Analyte (e.g., glucose) monitoring systems including continuous and discrete monitoring systems generally include a small, lightweight battery powered and microprocessor controlled system which is configured to detect signals proportional to the corresponding measured glucose levels using an electrometer, and RF signals to transmit the collected data. One aspect of certain analyte monitoring systems include a transcutaneous or subcutaneous analyte sensor configuration which is, for example, partially mounted on the skin of a subject whose analyte level is to be monitored. The sensor cell may use a two or three-electrode (work, reference and counter electrodes) configuration driven by a controlled potential (potentiostat) analog circuit connected through a contact system.
The analyte sensor may be configured so that a portion thereof is placed under the skin of the patient so as to detect the analyte levels of the patient, and another portion of segment of the analyte sensor that is in communication with the transmitter unit. The transmitter unit is configured to transmit the analyte levels detected by the sensor over a wireless communication link such as an RF (radio frequency) communication link to a receiver/monitor unit. The receiver/monitor unit performs data analysis, among others on the received analyte levels to generate information pertaining to the monitored analyte levels. To provide flexibility in analyte sensor manufacturing and/or design, among others, tolerance of a larger range of the analyte sensor sensitivities for processing by the transmitter unit is desirable.
In view of the foregoing, it would be desirable to have a method and apparatus for providing a dynamic multi-stage amplification of signals for use in medical telemetry systems such as, for example, analyte monitoring systems.
In one embodiment, an apparatus including a first amplifier having at least one input terminal and an output terminal, the at least one input terminal coupled to a signal source, the output terminal configured to provide a first output signal, a second amplifier having at least one input terminal and an output terminal, the at least one input terminal coupled to the output terminal of the first amplifier, the output terminal of the second amplifier configured to provide a second output signal, a processor operatively coupled to receive the first output signal and the second output signal, where the first output signal is a predetermined ratio of the second output signal, and further, where the first output signal and the second output signal are associated with a monitored analyte level of a user is disclosed.
These and other objects, features and advantages of the present invention will become more fully apparent from the following detailed description of the embodiments, the appended claims and the accompanying drawings.
As described in further detail below, in accordance with the various embodiments of the present invention, there is provided a method and apparatus for providing dynamic multi-stage signal amplification for use in a medical telemetry system. In particular, within the scope of the present invention, there are provided method and apparatus for a multi-stage signal amplifier configuration in the analog interface of the data transmitter unit in the data processing and management system.
Analytes that may be monitored include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored.
The analyte monitoring system 100 includes a sensor 101, a transmitter unit 102 coupled to the sensor 101, and a primary receiver unit 104 which is configured to communicate with the transmitter unit 102 via a communication link 103. The primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 for evaluating the data received by the primary receiver unit 104. Moreover, the data processing terminal in one embodiment may be configured to receive data directly from the transmitter unit 102 via a communication link which may optionally be configured for bi-directional communication.
Also shown in
Only one sensor 101, transmitter unit 102, communication link 103, and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in
In one embodiment of the present invention, the sensor 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to continuously sample the analyte level of the user and convert the sampled analyte level into a corresponding data signal for transmission by the transmitter unit 102. In one embodiment, the transmitter unit 102 is coupled to the sensor 101 so that both devices are positioned on the user's body, with at least a portion of the analyte sensor 101 positioned transcutaneously under the skin layer of the user. The transmitter unit 102 performs data processing such as filtering and encoding on data signals, each of which corresponds to a sampled analyte level of the user, for transmission to the primary receiver unit 104 via the communication link 103.
In one embodiment, the analyte monitoring system 100 is configured as a one-way RF communication path from the transmitter unit 102 to the primary receiver unit 104. In such embodiment, the transmitter unit 102 transmits the sampled data signals received from the sensor 101 without acknowledgement from the primary receiver unit 104 that the transmitted sampled data signals have been received. For example, the transmitter unit 102 may be configured to transmit the encoded sampled data signals at a fixed rate (e.g., at one minute intervals) after the completion of the initial power on procedure. Likewise, the primary receiver unit 104 may be configured to detect such transmitted encoded sampled data signals at predetermined time intervals. Alternatively, the analyte monitoring system 100 may be configured with a bi-directional RF (or otherwise) communication between the transmitter unit 102 and the primary receiver unit 104.
Additionally, in one aspect, the primary receiver unit 104 may include two sections. The first section is an analog interface section that is configured to communicate with the transmitter unit 102 via the communication link 103. In one embodiment, the analog interface section may include an RF receiver and an antenna for receiving and amplifying the data signals from the transmitter unit 102, which are thereafter, demodulated with a local oscillator and filtered through a band-pass filter. The second section of the primary receiver unit 104 is a data processing section which is configured to process the data signals received from the transmitter unit 102 such as by performing data decoding, error detection and correction, data clock generation, and data bit recovery.
