Method and apparatus for producing three-dimensional objects

Information

  • Patent Grant
  • 9782933
  • Patent Number
    9,782,933
  • Date Filed
    Tuesday, February 10, 2015
    9 years ago
  • Date Issued
    Tuesday, October 10, 2017
    6 years ago
Abstract
The invention concerns an apparatus (1) for producing three-dimensional objects (6) layer by layer using a powdery material which can be solidified by irradiating it with a beam (4) of charged particles, said apparatus (1) comprising means for successive application of powder layers to a work table, and a radiation gun (3) for delivering said beam (4) of charged particles, wherein the inventive apparatus (1) comprises a powder-lifting detection device (10, 10a, 10b, 10c, 10d, 10e) capable of generating a signal (S) upon detection of lifting of powdery material from the working area (5).
Description
BACKGROUND

Field of the Invention


This invention relates to a method and apparatus for producing three-dimensional objects layer by layer using a powdery material which can be solidified by irradiating it with a beam of charged particles.


Description of Related Art


Equipment for producing a three-dimensional object layer by layer using a powdery material which can be solidified by irradiating it with electromagnetic radiation or an electron beam are known from e.g. U.S. Pat. No. 4,863,538, U.S. Pat. No. 5,647,931 and WO 2004/056511. Such equipment include for instance a supply of powder, means for applying a layer of powder on a work table, and means for directing the beam over the work table. The powder sinters or melts and solidifies as the beam moves or sweeps over a working area of the work table.


When melting or sintering a powder using a high-energy beam, it is important to avoid exceeding the vaporization temperature of the powder, since otherwise the powder will vaporize instead of forming the intended product. US 2005/0186538 discloses a method focusing on this problem. In this method a laser beam repeatedly is directed to the same powder target area during the melting/sintering phase as to step-wise raise the powder temperature. This way, a too high powder temperature is avoided.


When using an electron beam, or other charged particle beam, instead of a laser beam the situation is in some ways different. As the beam of charged particles interacts with the powdery material in a small area it causes heating of the irradiated area but also transfer of charges from the beam particles into the exposed area. The charges are transported out from the exposed area partly through the surrounding powdery material at a rate determined by the electrical conductivity of the powdery material and partly through secondary electron emission from the exposed area. Depending on the intensity of the charged particle beam, the electrical conductivity of the powdery material and the efficiency of secondary electron emission, the powdery material may, in some regions, reach an amount of charging high enough for the electrostatic force between the charged particles at the surface and underlying charged particles to overcome the force of gravity. Thus at this point charged powder particles will lift from and leave the working area and move around above the powder bed. This phenomenon propagates to surrounding areas of the powder layer resulting in a massive powder discharge or lift-off where large amounts of powder will whirl around above the powder bed and perhaps around the entire irradiation chamber. A result of a massive powder lift-off is that the powder particles that have left the working area interfere with the beam and that the structure of the powder layer is destroyed, When this happens, the production process must be interrupted in order to remove the spread-out powder and apply a new layer of powder onto the working table. These procedures take some time to complete and, in the interest of process stability and production rate, it is important to avoid such powder discharges.


Applying the method according to US 2005/0186538 to a powder melting/sintering device equipped with an electron beam is likely to give a poor result since no measures are taken in that method to avoid powder lift-off.


One solution to the problem of avoiding discharges is to add conductive material, such as carbon, to the powder as to increase the electrical conductivity of the powder. Disadvantages of this solution are, however, that the solidifying process of such a powder mixture may be difficult to control and that the properties of the formed product may he affected in a negative way. For instance, the mechanical strength may be decreased.


To lower the probability for powder lifting to occur it may be possible to increase the conductivity in the surrounding powder by performing a more thorough heating or sintering. However, such a procedure increases the time of building a three-dimensional body and because production time is an important parameter this approach is not fully satisfying,


There is thus still a need for improvements in the field of handling lift-off of powder from the work table.


BRIEF SUMMARY

The object of this invention is to provide a method and apparatus for producing three-dimensional objects using powder layers and a charged particle beam, which method and apparatus exhibit improved properties compared to conventional methods and apparatuses with regard to handling of powder lifting from the work table. This object is achieved by the method and apparatus defined by the technical features contained in the independent claims. The dependent claims contain advantageous embodiments, further developments and variants of the invention.


The invention concerns a method for producing three-dimensional objects layer by layer using a powdery material which can be solidified by irradiating it with a beam of charged particles, which method comprises the following steps: successive application of powder layers to a working area, and fusing together successive layers of said three-dimensional object by successively irradiating the powdery layers with said beam. The inventive method is characterized in that it comprises the following steps: i) determining whether lifting of powdery material from the working area occurs using a powder-lifting detection device capable of generating a detection signal upon detection of lifting of powdery material from the working area, and ii) interrupting the irradiation of at least a part of the working area where powder lifting occurs using the detection signal generated by the powder-lifting detection device for automatically trigging the interruption.


Such a method has the advantageous effect of making it possible to automatically suppress the unwanted powder lifting effect at an early stage before it has led to harmful contamination or charge transfer into surrounding areas of the powder layer, which harmful contamination or charge transfer often leads to a major powder lift-off, complete discontinuation of the building of the three-dimensional part and the necessity to restart the building sequence from the start. An early suppression of the lifting effect makes it possible to restart the building of the three-dimensional object after the lifting effect has settled leading to a significant saving of building material and time for the completion of the three-dimensional object.


