1. Field of the Invention
The present invention relates generally to protecting downhole components from shock and vibration while drilling a well and, in particular, to a method and apparatus for protecting measurement while drilling equipment from shock and vibration using a locking mule shoe system.
2. Description of the Prior Art
In the drilling of deep bore holes for the exploration and extraction of crude oil and natural gas, the “rotary” drilling technique has become a commonly accepted practice. This technique involves using a drill string, which consists of numerous sections of hollow pipe connected together with a drill bit being located at the bottom end. The rotation and compression of the drilling bit causes the formation being drilled to be successively crushed and pulverized. Drilling fluid, frequently referred to as “mud”, is pumped down the hollow center of the drill string, through nozzles on the drilling bit and then back to the surface around the annulus of the drill string. This fluid circulation is used to transport the cuttings from the bottom of the bore hole to the surface where they are filtered out and the drilling fluid is re-circulated as desired. The flow of the drilling fluid, in addition to removing cuttings, provides other secondary functions such as cooling and lubricating the drilling bit cutting surfaces and exerts a hydrostatic pressure against the bore hole walls to help contain any entrapped gases that are encountered during the drilling process.
Since the advent of drilling bore holes, the need to measure certain parameters at the bottom of the bore hole and provide this information to the driller has been recognized. These parameters include, for example, the temperature and pressure at the bottom of a bore well, the inclination or angle of the bore well, the direction or azimuth of the bore well, and various geophysical parameters that are of interest and value during the drilling process. The challenge of measuring these parameters in the hostile environment at the bottom of the bore well during the drilling process and somehow conveying this information to the surface in a timely fashion has led to the development of many devices and practices over the years.
The general class of tools used today to send data from the bottom of the well to the surface while drilling are referred to as “measurement while drilling” (hereafter “MWD” tools). Types of MWD tools contemplated by the prior art have been such things as electromagnetic waves or EM (low frequency radio waves or signals, currents in the earth or magnetic fields), acoustic (akin to sonar through the mud or pipe and using mechanical vibrations) and pressure or mud pulse (sending pulses through the mud stream using a valve mechanism).
Downhole tools of the above type are subjected to substantial forces and vibration during drilling. Sensor packages and other sensitive downhole electronics, such as those housed in measurement-while-drilling (MWD) tools, steering tools, gyros, or logging-while-drilling (LWD) tools, are particularly vulnerable to damage from vibration and shock during drilling. Unless the electronics in downhole tools are mounted in such a way as to reduce the vibration and shock that is felt by the electronics, the vibration and shock will ultimately reduce the life cycle of the electronics, as well as adding fatigue and wear to the bottom hole assembly. Reducing shock and vibration felt by the electronics extends their life cycle, which saves valuable time and money that would be spent replacing or repairing the directional sensors and electronics. Accordingly, additional measures to minimize shock and vibration that reaches electronics are needed.
One common feature of MWD tools of the type under consideration is to provide a mechanism for orienting the tool downhole. In order to ascertain the angular orientation of a drill bit, or the like, it is common practice in the art to dispose a radially inwardly extending camming member within a bore extending through the tool string. The camming member may be a key, a spline surface, or the like. The camming member is usually in a predetermined angular orientation with respect to the drill bit or member whose orientation it is desired to ascertain. For example, the “lower end assembly” of such tools often terminate at the bottom end in a “mule shoe” arrangement. The mule shoe internal bore receives what is called a pulser helix which is, in turn, attached to a poppet housing. The pulser helix has an axially extending camming surface which contacts the camming member inside the mule shoe as the pulser helix is inserted within the bore of the mule shoe. Abutting engagement of the camming surface and camming member acts to rotate the directional drilling assembly. When the camming surface and camming member are fully engaged, the directional ascertaining element of the assembly may accurately plot or record the orientation at which the camming member, and therefore the drill bit, are disposed relative to a predetermined datum.