In operation, upon completing the power-on procedure, the primary receiver unit 104 is configured to detect the presence of the transmitter unit 102 within its range based on, for example, the strength of the detected data signals received from the transmitter unit 102 or a predetermined transmitter identification information. Upon successful synchronization with the corresponding transmitter unit 102, the primary receiver unit 104 is configured to begin receiving from the transmitter unit 102 data signals corresponding to the user's detected analyte level. More specifically, the primary receiver unit 104 in one embodiment is configured to perform synchronized time hopping with the corresponding synchronized transmitter unit 102 via the communication link 103 to obtain the user's detected analyte level.
Referring again to
Within the scope of the present invention, the data processing terminal 105 may include an infusion device such as an insulin infusion pump or the like, which may be configured to administer insulin to patients, and which may be configured to communicate with the receiver unit 104 for receiving, among others, the measured analyte level. Alternatively, the receiver unit 104 may be configured to integrate an infusion device therein so that the receiver unit 104 is configured to administer insulin therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the transmitter unit 102.
Additionally, the transmitter unit 102, the primary receiver unit 104 and the data processing terminal 105 may each be configured for bi-directional wireless communication such that each of the transmitter unit 102, the primary receiver unit 104 and the data processing terminal 105 may be configured to communicate (that is, transmit data to and receive data from) with each other via the wireless communication link. More specifically, the data processing terminal 105 may in one embodiment be configured to receive data directly from the transmitter unit 102 via the communication link, where the communication link, as described above, may be configured for bi-directional communication.
In this embodiment, the data processing terminal 105 which may include an insulin pump, may be configured to receive the analyte signals from the transmitter unit 102, and thus, incorporate the functions of the receiver unit 104 including data processing for managing the patient's insulin therapy and analyte monitoring. In one embodiment, the communication link 103 may include one or more of an RF communication protocol, an infrared communication protocol, a Bluetooth® enabled communication protocol, an 802.11x wireless communication protocol, or an equivalent wireless communication protocol which would allow secure, wireless communication of several units (for example, per HIPAA requirements) while avoiding potential data collision and interference.
Further shown in
In one embodiment, a unidirectional input path is established from the sensor 101 (
As discussed above, the transmitter processor 204 is configured to transmit control signals to the various sections of the transmitter unit 102 during the operation of the transmitter unit 102. In one embodiment, the transmitter processor 204 also includes a memory (not shown) for storing data such as the identification information for the transmitter unit 102, as well as the data signals received from the sensor 101. The stored information may be retrieved and processed for transmission to the primary receiver unit 104 under the control of the transmitter processor 204. Furthermore, the power supply 207 may include a commercially available battery.
The transmitter unit 102 is also configured such that the power supply section 207 is capable of providing power to the transmitter for a minimum of about three months of continuous operation after having been stored for about eighteen months in a low-power (non-operating) mode. In one embodiment, this may be achieved by the transmitter processor 204 operating in low power modes in the non-operating state, for example, drawing no more than approximately 1 μA of current. Indeed, in one embodiment, the final step during the manufacturing process of the transmitter unit 102 may place the transmitter unit 102 in the lower power, non-operating state (i.e., post-manufacture sleep mode). In this manner, the shelf life of the transmitter unit 102 may be significantly improved. Moreover, as shown in
Referring back to
Referring yet again to
Referring yet again to
Additional detailed description of the continuous analyte monitoring system, its various components including the functional descriptions of the transmitter are provided in U.S. Pat. No. 6,175,752 issued Jan. 16, 2001 entitled “Analyte Monitoring Device and Methods of Use”, and in U.S. patent application Ser. No. 10/745,878 filed Dec. 26, 2003, now U.S. Pat. No. 7,811,231, entitled “Continuous Glucose Monitoring System and Methods of Use”, each assigned to the Assignee of the present application, the disclosure of each of which are incorporated herein by reference for all purposes.
In one embodiment, the test strip interface 301 includes a glucose level testing portion to receive a manual insertion of a glucose test strip, and thereby determine and display the glucose level of the test strip on the output 310 of the primary receiver unit 104. This manual testing of glucose can be used to calibrate sensor 101. The RF receiver 302 is configured to communicate, via the communication link 103 (
Each of the various components of the primary receiver unit 104 shown in
The serial communication section 309 in the primary receiver unit 104 is configured to provide a bi-directional communication path from the testing and/or manufacturing equipment for, among others, initialization, testing, and configuration of the primary receiver unit 104. Serial communication section 309 can also be used to upload data to a computer, such as time-stamped blood glucose data. The communication link with an external device (not shown) can be made, for example, by cable, infrared (IR) or RF link. The output 310 of the primary receiver unit 104 is configured to provide, among others, a graphical user interface (GUI) such as a liquid crystal display (LCD) for displaying information. Additionally, the output 310 may also include an integrated speaker for outputting audible signals as well as to provide vibration output as commonly found in handheld electronic devices, such as mobile telephones presently available. In a further embodiment, the primary receiver unit 104 also includes an electro-luminescent lamp configured to provide backlighting to the output 310 for output visual display in dark ambient surroundings.