Since the inventive method makes the powder lifting phenomenon less harmful, a further advantage is that less time and effort needs to be spent on developing methods and material etc. for avoiding powder lift-off The inventive method can of course also be used in connection with various actions for avoiding powder lifting. In such a situation the inventive method works more as a safety system that is activated when the normal systems fail. The risk of powder lifting to occur is probably always present even if various precautions are taken.


In an advantageous embodiment of the invention the step of interrupting the irradiation of at least a part of the working area where powder lifting occurs is performed within a first time-period starting at a point of time when the detection signal is created, wherein the first time-period is less than 5 seconds. Preferably, the first time-period is less than 500 ms, more preferably less than 50 ms. Because it normally is an advantage to suppress the powder-lifting effect as quickly as possibly, it is normally an advantage if this first time-period is as short as possible. Suitable time-periods depend e.g. on sensitivity of detection device, type of powder, beam power etc. In some applications a few seconds may be sufficient. In other applications time-periods of one or two orders of magnitude lower than that should be used.


In an advantageous embodiment of the invention the step of interrupting the irradiation of at least a part of the working area where powder lifting occurs is performed by turning off the beam. This is a safe way of interrupting the powder lifting process.


In an advantageous embodiment of the invention the step of interrupting the irradiation of at least a part of the working area where powder lifting occurs is performed by guiding the beam into another direction. The beam can be guided outside the working area or towards other parts of the working area. In certain applications it is an advantage to avoid turning off and on the beam. It may also be useful to continue irradiating other parts of the working area, e.g. for heating purposes. If the beam is guided such as to irradiate other parts of the working area, the beam is preferably operated with a reduced average beam power for avoiding powder lifting but still keeping up the temperature of the powder such as to keep up the production speed. Reduced average beam power can be achieved with a pulsed beam or by reducing the beam power.


In an advantageous embodiment of the invention the method further comprises the step of re-starting the irradiation of the part of the working area where powder lifting has occurred. Preferably, the re-starting of the irradiation is carried out automatically after a certain, second time-period from the step of interrupting the irradiation. If the powder-lifting effect has been quickly interrupted it is likely that a new powder layer is not required and that the irradiation simply can be continued. This second time-period is in such a case preferably in the order of a few seconds. The second-time period may be set to be a function of the first time period.


In an advantageous embodiment of the invention the method further comprises the step of modifying certain operation parameters, such as heating parameters, before re-starting the irradiation. This way further powder lifting events can be avoided.


The invention also concerns an apparatus for producing three-dimensional objects layer by layer using a powdery material which can be solidified by irradiating it with a beam of charged particles, said apparatus comprising means for successive application of powder layers to a work table, and a radiation gun for delivering said beam of charged particles. The inventive apparatus further comprises a powder-lifting detection device capable of generating a signal upon detection of lifting of powdery material from the working area. Such an apparatus makes it possible to rapidly and automatically detect powder-lifting events. Preferably, the apparatus is arranged to use the detection signal created by the powder-lifting detection device for automatically trigging interruption of the irradiation of at least a part of the working area where powder lifting occurs. Such an apparatus is suitable for being operated by the inventive method.


In an advantageous embodiment of the inventive apparatus the powder-lifting detection device comprises a detection unit that is capable of generating a primary signal that varies with varying amounts of powder particles present above or beside the working area. Thereby, the powder-lifting effect can be quantified.


In an advantageous embodiment of the inventive apparatus the powder-lifting detection device comprises a capacitor having two plates over which a voltage is applied, wherein the plate facing the working area is movable. Such a microphone type detection device has various advantages compared to other types of detectors. For instance, it is not affected by the electron beam and it is less costly.


In a preferred variant of this embodiment the apparatus is provided with a second powder-lifting detection device of the same type, wherein the second powder-lifting detection device is arranged to be insensitive to powder-lifting events, and wherein a difference signal from the two powder-lifting detection devices is used for generating the detection signal. This way true powder-lifting events can be distinguished from “false alarms” in the form of interferences, such as noise from the apparatus 1 and external knocks onto the chamber 2, which may create a detection signal if only one microphone detector is used.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

In the description of the invention given below reference is made to the following figures, in which:



FIG. 1 shows, in a schematic view, a preferred embodiment of an apparatus according to the invention,



FIG. 2 shows, in a schematic view, a first example of a powder-lifting detection device for use with the apparatus shown in FIG. 1,



FIG. 3 shows, in a schematic view, a second example of a powder-lifting detection device for use with the apparatus shown in FIG. 1,



FIG. 4 shows, in a schematic view, a third example of a powder-lifting detection device for use with the apparatus shown in FIG. 1,



FIG. 5 shows, in a schematic view, a fourth example of a powder-lifting detection device for use with the apparatus shown in FIG. 1, and



FIG. 6 shows, in a schematic view, a fifth example of a powder-lifting detection device for use with the apparatus shown in FIG. 1.





DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS


FIG. 1 shows, in a schematic view, a preferred embodiment of an inventive apparatus 1 for producing a three-dimensional object 6 layer by layer using a powdery material which can be solidified by irradiating it with an energy beam. The described apparatus 1 is suitable for applying the inventive method. The apparatus 1 comprises an electron gun 3 generating an electron beam 4 in an evacuated chamber 2. A powder bed 7 is positioned onto a height adjustable work table 9. Powder is taken from a powder supply (not shown) and applied layer by layer onto the working table 9. An upper part of the powder bed 7 forms a working area 5 over which the electron beam 4 sweeps during irradiation. After irradiation and fusing together of selected parts of the working area 5, a new layer of powder is distributed over the working area 5 on top of the powder bed 7. These parts, as well as how to control the electron gun 3, how to establish vacuum in the chamber 2 etc., are well known to the skilled man in the art.


in contrast to a conventional apparatus, the inventive apparatus 1 further comprises a powder-lifting detection device 10 for detection of lifting of powdery material from the working area 5, i.e. for detection of powdery material that has left the working area 5 and that is present above and/or aside of the working area 5. The detection device 10 is positioned inside the chamber 2 at a side of the working area 5 and is electronically connected to a control unit 11 that in turn is electronically connected to the electron gun 3 for controlling purposes, such as for directing the beam 4 and for turning on and off the beam 4. The electronic connections are indicated with dashed lines 13. The powder-lifting detection device 10 is arranged in such a way that it is capable of generating an electronic signal S upon detection of lifting of powdery material from the working area 5.


As described above, during irradiation of the working area 5 part of the powdery material may reach an amount of charging high enough for making powder particles begin to lift from and leave the working area 5 and move around above and beside of the powder bed 7. The powder-lifting detection device 10 detects such an event and generates an electronic detection signal S. This signal is sent to the control unit 11 which controls the electron gun 3 in such a way that the irradiation of the working area 5, or at least of a part of working area 5 where powder lifting occurs, is interrupted. Thus the electronic signal S created by the powder-lifting detection device 10 is used for automatically trigging the interruption. This way it is possible to prevent the lifting phenomenon from propagating to surrounding parts of the working area 5 and thereby it is possible to prevent a massive powder lift-off. If the powder-lifting process is interrupted sufficiently quickly it is possible to continue the production process without having to apply a new layer of powder.


Interruption of the irradiation of a part of the working area 5 can be carried out by turning off the beam 4 or by directing the beam 4 towards another part of the working area 5 or towards an area outside of the working area 5. If the beam 4 is directed towards another part of the working area 5, the average power of the beam 4 is preferably reduced for some time in order to avoid a new powder-lifting event but at the same time keep up the heat of the powder. A reduced average beam power can be achieved by reducing the beam power and/or by pulsing the beam.


Irradiation of the part of the working area 5 subject to powder-lifting is continued automatically after a certain, second time period which in this example is 5 seconds.


The powder-lifting detection device 10 is arranged to detect a powder-lifting event at an early stage so that it can be suppressed at an early stage and so that the irradiation can be continued after the relatively short second time period.


As a safety measure, the powder-lifting detection device 10 is also arranged to quantify the powder-lifting event, i.e. to quantify the amounts of powder that has lifted from the working area 5. Thus the powder-lifting detection device 10 is for instance capable of determining whether a major powder discharge has occurred. If the powder discharge is determined to exceed a certain level, a second electronic signal S2 is generated for cancelling or delaying the automatic re-start of the irradiation. In such a case it may be necessary to apply a new layer of powder onto the working area 5.



FIGS. 2-6 show, in schematic views, examples of powder-lifting detection devices 10a-10e for use with the apparatus shown in FIG. These figures show parts of the powder bed 7 and the three-dimensional object 6 as well as the working area 5. Powder particles that have lifted from the working area 5 and that move around above and away from the working area 5 are indicated with arrows 15.


In FIG. 2 the powder-lifting detection device 10a is a type of capacitive microphone detector positioned at a side of the powder bed 7. This detection device 10a comprises a capacitor 16 having two plates over which a voltage is applied. The capacitor plate facing the working area 5, i.e. left plate in FIG. 2, is movable (i.e. flexible, deformable, etc.) whereas the other plate is stationary. Powder particles that lift from the working area 5 and hit the movable capacitor plate induce movements (deformations, vibrations, etc.) of the plate which influences the distance between the two plates and thus the capacitance of the capacitor 16. This change of capacitance can be converted to an electronic signal. An amplifier 17 is provided for amplifying the primary signal Obtained from the capacitor 16 such as to generate the signal S used for interrupting the irradiation process as described above. Capacitor microphones are known as such and can he designed in different ways.


In FIG. 3 the powder-lifting detection device 10b is a type of Faraday cup detector positioned at a side of the powder bed 7. This detection device 10b comprises a conductive cup 18 and an electronic device 19 for measuring a current and for producing the electronic signal S. Powder particles that lift from the working area 5 and hit the cup 18 carry a charge acquired from the beam 4. These charges are collected by the cup 18 and the resulting current is measured by the device 19. If the current exceeds a certain value the signal S is generated. Faraday cups are known as such and can he designed in different ways.


