This application claims the benefit of priority under 35 U.S.C. § 119 (a) and (b) to Chinese patent application No. CN202011155756.5, filed Oct. 26, 2020, the entire contents of which are incorporated herein by reference
The present invention relates to a method and apparatus for producing high-pressure nitrogen from a cryogenic air separation unit.
Cryogenic air separation units (ASUs) produce pure nitrogen and oxygen streams by taking atmospheric air and separating it into nitrogen and oxygen using distillation, most commonly using a double distillation column having a low pressure and a medium-pressure column, at cryogenic temperatures. Under normal circumstances, the ASU will produce a low-pressure nitrogen stream from the low-pressure column and a medium-pressure stream from the medium-pressure column.
If high-pressure nitrogen is desired (e.g., at a pressure greater than the pressure of the medium-pressure column, for example at 7 to 11 bara), there are normally two ways to achieve this goal: (1) internal compression and (2) external compression. With internal compression, liquid nitrogen (LIN) is withdrawn from the medium-pressure column and sent to a liquid pump for pressurization to the desired high pressure. This pressurized LIN is then vaporized in the main heat exchanger. With external compression, a medium-pressure or low-pressure gas is withdrawn from the medium-pressure column or low-pressure column, respectively, before it is warmed in the main heat exchanger. After warming in the main heat exchanger, the warmed gas is then compressed in a dedicated compressor.
Unfortunately, when retrofitting an existing ASU using internal compression, a new LIN pump is required and the operation of the heat exchanger and the main air compressor (and/or booster air compressor) will also be affected. In fact, in some circumstances, the existing heat exchanger might not be designed to handle LIN vaporization, and therefore, a new heat exchanger could be required. Additionally, operating expenses will increase as well.
With respect to external compression, both CAPEX and OPEX will be increased due to the dedicated nitrogen compressor used to compress the nitrogen downstream the heat exchanger.
The present invention is directed to a device and a method that can provide pressurized nitrogen without increasing both the CAPEX and OPEX. In one embodiment, the invention can include splitting the medium-pressure GAN from the main heat exchanger into two parts, with one part going to a turbine to produce low-pressure GAN, while the other portion goes to a nitrogen booster. While the CAPEX is increased, the OPEX is largely unchanged, as the turbine can be used to drive the booster.
In another embodiment, the invention can include an additional heat exchanger that is used to exchange heat between the resulting high-pressure nitrogen from the booster and the low-pressure nitrogen from the turbine.
In certain embodiments of the invention, there is no need to extract any extra streams from the column system to warm up, which means there is no impact on the existing heat exchanger and column system. Furthermore, because the nitrogen booster is powered by the nitrogen turbine, little to no additional power is needed, which means OPEX remain largely unchanged.
In one embodiment, a method for producing a high-pressure gas from an air separation unit is provided. In this embodiment, the method can include the steps of: introducing a cold air feed into a distillation column system under conditions effective for separating the cold air feed into a first air gas and a second air gas; withdrawing the first and second air gases from the distillation column system and warming said first and second air gases in a main heat exchanger, wherein the first air gas is withdrawn from the distillation column system at a medium pressure; splitting the first air gas into a first fraction and a second fraction; expanding the first fraction in a turbine; and compressing the second fraction in a booster to a pressure that is higher than the medium pressure, wherein the booster is powered by the turbine.
In optional embodiments of the method for producing a high-pressure gas:
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, claims, and accompanying drawings. It is to be noted, however, that the drawings illustrate only several embodiments of the invention and are therefore not to be considered limiting of the invention's scope as it can admit to other equally effective embodiments.
While the invention will be described in connection with several embodiments, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all the alternatives, modifications and equivalence as may be included within the spirit and scope of the invention defined by the appended claims.
In
The embodiment shown in
In
In the embodiment shown in
The tables below show comparative flows, temperatures and pressures of the various streams for each figure.
While the embodiments above have been disclosed with reference to stream 22 being medium-pressure nitrogen, those of ordinary skill in the art will recognize that stream 22 could also be low-pressure oxygen.
While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations as fall within the spirit and broad scope of the appended claims. The present invention may suitably comprise, consist or consist essentially of the elements disclosed and may be practiced in the absence of an element not disclosed. Furthermore, language referring to order, such as first and second, should be understood in an exemplary sense and not in a limiting sense. For example, it can be recognized by those skilled in the art that certain steps can be combined into a single step.
The singular forms “a”, “an”, and “the” include plural referents, unless the context clearly dictates otherwise.
Optional or optionally means that the subsequently described event or circumstances may or may not occur. The description includes instances where the event or circumstance occurs and instances where it does not occur.
Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, it is to be understood that another embodiment is from the one particular value and/or to the other particular value, along with all combinations within said range.
Number | Date | Country | Kind |
---|---|---|---|
CN 202011155756.5 | Oct 2020 | CN | national |