar. 18, 2011; U.S. Provisional Patent Application No. 61/454,565 filed on Mar. 20, 2011; and U.S. Provisional Patent Application No. 61/454,586 filed on Mar. 21, 2011, all of which are hereby incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
7869501 | Park | Jan 2011 | B2 |
9008174 | Zheng et al. | Apr 2015 | B2 |
20050008240 | Banerji | Jan 2005 | A1 |
20050105621 | Ju | May 2005 | A1 |
20060233250 | Chaetal | Oct 2006 | A1 |
20070030180 | Yang | Feb 2007 | A1 |
20070110153 | Cho et al. | May 2007 | A1 |
20070211797 | Kim | Sep 2007 | A1 |
20070253486 | Jeon et al. | Nov 2007 | A1 |
20080025412 | Lee | Jan 2008 | A1 |
20080152000 | Kaushik | Jun 2008 | A1 |
20080170615 | Sekiguchi et al. | Jul 2008 | A1 |
20080175490 | Cho et al. | Jul 2008 | A1 |
20090016631 | Naito et al. | Jan 2009 | A1 |
20090034856 | Moriya | Feb 2009 | A1 |
20090041120 | Yu | Feb 2009 | A1 |
20090110067 | Sekiguchi et al. | Apr 2009 | A1 |
20090175334 | Ye | Jul 2009 | A1 |
20090190659 | Lee et al. | Jul 2009 | A1 |
20090225866 | Park | Sep 2009 | A1 |
20090245384 | Fukuhara et al. | Oct 2009 | A1 |
20090245387 | Hvidsten | Oct 2009 | A1 |
20100020866 | Marpe et al. | Jan 2010 | A1 |
20100260261 | Kotaka | Oct 2010 | A1 |
20110038414 | Song et al. | Feb 2011 | A1 |
20110200108 | Joshi et al. | Aug 2011 | A1 |
20130051469 | Park et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
101193305 | Jun 2008 | CN |
101218830 | Jul 2008 | CN |
101283595 | Oct 2008 | CN |
101494782 | Jul 2009 | CN |
101888559 | Nov 2010 | CN |
105472386 | Apr 2016 | CN |
105635737 | Jun 2016 | CN |
1909508 | Apr 2008 | EP |
2086239 | Aug 2009 | EP |
2009177352 | Feb 2011 | JP |
1020070077609 | Jul 2007 | KR |
WO2006109985 | Oct 2006 | WO |
WO2007040335 | Apr 2007 | WO |
WO2009051419 | Apr 2009 | WO |
WO2009151615 | Dec 2009 | WO |
Entry |
---|
Charles Poynton Ed -Poyntion C: “Digital Video and HDTV”, Jan. 1, 2003 (Jan. 1, 2003), Digital Video and HDTV: Algorithms and Interfaces, Morgan Kaufmann, pp. 90-93,333, XP002450116, ISBN:978-1-55860-792-7 *p. 93*. |
Chen J., et al. “CE6_a.4: Chroma intra prediction by reconstructed luma samples”, 20110312, No. JCTVC-E266, Mar. 12, 2011 (Mar. 12, 2011), XP030008772, ISSN: 0000-0007, *pp. 3, 10*. |
Chinese Office Action dated May 19, 2015 for Chinese Application No. 2011-80018316, with English Translation, 13 pages. |
Chinese Office Action in Chinese Application No. 2015110110036.9. dated Feb. 8, 2018, 9 pages. |
Chinese Office Action in Chinese Application No. 201511018935.3, dated Jul. 6, 2018, 10 pages. |
Chinese Office Action issued in Chinese Application No. 201511009169.4, dated Dec. 25, 2017, 12 pages (with English translation). |
Dong L, et al.: “Improved Chroma Intra Mode Signaling”, 95. MPEG Meeting; Jan. 24, 2011 - Jan. 28, 2011; Daegu; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11), No. m19019, Jan. 22, 2011 {Jan. 22, 2011), XP030047587, *abstract*, *p. 2*. |
Edouard Francois et al.: “Non-CE6a: Use of chroma phase in LM mode”, 7. JCT-VC Meeting; 98. MPEG Meeting; Nov. 21, 2011-Nov. 30, 2011; Geneva; (Joint Collaborative Team On Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16); URL:http://wfrp3.itu.int/av-arch/jctvc-site/,, No. JCTVC-G245, Nov. 8, 2011 (Nov. 8, 2011), XP030110229, *pp. 1-4*. |