Referring back to
In a further embodiment, the one or more of the transmitter unit 102, the primary receiver unit 104, secondary receiver unit 106, or the data processing terminal/infusion section 105 may be configured to receive the blood glucose value wirelessly over a communication link from, for example, a glucose meter. In still a further embodiment, the user or patient manipulating or using the analyte monitoring system 100 (
In one aspect, based on the input analyte sensor signal from the signal source 440 and the reference signal Vref 450, the transimpedance amplifier 420 may be in one embodiment configured to convert the received current signal representing the monitored or detected analyte level, and to convert the current signal to a corresponding voltage signal which is provided to the output terminal 423 of the transimpedance amplifier 420. Further, as shown in
Referring again to
Referring back to
For example, when the signal received at the second input terminal 412 of the ADC 410 exceeds a predetermined threshold value, the input signal at the first input terminal 411 may be used. More specifically, in one embodiment, the ADC 410 may be configured to process the signals at the second input terminal 412 (Channel 2) since it has a higher resolution compared to the signal at the first input terminal 411 received from the transimpedance amplifier 420. When the signal received at the second input terminal 412 exceeds a predetermined threshold level (for example, based on the tolerance level of the analog to digital converter (ADC) 410), the voltage signal received at the first input terminal 411 from the transimpedance amplifier 420 may be used to convert to a corresponding digital signal representing the monitored analyte level detected by the sensor 101 (
Referring back to
In the manner described above, the dynamic multi-stage amplifier configuration in one embodiment may be configured to support variations in the analyte sensor sensitivities due to, for example, manufacturing variations, among others, while maintaining an acceptable or desirable sensor signal resolution. For example, in one embodiment, high sensitivity sensors may be configured for use with the full scale or range (for example, up to approximately 150 nA corresponding to the supported approximately 500 mg/dL glucose level) associated with the transimpedance amplifier 420 output signal provided to the first input terminal 411 (Channel 1) of the analog to digital converter (ADC) 410, while low sensitivity sensors may be associated with the second amplifier 430 output signal (for example, full scale current signal level of approximately 75 nA corresponding to the supported approximately 500 mg/dL glucose level) provided to the second input terminal 412 (Channel 2) of the analog to digital converter (ADC) 410.
For example, as discussed above, in one embodiment, the processor 204 of the transmitter unit 102 may be configured to monitor the signals at the two input terminals 411, 412 of the ADC 410, and determine, that if the received signal level does not have sufficient resolution to convert to the desired resolution of the digital signal (for example, 12 bits for the ADC 410) corresponding to the monitored analyte level associated with the sensor 101, the processor 204 may be configured to dynamically toggle or switch from using the voltage signal received from one of the two input terminals 411, 412, to using the voltage signal from the other one of the two input terminals 411, 412 to provide a dynamic range of tolerance level for the sensor sensitivities.
Accordingly, an apparatus in one embodiment includes a first amplifier having at least one input terminal and an output terminal, the at least one input terminal coupled to a signal source, the output terminal configured to provide a first output signal, a second amplifier having at least one input terminal and an output terminal, the at least one input terminal coupled to the output terminal of the first amplifier, the output terminal of the second amplifier configured to provide a second output signal, a processor operatively coupled to receive the first output signal and the second output signal, where the first output signal is a predetermined ratio of the second output signal, and further, where the first output signal and the second output signal are associated with a monitored analyte level of a user.
In one aspect, the first amplifier may include a transimpedance amplifier.
The monitored analyte level may include glucose level.
Also, the at least one input terminal of the first amplifier may include an inverting input terminal, and, also may include a reference signal source coupled to a noninverting input terminal of the first amplifier.
In a further aspect, the second amplifier may include a gain of approximately two.
In still another aspect, the first output signal may be associated with a signal level from the signal source.
The apparatus may also include an analog to digital converter coupled to the output terminals of the first and second amplifiers, where the analog to digital (A/D) converter may include a 12 bit A/D converter.
The apparatus in another embodiment may include a processor operatively coupled to the A/D converter for processing the one or more signals received at the one or more first amplifier output terminal and the second amplifier output terminal.
Moreover, the processor may be configured to compare the one or more signals received at the one or more first amplifier output terminal and the second amplifier output terminal to a predetermined threshold value, which, in one embodiment may include approximately 4,000 bits (or analog to digital converter (ADC) counts).
Still further, the processor may be configured to process a signal associated with one of the one or more signals received at the one or more first amplifier output terminal and the second amplifier output terminal when another signal associated with the other one of the one or more signals received at the one or more first amplifier output terminal and the second amplifier output terminal exceeds the predetermined threshold value.