Even though the pulser helix may be affixed to the mule shoe with a key arrangement or the like, some movement and vibration are still possible. For example, some oil and gas exploration and production companies at the present time use vibrating devices known as “agitators” to increase penetration rates while drilling wells. Agitators typically operate or reciprocate between about 12 and 26 hertz during drilling operations, and constantly vibrate at these frequencies. Accordingly, agitators provide additional shock and vibration throughout the drill string that improve drilling performance. However, these devices can cause damage to or the failure of the sensitive downhole components used in the MWD systems. Such sensitive electronic components of the MWD systems may be subjected to g-force vibration and shock on the order of 100 g's in amplitude.
Thus, despite improvements that have been made in MWD systems, a need continues to exist for a method and improved apparatus for further reducing shock and vibration in such devices in use.
The invention described herein deals with improvements in the “lower end assembly” of a measurement while drilling (MWD) tool, where the lower end assembly includes a mule shoe with an interior which receives a pulser helix, the pulser helix being attached to a poppet housing at an end opposite the mule shoe. These are all traditional components of such lower end assemblies. However, the improved lower end of the invention incorporates a novel arrangement of an extended locking cuff, an abrasion ring and a locking nut. The addition of these new components results in a lower end assembly which is more completely secured and thus more completely protected from the effects of shock and vibration during drilling than were the prior art assemblies.
The extended locking cuff which is used in the improved assembly has a first externally threaded extent which is received within a mating internally threaded bore at one extent of the mule shoe. The extended locking cuff also has a threaded internal diameter which is sized to allow the passage of the pulser helix when the pulser helix is passed through the locking cuff into the interior of the mule shoe.
The abrasion ring is received about the external diameter of the pulser helix. The abrasion ring is received on a shoulder located between the pulser helix and the poppet housing. The poppet housing has a lower threaded extent which engages a mating threaded extent of the upper end of the pulser helix to retain the abrasion ring in position on the shoulder.
The locking nut has an internal bore which is sized to be received over the external diameter of the poppet housing. The locking nut also has an externally threaded lower extent which is sized to be received within a mating threaded bore in the extended locking cuff so that a portion of the locking nut is located between the locking cuff and the poppet housing. Tightening the locking nut within the bore of the locking cuff serves to lock the lower end assembly with respect to the mule shoe.
Preferably, the locking nut has a tool receiving end located opposite the externally threaded lower end, the tool receiving end terminating in a collet-like profile. The collet-like profile preferably comprises a series of alternating tongues and slots. A hand wrench can conveniently be used to turn the locking nut to engage the extended locking cuff by providing the wrench with a wrench end which engages selected ones of the tongues and slots so that turning the wrench end turns the locking nut.
A method is also shown for protecting sensitive components contained in a lower end assembly of a measurement while drilling too while drilling where the measurement while drilling tool is attached to a drill bit at one end and to an electronics package at an opposite end. As previously described, the lower end assembly is provided with a mule shoe with an interior which receives a pulser helix, the pulser helix having a threaded upper extent, an external diameter and an external orienting surface located on the external diameter for contacting a mating orienting surface within the mule shoe interior. The pulser helix is attached to a poppet housing at an end opposite the mule shoe, the poppet housing having an external diameter, a threaded upper extent and a threaded lower extent. The poppet housing can be attached at the upper extent thereof to a screen housing.
In the assembly method of the invention, the lower end assembly is provided with a series of new components including the extended locking cuff, abrasion ring and lock nut, previously described, which secure the components of the lower end assembly in place during drilling, the new components being assembled as follows:
Additional objects, features and advantages will be apparent in the written description which follows.
The preferred version of the invention presented in the following written description and the various features and advantageous details thereof are explained more fully with reference to the non-limiting examples and as detailed in the description which follows. Descriptions of well-known components and processes and manufacturing techniques are omitted so as to not unnecessarily obscure the principle features of the invention as described herein. The examples used in the description which follows are intended merely to facilitate an understanding of ways in which the invention may be practiced and to further enable those skilled in the art to practice the invention. Accordingly, the examples should not be construed as limiting the scope of the claimed invention.