European Search Report dated Jan. 29, 2015, for Application No. 11003021, 16 pages. |
European Search Report dated Sep. 19, 2014 for European U.S. Appl. No. 11/003,021, 10 pages. |
Iain E G Richardson: “Prediction of Inter Macroblocks in P-slices”, internet CITATION, Apr. 30, 2003 (Apr. 30, 2003), pp. 1-3, XP002596717, Retrieved form the Internet: URL:http://www.vcodex.com/files/h264_interpred.pdf [retrieved on Aug. 17, 2010] *the whole document*. |
Ik-Hwan Cho et al.: “New Intra Luma Prediction Mode in H.264/AVC Using Collocated Weighted Chroma Pixel Value”, Jan. 1, 2006 (Jan. 1, 2006), Advanced Concepts for Intelligent Vision Systems Lecture Notes in Computer Science;;LNCS, Springer, Berlin, DE, pp. 344-353, XP019043355, ISBN:978-3-540-44630-9 *pp. 1-4, 8-9*. |
International Search Report dated Dec. 7, 2011 for Application No. PCT/KR2011/002508, in English, 3 pages. |
Jianle Chen et al.: “Chroma intra prediction by reconstructed luma samples(JCTVC_C206)”, Joint Collaborative Team on Video Coding(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 3rd Meeting: Guangzhou, CN, Oct. 7-15, 2010, Oct. 11, 2010 (Oct. 11, 2010), pp. 1-7, XP055060342, Retrieved from the Internet: URL:http://phenix.int-evry.fr/jct/index.php (retrieved on Apr. 19, 2013] *the whole document*. |
Jungsun Kim et al.: “New Intra Chroma Prediction Using Inter Channel Correlation”, 2. JCT-VC Meeting; Jul. 21, 2010-Jul. 28, 2010; Geneva; (Joint Collaborativeteam On Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-TSG.16); URL:http://wftp3.itu.int/av-arch/jctvc-site/, No. JCTVC-BO21, Jul. 23, 2010 (Jul. 23, 2010), XP030007601, ISSN: 0000-0048 *pp. 1-3*. |
Kim, Yang Soo, Jinwoo Jeong, and Yoonsik Choe. “RGB video coding using the matched neighbourhood block in the inter-color plane.” 1EICE Electronics Express, vol. 6, No. 24 (2009): pp. 1715-1720. |
Korean Notice of Allowance in Korean Application No. 10-2012-7029158, dated Jul. 17, 2017, 3 pages (with English translation). |
Sang Heon Lee et al.: “Intra prediction method based on the linear relationship between the channels for YUV 4:2:0 intra coding”, Image Processing (ICIP), 2009 16th IEEE International Conference On IEEE, Piscataway, NJ, USA, Nov. 7, 2009 (Nov. 7, 2009), pp. 1037-1040, XP031628426, DOI: 10.1109/ICIP.2009.5413727 ISBN:978-1-4244-5653-6 *the whole document*. |
Number | Date | Country | |
---|---|---|---|
20210006829 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
61454586 | Mar 2011 | US | |
61454565 | Mar 2011 | US | |
61453981 | Mar 2011 | US | |
61453955 | Mar 2011 | US | |
61322293 | Apr 2010 | US | |
61322292 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16411283 | May 2019 | US |
Child | 17028433 | US | |
Parent | 15915211 | Mar 2018 | US |
Child | 16411283 | US | |
Parent | 15212390 | Jul 2016 | US |
Child | 15915211 | US | |
Parent | 14478586 | Sep 2014 | US |
Child | 15212390 | US | |
Parent | 13083896 | Apr 2011 | US |
Child | 14478586 | US |