In FIG. 4 the powder-lifting detection device 10c comprises a camera 21 directed at an angle downwards towards the working area 5. The detection device 10c further comprises an image processing unit 22 capable of analyzing a signal from the camera 21 such as to identify whether powder-lifting occurs as well as of generating the electronic signal S if that is the case. Cameras and image processors are known as such and can be designed in different ways.


In FIG. 5 the powder-lifting detection device 10d comprises an X-ray detector 24 with a field of view 26 directed above and across the working area 5. Powder particles exposed to the beam 4 emit X-rays. If powder lifting occurs, X-ray emitting particles will be present in the field of view 26 of the X-ray detector 24 and will thus be detected by the X-ray detector 24. The detection device 10d further comprises a signal processing unit 25 capable of analyzing a signal from the X-ray detector 24 such as to identify whether powder-lifting occurs as well as of generating the electronic signal S if that is the case. X-ray detectors and signal processors are known as such and can be designed in different ways.


In FIG. 6 the powder-lifting detection device 10e comprises a laser source 27 capable of generating a laser beam 28 directed above and across the working area 5. If powder lifting occurs powder particles will be present in the path of the laser beam 28 resulting in scattering of the light in the laser beam 28. To detect powder lifting it is therefore possible to either detect a decrease in intensity of the original laser beam 28 or to detect an increase of scattered laser light 28a. A first light detector 29 is arranged to detect the intensity of the original laser beam 28 and a second light detector 29a is arranged to detect scattered laser light 28a. The detection device 10e further comprises a signal processing unit 30 capable of analyzing a signal from the light detectors 29, 29a such as to identify whether powder-lifting occurs as well as of generating the electronic signal S if that is the case. The powder-lifting detection device 10e may comprise either or both light detectors 29,29a. Laser sources, light detectors and signal processors are known as such and can be designed in different ways.


All powder-lifting detection devices 10a-10e can be adapted to determine the amount of powder particles registered by the detector and not just to determine whether powder-lifting occurs, which means that the powder-lifting effect can be quantified. Thereby the powder-lifting detection devices 10a-10e become capable of generating the second electronic signal S2 mentioned above.


The response time of the detector 10, i.e. the time from detecting occurrence of lifting of powdery material until sending the signal S used for trigging interruption of the irradiation, is preferably as short as possible. The sensitivity and the positioning of the detector should be adjusted to the particular application.


All powder-lifting detection devices 10a-10e shown in FIGS. 2-6 comprises a detection unit, i.e. the capacitor 16, the cup 18, the camera 21, the X-ray detector 24 and the first and second light detectors 29, 29a, that is capable of generating a primary electronic signal that varies with varying amounts of powder particles present above or beside the working area 5.


The microphone detection device 10a shown in FIG. 2 is particularly advantageous because i) it is not affected by the electron beam (as a Faraday cup might be), ii) the signal strength is not dependent on the beam current (as is the case for the X-ray detector), and iii) it is simpler and less costly to implement compared to optical devices such as camera and laser which require considerations with regard to surface metallisation.


In a preferred variant of the invention the apparatus 1 is provided with a first and a second microphone detection device 10a of the type shown in FIG. 2. One of these, the first microphone detection device 10a, is arranged to detect powder-lifting as described above. The other, i.e. the second microphone detection device 10a, is arranged in or at the apparatus 1 in a similar way as the first one but is arranged to be insensitive to powder-lifting events. This can, for instance, be achieved by providing a shield between the working area 5 and the second detector or by positioning the capacitor 16 of the second detector such that the stationary plate faces the working area 5. The first and second microphone detection devices are further arranged in such a way that the individual signal generated from one of the detectors is subtracted from the individual signal generated by the other detector, wherein the resulting difference signal is analyzed such as to identify whether powder-lifting occurs as well as to generate the signal S if that is the case. This way true powder-lifting events can be distinguished from “false alarms” in the form of interferences, such as noise from the apparatus 1 and external knocks onto the chamber 2, which may create a detection signal S if only one microphone detector is used.


The invention is not limited by the embodiments described above but can be modified in various ways within the scope of the claims. For instance, the detection device 10 can be positioned in other places inside or outside the chamber or integrated in a wall of the chamber 2. In some applications it may be advantageous to use more than one detection device. Also other types of detection devices may be useful in order to apply the inventive method.


Although the various signals and connections described above are electronic it is of course possible also to use other types of means for communication, such as optical or other types of electromagnetic signals and connections.