A method in accordance with another embodiment includes receiving a first signal having a first signal resolution and associated with a monitored analyte level of a user, receiving a second signal having a second signal resolution and associated with the monitored analyte level of the user, comparing the received first signal to a predetermined threshold level, and processing one of the received first or second signals based on the comparing step.
When the received first signal does not exceed the predetermined threshold level, further including processing the first signal. On the other hand, when the received first signal exceeds the predetermined threshold level, further including processing the second signal.
A data processing device in accordance with still another embodiment includes a multi stage amplifier unit configured to receive a signal and to generate a plurality of amplifier unit output signals each corresponding to a monitored analyte level of a patient, an analog to digital (A/D) conversion unit operatively coupled to the multi-stage amplifier unit configured to digitally convert the plurality of amplifier unit output signals, and a processor unit operatively coupled to the A/D conversion unit, the processor unit configured to process one of the plurality of digitally converted amplifier unit output signals.
The device in another aspect may include a data communication unit operatively coupled to the processor unit, and configured to transmit the digitally converted and processed amplifier unit output signal.
The data communication unit may include an RF transmitter for wireless data transmission to a remote device such as, for example, a data receiver unit, data processing terminal, an infusion device or the like configured for RF communication.
Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.
The present application is a continuation of U.S. patent application Ser. No. 15/209,741 filed Jul. 13, 2016, now U.S. Pat. No. 9,743,866, which is a continuation of U.S. patent application Ser. No. 14/596,759 filed Jan. 14, 2015, now U.S. Pat. No. 9,402,584, which is a continuation of U.S. patent application Ser. No. 14/188,659 filed Feb. 24, 2014, now U.S. Pat. No. 8,937,540, which is a continuation of U.S. patent application Ser. No. 13/867,948 filed Apr. 22, 2013, now U.S. Pat. No. 8,698,615, which is a continuation of U.S. patent application Ser. No. 13/437,894 filed Apr. 2, 2012, now U.S. Pat. No. 8,427,298, which is a continuation of U.S. patent application Ser. No. 13/114,029 filed May 23, 2011, now U.S. Pat. No. 8,149,103, which is a continuation of U.S. patent application Ser. No. 12/849,004 filed Aug. 2, 2010, now U.S. Pat. No. 7,948,369, which is a continuation of U.S. patent application Ser. No. 12/102,836 filed Apr. 14, 2008, now U.S. Pat. No. 7,768,387, which claims priority under § 35 U.S.C. 119(e) to U.S. Provisional Application No. 60/911,866 filed Apr. 14, 2007, entitled “Method and Apparatus for Providing Dynamic Multi-Stage Signal Amplification in a Medical Device”, the disclosures of each of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3260656 | Ross, Jr. | Jul 1966 | A |
3581062 | Aston | May 1971 | A |
3926760 | Allen et al. | Dec 1975 | A |
3949388 | Fuller | Apr 1976 | A |
4031449 | Trombly | Jun 1977 | A |
4036749 | Anderson | Jul 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4129128 | McFarlane | Dec 1978 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4327725 | Cortese et al. | May 1982 | A |
4344438 | Schultz | Aug 1982 | A |
4349728 | Phillips et al. | Sep 1982 | A |
4425920 | Bourland et al. | Jan 1984 | A |
4445090 | Melocik et al. | Apr 1984 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4478976 | Goertz et al. | Oct 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4509531 | Ward | Apr 1985 | A |
4527240 | Kvitash | Jul 1985 | A |
4538616 | Rogoff | Sep 1985 | A |
4583035 | Sloan | Apr 1986 | A |
4619793 | Lee | Oct 1986 | A |
4671288 | Gough | Jun 1987 | A |
4703756 | Gough et al. | Nov 1987 | A |
4731726 | Allen, III | Mar 1988 | A |
4749985 | Corsberg | Jun 1988 | A |
4757022 | Shults et al. | Jul 1988 | A |
4777953 | Ash et al. | Oct 1988 | A |
4779618 | Mund et al. | Oct 1988 | A |
4847785 | Stephens | Jul 1989 | A |
4854322 | Ash et al. | Aug 1989 | A |
4890620 | Gough | Jan 1990 | A |
4925268 | Iyer et al. | May 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4986271 | Wilkins | Jan 1991 | A |