The drawings and the description below disclose specific embodiments with the understanding that the embodiments are to be considered an exemplification of the principles of the invention, and are not intended to limit the invention to that illustrated and described. Further, it is to be fully recognized that the different teachings of the embodiments discussed below may be employed separately or in any suitable combination to produce desired results. The terminology used in the discussion which follows will be taken to have the meaning generally accepted in common usage, or with respect to the oil and gas industry, unless otherwise indicated. Thus, for example, in the discussion which follows, the terms “upper” or “uphole” means towards the surface (i.e. shallower) in a wellbore, while “lower” or “downhole” means away from the surface (i.e. deeper) in the wellbore. The terms “mule shoe”, “pulser helix”, “poppet housing” and “screen housing” will be familiar to those skilled in the relevant art and will have the commonly accepted meaning as used in the measurement while drilling industry.
Referring now to
The drill bit 29 is rotated by rotary equipment on the drilling rig 17 and/or the mud motor 27 which responds to the flow of drilling fluid, or mud, which is pumped from a mud tank 31 through a central passageway of the drill pipe 19, drill collars 23, MWD tool assembly 25 and then to the mud motor 27. The pumped drilling fluid jets out of the drill bit 29 and flows back to the surface through an annular region between the drill string 11 and the wellbore 13. The drilling fluid carries debris away from the drill bit 29 as the drilling fluid flows back to the surface. Shakers and other filters remove the debris from the drilling fluid before the drilling fluid is recirculated downhole.
The drill collars 23 provide a means to set weight off on the drill bit 29, enabling the drill bit 29 to crush and cut the formations as the mud motor 27 rotates the drill bit 29. As drilling progresses, there is a need to monitor various downhole conditions. To accomplish this, the MWD tool assembly 25 measures and stores downhole parameters and formation characteristics for transmission to the surface. This may be accomplished, for example, by using the circulating column of drilling fluid. In one known technique, the downhole information is transmitted to the surface via encoded pressure pulses in the circulating column of drilling fluid. There are other known techniques for transmitting the data, as well, that will be familiar to those skilled in the relevant arts.
An extended locking cuff 49 has a first internally threaded extent 51 which is sized to be received within the mating internally threaded bore 35 of the upper extent of the mule shoe. The extended locking cuff 49 also has a threaded internal diameter 53 which is sized to allow the passage of a pulser helix 55 when the pulser helix is passed through the locking cuff into the interior of the mule shoe during an orienting operation, as will be explained more fully in the discussion which follows.
The pulser helix is a standard component in MWD assemblies as is commercially available, for example, from Hunting Specialty Supply, 13730 Cypress North Houston Road, Cypress, Tex. 77429. The pulser helix has a threaded upper extent 57, an external diameter, the maximum extent of which is illustrated as “d” in
An abrasion ring 63 is received about the external diameter of the pulser helix 55 and is received on a shoulder 65 located between the pulser helix and a poppet housing 67, The poppet housing 67 has a lower internally threaded extent 69 which engages the mating threaded upper extent 57 of the upper end of the pulser helix 55 to retain the abrasion ring 63 in position on the shoulder 65.
A locking nut 71 has an internal bore 73 which is sized to be received over the external diameter of the poppet housing 67. The locking nut 71 also has an externally threaded lower extent 75 which is sized to be received within the mating threaded bore 53 in the extended locking cuff 49, so that a portion of the locking nut is located between the locking cuff and the poppet housing. The position of the locking nut 71 relative to the extended locking cuff 49 can perhaps best be seen in the cross-sectional view of
It will be appreciated from
At this point, the locking wrench (87 in
An invention has been provided with several advantages. The assembled lower end assembly includes new components which lock the lower end to the mule shoe in a more positive fashion than was done in the past. The result is that less shock is transmitted to the downhole electronics package from the drill string. The newly added component package works with existing pulser helix and mule shoe sleeves. The improved assembly drastically reduces axial and lateral vibration. The assembly solves a number of problems related to the lower end assembly unseating, especially while using an agitator. The component parts are relatively simple in design and economical to manufacture so that the improved assembly involves minimal implementation cost. In actual tests, the system without the improvements of the invention revealed that the downhole memory module of the system showed extreme amounts of axial shock and vibration. Axial shock reached levels about 120 g's and axial vibration exceeded 30 gRMS. With the improved assembly of the invention installed on the lower end, the amount of axial shock and vibration was reduced to under 20 g's of axial shock and axial vibration. Even after a 60 hour run, there was minimal wash observed on the lock nut collet (crown) profile and threads.