Claims
  • 1. An apparatus for producing three-dimensional objects layer by layer using a powdery material which can be solidified by irradiating the powdery material with a beam of charged particles, said apparatus comprising: a powder supply portion configured for successive application of one or more layers of a powdery material to a work table to define a powder bed;a radiation gun configured for delivering said beam of charged particles and successively irradiating at least a part of the working area where the powdery material are applied, so as to fuse together successive layers of said three-dimensional object; andat least one detection device having a field of view focused above and across the work table on a volume spaced apart from the defined powder bed, such that neither the field of view nor the focused volume intersect any portion of the powder bed,wherein the at least one detection device is configured for: generating a powder-lifting detection signal upon detection of at least a portion of said powdery material having lifted from the working area and moving around above and spaced apart from the defined powder bed; andbased upon the generated detection signal, automatically interrupting the irradiation of at least a part of the working area where the powdery material lifting has occurred.
  • 2. The apparatus according to claim 1, wherein the detection signal created by the at least one detection device is used for automatically triggering interruption of the irradiation of at least a part of the working area where powder lifting occurs.
  • 3. The apparatus according to claim 1, wherein the at least one detection device comprises a powder-lifting detection unit that is configured for generating a primary signal that varies with varying amounts of powder particles being detected moving around above and spaced apart from the defined powder bed.
  • 4. The apparatus according to claim 1, wherein the at least one detection device comprises a capacitor having two plates over which a voltage is applied.
  • 5. The apparatus according to claim 1, wherein the at least one detection device comprises a conductive cup and an electronic component configured for measuring a current and producing the detection signal.
  • 6. The apparatus according to claim 1, wherein the at least one detection device comprises a camera directed at an angle relative to the working area.
  • 7. The apparatus according to claim 6, wherein the at least one detection device further comprises an image processing unit configured for analyzing a signal from the camera so as to determine whether powder-lifting occurs, and based upon detection thereof, to generate the detection signal.
  • 8. The apparatus according to claim 1, wherein the at least one detection device comprises an X-ray detector with a field of view directed above and across the working area.
  • 9. The apparatus according to claim 1, wherein: the at least one detection device comprises a laser source configured for generating a laser beam directed above and across the working area; andsaid detection of said powder lifting is based upon at least one of a detection of a decrease in an intensity of the laser beam or an increase in a scattering of the laser beam.
  • 10. The apparatus according to claim 1, wherein: the at least one detection device comprises a first detection device that is sensitive to powder-lifting events and configured for generating the powder-lifting detection signal;the apparatus further comprises a second detection device, the second detection device being insensitive to powder-lifting events; andwherein a difference signal from the first and second detection devices is used for generating the detection signal.
  • 11. The apparatus according to claim 10, wherein the second detection device comprises a capacitor having two plates over which a voltage is applied.
  • 12. An apparatus for producing three-dimensional objects layer by layer using a powdery material which can be solidified by irradiating the powdery material with a beam of charged particles, said apparatus comprising: a powder supply portion configured for successive application of powder layers to a work table to define a powder bed;a radiation gun for delivering said beam of charged particles; andat least one detection device having a field of view focused above and across the work table on a volume spaced apart from the defined powder bed, such that neither the field of view nor the focused volume intersect any portion of the powder bed,wherein the at least one detection device is configured for generating a detection signal upon detection of at least a portion of powdery material having lifted from the working area and moving around above and spaced apart from the defined powder bed.
  • 13. The apparatus according to claim 12, wherein the detection signal created by the detection device is used for automatically triggering interruption of the irradiation of at least a part of the working area where powder lifting occurs.
  • 14. The apparatus according to claim 12, wherein the detection device comprises a detection unit that is configured for generating a primary signal that varies with varying amounts of powder particles present at least one of above or beside the working area.
  • 15. The apparatus according to claim 12, wherein the detection device comprises a capacitor having two plates over which a voltage is applied.
  • 16. The apparatus according to claim 12, wherein: the at least one detection device comprises a first detection device that is sensitive to powder-lifting events and configured for generating the powder-lifting detection signal;the apparatus further comprises a second detection device, the second detection device being insensitive to powder-lifting events; andwherein a difference signal from the two detection devices is used for generating the detection signal.
  • 17. The apparatus according to claim 16, wherein the second detection device comprises a capacitor having two plates over which a voltage is applied.
  • 18. The apparatus according to claim 1, wherein the at least one detection device is positioned such that the field of view is focused along a plane parallel to the defined powder bed.
  • 19. The apparatus according to claim 2, wherein the at least one detection device is positioned such that the field of view is focused along a plane parallel to the defined powder bed.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. Nonprovisional application Ser. No. 12/810,602, filed Jun. 25, 2010, which is a national stage application, filed under 35 U.S.C. §371, of International Application No. PCT/SE2008/000007, filed Jan. 3, 2008, the contents of both of which as are hereby incorporated by reference in their entirety.