4995402 | Smith et al. | Feb 1991 | A |
5000180 | Kuypers et al. | Mar 1991 | A |
5002054 | Ash et al. | Mar 1991 | A |
5019974 | Beckers | May 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5055171 | Peck | Oct 1991 | A |
5061941 | Lizzi et al. | Oct 1991 | A |
5068536 | Rosenthal | Nov 1991 | A |
5082550 | Rishpon et al. | Jan 1992 | A |
5106365 | Hernandez | Apr 1992 | A |
5112455 | Cozzette et al. | May 1992 | A |
5122925 | Inpyn | Jun 1992 | A |
5135004 | Adams et al. | Aug 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5246867 | Lakowicz et al. | Sep 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5285792 | Sjoquist et al. | Feb 1994 | A |
5293877 | O'Hara et al. | Mar 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5340722 | Wolfbeis et al. | Aug 1994 | A |
5342789 | Chick et al. | Aug 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5360404 | Novacek et al. | Nov 1994 | A |
5371787 | Hamilton | Dec 1994 | A |
5372427 | Padovani et al. | Dec 1994 | A |
5379238 | Stark | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5408999 | Singh et al. | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5425868 | Pedersen | Jun 1995 | A |
5429602 | Hauser | Jul 1995 | A |
5431160 | Wilkins | Jul 1995 | A |
5431921 | Thombre | Jul 1995 | A |
5438271 | White et al. | Aug 1995 | A |
5438983 | Falcone | Aug 1995 | A |
5462051 | Oka et al. | Oct 1995 | A |
5462645 | Albery et al. | Oct 1995 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5509410 | Hill et al. | Apr 1996 | A |
5514718 | Lewis et al. | May 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5558638 | Evers et al. | Sep 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5593852 | Heller et al. | Jan 1997 | A |
5609575 | Larson et al. | Mar 1997 | A |
5628310 | Rao et al. | May 1997 | A |
5628324 | Sarbach | May 1997 | A |
5653239 | Pompei et al. | Aug 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5711001 | Bussan et al. | Jan 1998 | A |
5711861 | Ward et al. | Jan 1998 | A |
5726646 | Bane et al. | Mar 1998 | A |
5729225 | Ledzius | Mar 1998 | A |
5733313 | Barreras, Sr. et al. | Mar 1998 | A |
5769873 | Zadeh | Jun 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5830129 | Baer et al. | Nov 1998 | A |
5830132 | Robinson | Nov 1998 | A |
5856758 | Joffe et al. | Jan 1999 | A |
5899855 | Brown | May 1999 | A |
5919141 | Money et al. | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5935224 | Svancarek et al. | Aug 1999 | A |
5942979 | Luppino | Aug 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5964993 | Blubaugh, Jr. et al. | Oct 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5971922 | Arita et al. | Oct 1999 | A |
5995860 | Sun et al. | Nov 1999 | A |
6001067 | Shults et al. | Dec 1999 | A |
6024699 | Surwit et al. | Feb 2000 | A |
6028413 | Brockmann | Feb 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6055316 | Perlman et al. | Apr 2000 | A |
6066448 | Wohlstadter et al. | May 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6084523 | Gelnovatch et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6091976 | Pfeiffer et al. | Jul 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6096364 | Bok et al. | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6117290 | Say et al. | Sep 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6121611 | Lindsay et al. | Sep 2000 | A |
6122351 | Schlueter, Jr. et al. | Sep 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6151517 | Honigs et al. | Nov 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6200265 | Walsh et al. | Mar 2001 | B1 |
6212416 | Ward et al. | Apr 2001 | B1 |
6218809 | Downs et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6233471 | Berner et al. | May 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6275717 | Gross et al. | Aug 2001 | B1 |
6284478 | Heller et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6295506 | Heinonen et al. | Sep 2001 | B1 |
6299347 | Pompei | Oct 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6309884 | Cooper et al. | Oct 2001 | B1 |
6314317 | Willis | Nov 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6359594 | Junod | Mar 2002 | B1 |
6360888 | McIvor et al. | Mar 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6377828 | Chaiken et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6385473 | Haines et al. | May 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6440068 | Brown et al. | Aug 2002 | B1 |