The embodiment of the lower end assembly shown in
While the invention has been shown in only one of its forms, it is not thus limited but is susceptible to various changes and modifications without departing from the spirit thereof. Thus, those having ordinary skill in the art will appreciate that various individual components described above as being separate may be combined according to design preferences without departing from the scope of the present disclosure. Further, various components with multiple design features that are combined may be separated into discrete components. Other variations will be apparent to those skilled in the relevant arts. The foregoing drawings and description disclose a specific embodiment of the invention with the understanding that the embodiment is considered an exemplification of the principles of the invention, and are not intended to limit the invention to what is specifically illustrated and described.
The present application is a continuation-in-part of earlier filed Ser. No. 14/078,003, filed Nov. 12, 2013, entitled “Method and Apparatus for Protecting Downhole Components From Shock and Vibration”, by the same inventor.
Number | Name | Date | Kind |
---|---|---|---|
2813697 | Swart | Nov 1957 | A |
3164216 | Hall, Sr. et al. | Jan 1965 | A |
3179180 | Hart | Apr 1965 | A |
3916998 | Bass, Jr. et al. | Nov 1975 | A |
4275935 | Thompson et al. | Jun 1981 | A |
5061849 | Meisner et al. | Oct 1991 | A |
5083623 | Barrington | Jan 1992 | A |
5317111 | Orban et al. | May 1994 | A |
5363931 | Moriarty | Nov 1994 | A |
5810100 | Samford | Sep 1998 | A |
6019182 | Rountree | Feb 2000 | A |
6050349 | Rountree | Apr 2000 | A |
7497254 | Hall | Mar 2009 | B2 |
7690425 | Giacomino | Apr 2010 | B2 |
8181722 | Radford et al. | May 2012 | B2 |
8474548 | Young | Jul 2013 | B1 |
8534381 | Rinald | Sep 2013 | B1 |
20050178543 | Giacomino | Aug 2005 | A1 |
20080230277 | Hall | Sep 2008 | A1 |
20110120772 | McLoughlin et al. | May 2011 | A1 |
20110186284 | Jekielek | Aug 2011 | A1 |
20120247832 | Cramer | Oct 2012 | A1 |
20130011102 | Rinzler | Jan 2013 | A1 |
20150129307 | Pope | May 2015 | A1 |
20150159719 | Russell | Jun 2015 | A1 |
20150300098 | Logan | Oct 2015 | A1 |
20150322739 | Macdonald | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2760931 | Jun 2013 | CA |
WO 2014121377 | Aug 2014 | CA |
WO 2015100845 | Jul 2015 | CN |
164950 | Dec 1985 | EP |
2013040641 | Mar 2013 | WO |
WO 2015077339 | May 2015 | WO |
Entry |
---|
PCT International Search Report dated Jan. 23, 2015; PCT/US2014/62775, filed Oct. 29, 2014; 1 page. |
M. Borghi et al.; “New Logging While Drilling Azimuthal Resistivity and High Resolution Imaging in Slim Holes”; symposium—10th Offshore Mediterranean Conference and Exhibition; pp. 1-9; Ravenna, Italy; Mar. 23-25, 2011. |
Number | Date | Country | |
---|---|---|---|
20150129307 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14078003 | Nov 2013 | US |
Child | 14087514 | US |