US Referenced Citations (180)
Number Name Date Kind
2264968 De Forest Dec 1941 A
2323715 Kuehni Jul 1943 A
3634644 Ogden et al. Jan 1972 A
3838496 Kelly Oct 1974 A
3882477 Mueller May 1975 A
4314134 Schumacher et al. Feb 1982 A
4348576 Anderl et al. Sep 1982 A
4352565 Rowe Oct 1982 A
4401719 Kobayashi et al. Aug 1983 A
4541055 Wolfe et al. Sep 1985 A
4818562 Arcella et al. Apr 1989 A
4863538 Deckard Sep 1989 A
4888490 Bass Dec 1989 A
4927992 Whitlow et al. May 1990 A
4958431 Clark et al. Sep 1990 A
4988844 Dietrich et al. Jan 1991 A
5118192 Chen Jun 1992 A
5135695 Marcus Aug 1992 A
5167989 Dudek et al. Dec 1992 A
5182170 Marcus et al. Jan 1993 A
5204055 Sachs et al. Apr 1993 A
5247560 Hosokawa et al. Sep 1993 A
5393482 Benda et al. Feb 1995 A
5483036 Giedt et al. Jan 1996 A
5511103 Hasegawa Apr 1996 A
5595670 Mombo-Caristan Jan 1997 A
5647931 Retallick et al. Jul 1997 A
5753274 Wilkening et al. May 1998 A
5837960 Lewis et al. Nov 1998 A
5876550 Feygin et al. Mar 1999 A
5904890 Lohner et al. May 1999 A
5932290 Lombardi et al. Aug 1999 A
6046426 Jeantette et al. Apr 2000 A
6162378 Bedal et al. Dec 2000 A
6419203 Dang Jul 2002 B1
6537052 Adler Mar 2003 B1
6554600 Hofmann et al. Apr 2003 B1
6583379 Meiners et al. Jun 2003 B1
6676892 Das et al. Jan 2004 B2
6724001 Pinckney et al. Apr 2004 B1
6746506 Liu et al. Jun 2004 B2
6751516 Richardson Jun 2004 B1
6764636 Allanic et al. Jul 2004 B1
6811744 Keicher et al. Nov 2004 B2
6815636 Chung et al. Nov 2004 B2
6824714 Türck et al. Nov 2004 B1
7003864 Dirscherl Feb 2006 B2
7020539 Kovacevic et al. Mar 2006 B1
7165498 Mackrill et al. Jan 2007 B2
7204684 Ederer et al. Apr 2007 B2
7291002 Russell et al. Nov 2007 B2
7452500 Uckelmann Nov 2008 B2
7537722 Andersson et al. May 2009 B2
7540738 Larsson et al. Jun 2009 B2
7635825 Larsson Dec 2009 B2
7686605 Perret et al. Mar 2010 B2
7696501 Jones Apr 2010 B2
7713454 Larsson May 2010 B2
7754135 Abe et al. Jul 2010 B2
7799253 Höchsmann et al. Sep 2010 B2
7871551 Wallgren et al. Jan 2011 B2
8021138 Green Sep 2011 B2
8083513 Escuder et al. Dec 2011 B2
8187521 Larsson et al. May 2012 B2
8308466 Ackelid et al. Nov 2012 B2
8992816 Jonasson et al. Mar 2015 B2
9073265 Snis Jul 2015 B2
9079248 Ackelid Jul 2015 B2
9126167 Ljungblad Sep 2015 B2
9310188 Snis Apr 2016 B2
9505172 Ljungblad Nov 2016 B2
9550207 Ackelid Jan 2017 B2
20020104973 Kerekes Aug 2002 A1
20020152002 Lindemann et al. Oct 2002 A1
20020195747 Hull Dec 2002 A1
20030043360 Farnworth Mar 2003 A1
20030133822 Harryson Jul 2003 A1
20030205851 Laschutza et al. Nov 2003 A1
20040012124 Li et al. Jan 2004 A1
20040026807 Andersson et al. Feb 2004 A1
20040084814 Boyd et al. May 2004 A1
20040104499 Keller Jun 2004 A1
20040148048 Farnworth Jul 2004 A1
20040173496 Srinivasan Sep 2004 A1
20040173946 Pfeifer et al. Sep 2004 A1
20040204765 Fenning et al. Oct 2004 A1
20040217095 Herzog Nov 2004 A1
20050173380 Carbone Aug 2005 A1
20050186538 Uckelmann Aug 2005 A1
20060108712 Mattes May 2006 A1
20060145381 Larsson Jul 2006 A1
20060147332 Jones et al. Jul 2006 A1
20060157892 Larsson Jul 2006 A1
20060180957 Hopkinson et al. Aug 2006 A1
20060284088 Fukunaga et al. Dec 2006 A1
20070074659 Wahlstrom Apr 2007 A1
20070175875 Uckelmann et al. Aug 2007 A1
20070179655 Farnworth Aug 2007 A1
20070182289 Kigawa et al. Aug 2007 A1
20070298182 Perret et al. Dec 2007 A1
20080236738 Lo et al. Oct 2008 A1
20090017219 Paasche et al. Jan 2009 A1
20090152771 Philippi et al. Jun 2009 A1
20090206056 Xu et al. Aug 2009 A1
20100007062 Larsson et al. Jan 2010 A1
20100260410 Taminger et al. Oct 2010 A1
20100310404 Ackelid Dec 2010 A1
20100316856 Currie et al. Dec 2010 A1
20110061591 Stecker Mar 2011 A1
20110114839 Stecker et al. May 2011 A1
20110133367 Weidinger et al. Jun 2011 A1
20110240607 Stecker et al. Oct 2011 A1
20110241575 Caiafa et al. Oct 2011 A1
20110293770 Ackelid et al. Dec 2011 A1
20110293771 Oberhofer et al. Dec 2011 A1
20110309554 Liska et al. Dec 2011 A1
20110316178 Uckelmann Dec 2011 A1
20120100031 Ljungblad Apr 2012 A1
20120164322 Teulet et al. Jun 2012 A1
20120183701 Pilz et al. Jul 2012 A1