6471689 | Joseph et al. | Oct 2002 | B1 |
6478736 | Mault | Nov 2002 | B1 |
6480744 | Ferek-Petric | Nov 2002 | B2 |
6484046 | Say et al. | Nov 2002 | B1 |
6493069 | Nagashimada et al. | Dec 2002 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6533733 | Ericson et al. | Mar 2003 | B1 |
6544212 | Galley et al. | Apr 2003 | B2 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6551494 | Heller et al. | Apr 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6564105 | Starkweather et al. | May 2003 | B2 |
6565509 | Say et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6572545 | Knobbe et al. | Jun 2003 | B2 |
6576101 | Heller et al. | Jun 2003 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6580364 | Munch et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6591125 | Buse et al. | Jul 2003 | B1 |
6595919 | Berner et al. | Jul 2003 | B2 |
6599243 | Woltermann et al. | Jul 2003 | B2 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6610012 | Mault | Aug 2003 | B2 |
6633772 | Ford et al. | Oct 2003 | B2 |
6635014 | Starkweather et al. | Oct 2003 | B2 |
6645368 | Beaty et al. | Nov 2003 | B1 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6654625 | Say et al. | Nov 2003 | B1 |
6656114 | Poulson et al. | Dec 2003 | B1 |
6658396 | Tang et al. | Dec 2003 | B1 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6692446 | Hoek | Feb 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6695860 | Ward et al. | Feb 2004 | B1 |
6698269 | Baber et al. | Mar 2004 | B2 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6730025 | Platt | May 2004 | B1 |
6733446 | Lebel et al. | May 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6741877 | Shults et al. | May 2004 | B1 |
6746582 | Heller et al. | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6770030 | Schaupp et al. | Aug 2004 | B1 |
6790178 | Mault et al. | Sep 2004 | B1 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6862465 | Shults et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6881551 | Heller et al. | Apr 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6893396 | Schulze et al. | May 2005 | B2 |
6895263 | Shin et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6926670 | Rich et al. | Aug 2005 | B2 |
6931327 | Goode, Jr. et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6950708 | Bowman, IV et al. | Sep 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6968294 | Gutta et al. | Nov 2005 | B2 |
6971274 | Olin | Dec 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6983176 | Gardner et al. | Jan 2006 | B2 |
6987474 | Freeman et al. | Jan 2006 | B2 |
6990317 | Arnold | Jan 2006 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7003340 | Say et al. | Feb 2006 | B2 |
7003341 | Say et al. | Feb 2006 | B2 |
7022072 | Fox et al. | Apr 2006 | B2 |
7024245 | Lebel et al. | Apr 2006 | B2 |
7027621 | Prokoski | Apr 2006 | B1 |
7027931 | Jones et al. | Apr 2006 | B1 |
7029444 | Shin et al. | Apr 2006 | B2 |
7041068 | Freeman et al. | May 2006 | B2 |
7052483 | Wojcik | May 2006 | B2 |
7056302 | Douglas | Jun 2006 | B2 |
7068227 | Ying | Jun 2006 | B2 |
7074307 | Simpson et al. | Jul 2006 | B2 |
7081195 | Simpson et al. | Jul 2006 | B2 |
7098803 | Mann et al. | Aug 2006 | B2 |
7108778 | Simpson et al. | Sep 2006 | B2 |
7110803 | Shults et al. | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7136689 | Shults et al. | Nov 2006 | B2 |
7167818 | Brown | Jan 2007 | B2 |
7171274 | Starkweather et al. | Jan 2007 | B2 |
7174199 | Berner et al. | Feb 2007 | B2 |
7181505 | Haller et al. | Feb 2007 | B2 |
7190988 | Say et al. | Mar 2007 | B2 |
7192450 | Brauker et al. | Mar 2007 | B2 |
7198606 | Boecker et al. | Apr 2007 | B2 |
7222054 | Geva | May 2007 | B2 |
7226978 | Tapsak et al. | Jun 2007 | B2 |
7258665 | Kohls et al. | Aug 2007 | B2 |
7267665 | Steil et al. | Sep 2007 | B2 |
7276029 | Goode, Jr. et al. | Oct 2007 | B2 |
7286894 | Grant et al. | Oct 2007 | B1 |
7299082 | Feldman et al. | Nov 2007 | B2 |
7310544 | Brister et al. | Dec 2007 | B2 |
7335294 | Heller et al. | Feb 2008 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7364592 | Carr-Brendel et al. | Apr 2008 | B2 |
7366556 | Brister et al. | Apr 2008 | B2 |
7379765 | Petisce et al. | May 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7424318 | Brister et al. | Sep 2008 | B2 |
7460898 | Brister et al. | Dec 2008 | B2 |
7467003 | Brister et al. | Dec 2008 | B2 |
7471972 | Rhodes et al. | Dec 2008 | B2 |
7494465 | Brister et al. | Feb 2009 | B2 |
7497827 | Brister et al. | Mar 2009 | B2 |
7506046 | Rhodes | Mar 2009 | B2 |
7519408 | Rasdal et al. | Apr 2009 | B2 |
7547281 | Hayes et al. | Jun 2009 | B2 |
7569030 | Lebel et al. | Aug 2009 | B2 |
7583990 | Goode, Jr. et al. | Sep 2009 | B2 |
7591801 | Brauker et al. | Sep 2009 | B2 |
7599726 | Goode, Jr. et al. | Oct 2009 | B2 |
7613491 | Boock et al. | Nov 2009 | B2 |
7615007 | Shults et al. | Nov 2009 | B2 |
7618369 | Hayter et al. | Nov 2009 | B2 |
7632228 | Brauker et al. | Dec 2009 | B2 |
7653425 | Hayter et al. | Jan 2010 | B2 |
7699775 | Desai et al. | Apr 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7768387 | Fennell et al. | Aug 2010 | B2 |
7775444 | DeRocco et al. | Aug 2010 | B2 |
7804197 | Iisaka et al. | Sep 2010 | B2 |
7811231 | Jin et al. | Oct 2010 | B2 |
7826382 | Sicurello et al. | Nov 2010 | B2 |
7833151 | Khait et al. | Nov 2010 | B2 |
7889069 | Fifolt et al. | Feb 2011 | B2 |
7948369 | Fennell et al. | May 2011 | B2 |
7978063 | Baldus et al. | Jul 2011 | B2 |
8000918 | Fjield et al. | Aug 2011 | B2 |
8010174 | Goode et al. | Aug 2011 | B2 |
8010256 | Oowada | Aug 2011 | B2 |
8123686 | Fennell et al. | Feb 2012 | B2 |
8149103 | Fennell et al. | Apr 2012 | B2 |
8233456 | Kopikare et al. | Jul 2012 | B1 |
8260393 | Kamath et al. | Sep 2012 | B2 |
8282549 | Brauker et al. | Oct 2012 | B2 |
8417312 | Kamath et al. | Apr 2013 | B2 |
8427298 | Fennell et al. | Apr 2013 | B2 |
8478389 | Brockway et al. | Jul 2013 | B1 |
8560037 | Goode, Jr. et al. | Oct 2013 | B2 |
8622903 | Jin et al. | Jan 2014 | B2 |
8638411 | Park et al. | Jan 2014 | B2 |
8698615 | Fennell et al. | Apr 2014 | B2 |
8849459 | Ramey et al. | Sep 2014 | B2 |
8914090 | Jain et al. | Dec 2014 | B2 |
8937540 | Fennell | Jan 2015 | B2 |
9402584 | Fennell | Aug 2016 | B2 |
9743866 | Fennell | Aug 2017 | B2 |
9801545 | Fennell et al. | Oct 2017 | B2 |
20010011795 | Ohtsuka et al. | Aug 2001 | A1 |
20020019022 | Dunn et al. | Feb 2002 | A1 |
20020023852 | McIvor et al. | Feb 2002 | A1 |
20020026111 | Ackerman | Feb 2002 | A1 |
20020042090 | Heller et al. | Apr 2002 | A1 |
20020045808 | Ford et al. | Apr 2002 | A1 |
20020046300 | Hanko et al. | Apr 2002 | A1 |
20020065454 | Lebel et al. | May 2002 | A1 |
20020085719 | Crosbie | Jul 2002 | A1 |
20020099854 | Jorgensen | Jul 2002 | A1 |
20020103499 | Perez et al. | Aug 2002 | A1 |
20020106709 | Potts et al. | Aug 2002 | A1 |
20020109621 | Khair et al. | Aug 2002 | A1 |
20020117639 | Paolini et al. | Aug 2002 | A1 |
20020128594 | Das et al. | Sep 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20020169635 | Shillingburg | Nov 2002 | A1 |
20020173830 | Starkweather et al. | Nov 2002 | A1 |
20020185130 | Wright et al. | Dec 2002 | A1 |
20020188748 | Blackwell et al. | Dec 2002 | A1 |
20030004403 | Drinan et al. | Jan 2003 | A1 |
20030009203 | Lebel et al. | Jan 2003 | A1 |
20030023317 | Brauker et al. | Jan 2003 | A1 |
20030032874 | Rhodes et al. | Feb 2003 | A1 |
20030035371 | Reed et al. | Feb 2003 | A1 |
20030042137 | Mao et al. | Mar 2003 | A1 |
20030060689 | Kohls et al. | Mar 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030060753 | Starkweather et al. | Mar 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030100821 | Heller et al. | May 2003 | A1 |
20030119457 | Standke | Jun 2003 | A1 |
20030125612 | Fox et al. | Jul 2003 | A1 |
20030130616 | Steil et al. | Jul 2003 | A1 |
20030134347 | Heller et al. | Jul 2003 | A1 |
20030144581 | Conn et al. | Jul 2003 | A1 |
20030168338 | Gao et al. | Sep 2003 | A1 |
20030175992 | Toranto et al. | Sep 2003 | A1 |
20030176933 | Lebel et al. | Sep 2003 | A1 |
20030179705 | Kojima | Sep 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030199790 | Boecker et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030212317 | Kovatchev et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030216630 | Jersey-Willuhn et al. | Nov 2003 | A1 |
20030217966 | Tapsak et al. | Nov 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040011671 | Shults et al. | Jan 2004 | A1 |
20040030581 | Levin et al. | Feb 2004 | A1 |
20040034289 | Teller et al. | Feb 2004 | A1 |
20040039255 | Simonsen et al. | Feb 2004 | A1 |
20040039298 | Abreu et al. | Feb 2004 | A1 |
20040040840 | Mao et al. | Mar 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040063435 | Sakamoto et al. | Apr 2004 | A1 |