20120193530 Parker et al. Aug 2012 A1
20120211155 Wehning et al. Aug 2012 A1
20120223059 Ljungblad Sep 2012 A1
20120225210 Fruth Sep 2012 A1
20120237745 Dierkes et al. Sep 2012 A1
20120266815 Brunermer Oct 2012 A1
20130055568 Dusel et al. Mar 2013 A1
20130162134 Mattausch et al. Jun 2013 A1
20130186514 Zhuang et al. Jul 2013 A1
20130216959 Tanaka et al. Aug 2013 A1
20130264750 Hofacker et al. Oct 2013 A1
20130270750 Green Oct 2013 A1
20130300286 Ljungblad et al. Nov 2013 A1
20130343947 Satzger et al. Dec 2013 A1
20140175708 Echigo et al. Jun 2014 A1
20140271964 Roberts, IV et al. Sep 2014 A1
20140301884 Hellestam et al. Oct 2014 A1
20140308153 Ljungblad Oct 2014 A1
20140314609 Ljungblad et al. Oct 2014 A1
20140314964 Ackelid Oct 2014 A1
20140348691 Ljungblad et al. Nov 2014 A1
20140363327 Holcomb Dec 2014 A1
20140367367 Wood et al. Dec 2014 A1
20150004045 Ljungblad Jan 2015 A1
20150071809 Nordkvist et al. Mar 2015 A1
20150086409 Hellestam Mar 2015 A1
20150088295 Hellestam Mar 2015 A1
20150139849 Pialot, Jr. et al. May 2015 A1
20150165524 Ljungblad et al. Jun 2015 A1
20150165525 Jonasson Jun 2015 A1
20150174658 Ljungblad Jun 2015 A1
20150174695 Elfstroem et al. Jun 2015 A1
20150251249 Fager Sep 2015 A1
20150283610 Ljungblad et al. Oct 2015 A1
20150283613 Backlund et al. Oct 2015 A1
20150290710 Ackelid Oct 2015 A1
20150306819 Ljungblad Oct 2015 A1
20160052056 Fager Feb 2016 A1
20160052079 Ackelid Feb 2016 A1
20160054115 Snis Feb 2016 A1
20160054121 Snis Feb 2016 A1
20160054347 Snis Feb 2016 A1
20160059314 Ljungblad et al. Mar 2016 A1
20160129501 Loewgren et al. May 2016 A1
20160167160 Hellestam Jun 2016 A1
20160167303 Petelet Jun 2016 A1
20160202042 Snis Jul 2016 A1
20160202043 Snis Jul 2016 A1
20160211116 Lock Jul 2016 A1
20160279735 Hellestam Sep 2016 A1
20160282848 Hellestam Sep 2016 A1
20160303687 Ljungblad Oct 2016 A1
20160307731 Lock Oct 2016 A1
20160311021 Elfstroem et al. Oct 2016 A1
20170136541 Fager May 2017 A1
20170136542 Nordkvist et al. May 2017 A1
20170173691 Jonasson Jun 2017 A1
20170189964 Backlund et al. Jul 2017 A1
20170227417 Snis Aug 2017 A1
20170227418 Snis Aug 2017 A1
Foreign Referenced Citations (81)
Number Date Country
2860188 Jun 2006 CA
101607311 Dec 2009 CN
101635210 Jan 2010 CN
201693176 Jan 2011 CN
101607311 Sep 2011 CN
203509463 Apr 2014 CN
19952998 May 2001 DE
20305843 Jul 2003 DE
10235434 Feb 2004 DE
102005014483 Oct 2006 DE
202008005417 Aug 2008 DE
102007018601 Oct 2008 DE
102007029052 Jan 2009 DE
102008012064 Sep 2009 DE
102010041284 Mar 2012 DE
102011105045 Jun 2012 DE
102013210242 Dec 2014 DE
0289116 Feb 1988 EP
0322257 Jun 1989 EP
0688262 Dec 1995 EP
1358994 Nov 2003 EP
1418013 May 2004 EP
1466718 Oct 2004 EP
1486318 Dec 2004 EP
1669143 Jun 2006 EP
1683593 Jul 2006 EP
1721725 Nov 2006 EP
1752240 Feb 2007 EP
1952932 Aug 2008 EP
2011631 Jan 2009 EP
2119530 Nov 2009 EP
2281677 Feb 2011 EP
2980380 Mar 2013 FR
2003241394 Aug 2003 JP
2003245981 Sep 2003 JP
2009006509 Jan 2009 JP
WO 0181031 Nov 2001 SE
524467 Aug 2004 SE
WO 9308928 May 1993 WO
WO 9612607 May 1996 WO
WO 9737523 Oct 1997 WO
WO 0181031 Nov 2001 WO
WO 0185386 Nov 2001 WO
WO 0208653 Jan 2002 WO
WO 2004007124 Jan 2004 WO
WO 2004043680 May 2004 WO
WO 2004054743 Jul 2004 WO
WO 2004056511 Jul 2004 WO
WO 2004106041 Dec 2004 WO
WO 2004108398 Dec 2004 WO
WO 2006091097 Aug 2006 WO
WO 2006121374 Nov 2006 WO
WO 2007112808 Oct 2007 WO
WO 2007147221 Dec 2007 WO
WO 2008013483 Jan 2008 WO
WO 2008057844 May 2008 WO
WO 2008074287 Jun 2008 WO
WO 2008125497 Oct 2008 WO
WO 2008147306 Dec 2008 WO
WO 2009072935 Jun 2009 WO
WO 2009084991 Jul 2009 WO
WO 2010095987 Aug 2010 WO
WO 2010125371 Nov 2010 WO
WO 2011008143 Jan 2011 WO
WO 2011011818 Feb 2011 WO
WO 2011030017 Mar 2011 WO
WO 2011060312 May 2011 WO
WO 2012102655 Aug 2012 WO
WO 2013098050 Jul 2013 WO
WO 2013098135 Jul 2013 WO
WO 2013159811 Oct 2013 WO
WO 2013167194 Nov 2013 WO
WO 2013178825 Dec 2013 WO
WO 2014071968 May 2014 WO
WO 2014092651 Jun 2014 WO
WO 2014095200 Jun 2014 WO
WO 2014095208 Jun 2014 WO
WO 2014195068 Dec 2014 WO
WO 2015032590 Mar 2015 WO
WO 2015091813 Jun 2015 WO
WO 2015142492 Sep 2015 WO
Non-Patent Literature Citations (26)
Entry
Cheah, Chi-Mun, et al., “Automatic Algorithm for Generating Complex Polyhedral Scaffold Structure for Tissue Engineering”, Tissue Engineering, 2004, pp. 595-610, vol. 10, No. 3/4, XP002691483.
European Search Report dated Feb. 16, 2012, for corresponding Application No. EP07 852 089.7.
Guibas, Leonidas J., et al., “Randomized Incremental Construction of Delaunay and Voronoi Diagrams”, Algorithmica, Jun. 1992, pp. 381-413, vol. 7, Issue 1-6, Springer-Verlag, New York.
International Preliminary Examining Authority (IPEA), Second Written Opinion for International Application No. PCT/EP2012/076025, dated Dec. 4, 2013, 4 pages European Patent Office, Germany.
International Preliminary Examining Authority, International Preliminary Report on Patentability for International Application No. PCT/EP2012/076025, including Applicant's Sep. 10, 2013 Response to the ISA's May 17, 2013 Written Opinion and Applicant's Jan. 14, 2014 Response to the IPEA's Second Written Opinion, dated Apr. 4, 2014, 15 pages, European Patent Office, Germany.
International Preliminary Examining Authority, International Preliminary Report on Patentability for International Application No. PCT/EP2012/074383, including Applicant's Sep. 6, 2013 Reply to ISA's Feb. 27, 2013 Written Opinion, dated Jan. 20, 2014, 16 pages, European Patent Office, The Netherlands.
International Preliminary Report on Patentability dated Nov. 27, 2009 for Application PCT/SE2007/001084.
International Search Report dated Sep. 2, 2008 for Application No. PCT/SE2007/001084.
International Search Report dated Sep. 4, 2010 for Application No. PCT/SE2009/050901.
International Search Report, dated Sep. 17, 2008, of corresponding international Application No. PCT/SE2008/000007, filed Jan. 3, 2008.
International Searching Authority (ISA), International Search Report and Written Opinion for International Application No. PCT/EP2012/076025, dated May 17, 2013, 11 pages, European Patent Office, The Netherlands.
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/EP2012/074383, dated Feb. 27, 2013, 10 pages, European Patent Office, The Netherlands.
International Searching Authority, International Search Report for International Application No. PCT/SE2011/050093, dated Oct. 20, 2011, 5 pages, The Swedish Patent and Registration Office, Sweden.
International Searching Authority, International Search Report for International Application No. PCT/EP2012/058733, dated Mar. 5, 2013, 4 pages, European Patent Office, The Netherlands.
Office Action dated Feb. 14, 2012 for U.S. Appl. No. 12/745,081.
Office Action dated Nov. 8, 2011, U.S. Appl. No. 12/745,081.
United States Patent and Trademark Office, Final Office Action for U.S. Appl. No. 12/745,081, dated Jun. 21, 2012, 6 pages, USA.
United States Patent and Trademark Office, Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/144,451, dated Sep. 25, 2012, 16 pages, USA.
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 14/350,767, dated Nov. 24, 2014, 16 pages, USA.
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 12/810,602, Sep. 11, 2014, 7 pages, USA.
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 12/810,602, dated Sep. 10, 2012, 13 pages, USA.
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 12/810,602, dated Dec. 20, 2012, 8 pages, USA.
United States Patent and Trademark Office, Notice of Allowance for U.S. Appl. No. 12/810,602, dated Feb. 2, 2015, 10 pages, USA.
Weigel, TH. , et al., “Design and Preparation of Polymeric Scaffolds for Tissue Engineering,” Expert Rev. Med. Devices, 2006, pp. 835-851, vol. 3, No. 6, XP002691485.
Yang, et al., “The Design of Scaffolds for Use in Tissue Engineering, Part II, Rapid Prototyping Techniques”, Tissue Engineering, 2002, pp. 1-11, vol. 8, No. 1, XP002691484.
Gibson, D.W., et al., “Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing”, 2010, pp. 126-129, Spring, New York.
Related Publications (1)
Number Date Country
20150151490 A1 Jun 2015 US
Divisions (1)
Number Date Country
Parent 12810602 US
Child 14618748 US