20040064068 | DeNuzzio et al. | Apr 2004 | A1 |
20040106858 | Say et al. | Jun 2004 | A1 |
20040106859 | Say et al. | Jun 2004 | A1 |
20040116786 | Iijima et al. | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040128161 | Mazar et al. | Jul 2004 | A1 |
20040133164 | Funderburk et al. | Jul 2004 | A1 |
20040133390 | Osorio et al. | Jul 2004 | A1 |
20040136361 | Holloway et al. | Jul 2004 | A1 |
20040136377 | Miyazaki et al. | Jul 2004 | A1 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20040146909 | Duong et al. | Jul 2004 | A1 |
20040147872 | Thompson | Jul 2004 | A1 |
20040152622 | Keith et al. | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040171921 | Say et al. | Sep 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040186362 | Brauker et al. | Sep 2004 | A1 |
20040186365 | Jin et al. | Sep 2004 | A1 |
20040193020 | Chiba et al. | Sep 2004 | A1 |
20040193025 | Steil et al. | Sep 2004 | A1 |
20040193090 | Lebel et al. | Sep 2004 | A1 |
20040197846 | Hockersmith et al. | Oct 2004 | A1 |
20040199056 | Husemann et al. | Oct 2004 | A1 |
20040199059 | Brauker et al. | Oct 2004 | A1 |
20040204055 | Nousiainen | Oct 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040206916 | Colvin, Jr. et al. | Oct 2004 | A1 |
20040212536 | Mori et al. | Oct 2004 | A1 |
20040225199 | Evanyk et al. | Nov 2004 | A1 |
20040225338 | Lebel et al. | Nov 2004 | A1 |
20040236200 | Say et al. | Nov 2004 | A1 |
20040254433 | Bandis et al. | Dec 2004 | A1 |
20040260478 | Schwamm | Dec 2004 | A1 |
20040267300 | Mace | Dec 2004 | A1 |
20050001024 | Kusaka et al. | Jan 2005 | A1 |
20050004439 | Shin et al. | Jan 2005 | A1 |
20050004494 | Perez et al. | Jan 2005 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050017864 | Tsoukalis | Jan 2005 | A1 |
20050027177 | Shin et al. | Feb 2005 | A1 |
20050031689 | Shults et al. | Feb 2005 | A1 |
20050038332 | Saidara et al. | Feb 2005 | A1 |
20050043598 | Goode, Jr. et al. | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050059372 | Arayashiki et al. | Mar 2005 | A1 |
20050070777 | Cho et al. | Mar 2005 | A1 |
20050090607 | Tapsak et al. | Apr 2005 | A1 |
20050096511 | Fox et al. | May 2005 | A1 |
20050096512 | Fox et al. | May 2005 | A1 |
20050096516 | Soykan et al. | May 2005 | A1 |
20050112169 | Brauker et al. | May 2005 | A1 |
20050113648 | Yang et al. | May 2005 | A1 |
20050113653 | Fox et al. | May 2005 | A1 |
20050114068 | Chey et al. | May 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050121322 | Say et al. | Jun 2005 | A1 |
20050131346 | Douglas | Jun 2005 | A1 |
20050137530 | Campbell et al. | Jun 2005 | A1 |
20050143635 | Kamath et al. | Jun 2005 | A1 |
20050176136 | Burd et al. | Aug 2005 | A1 |
20050177398 | Watanabe et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050182358 | Veit et al. | Aug 2005 | A1 |
20050187720 | Goode, Jr. et al. | Aug 2005 | A1 |
20050192494 | Ginsberg | Sep 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050195930 | Spital et al. | Sep 2005 | A1 |
20050199494 | Say et al. | Sep 2005 | A1 |
20050203360 | Brauker et al. | Sep 2005 | A1 |
20050221504 | Petruno et al. | Oct 2005 | A1 |
20050236361 | Ufer et al. | Oct 2005 | A1 |
20050239154 | Feldman et al. | Oct 2005 | A1 |
20050241957 | Mao et al. | Nov 2005 | A1 |
20050242479 | Petisce et al. | Nov 2005 | A1 |
20050245795 | Goode, Jr. et al. | Nov 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050245839 | Stivoric et al. | Nov 2005 | A1 |
20050245904 | Estes et al. | Nov 2005 | A1 |
20050259514 | Iseli et al. | Nov 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20050287620 | Heller et al. | Dec 2005 | A1 |
20060001538 | Kraft et al. | Jan 2006 | A1 |
20060004270 | Bedard et al. | Jan 2006 | A1 |
20060015020 | Neale et al. | Jan 2006 | A1 |
20060015024 | Brister et al. | Jan 2006 | A1 |
20060016700 | Brister et al. | Jan 2006 | A1 |
20060019327 | Brister et al. | Jan 2006 | A1 |
20060020186 | Brister et al. | Jan 2006 | A1 |
20060020187 | Brister et al. | Jan 2006 | A1 |
20060020188 | Kamath et al. | Jan 2006 | A1 |
20060020189 | Brister et al. | Jan 2006 | A1 |
20060020190 | Kamath et al. | Jan 2006 | A1 |
20060020191 | Brister et al. | Jan 2006 | A1 |
20060020192 | Brister et al. | Jan 2006 | A1 |
20060020300 | Nghiem et al. | Jan 2006 | A1 |
20060029177 | Cranford, Jr. et al. | Feb 2006 | A1 |
20060031094 | Cohen et al. | Feb 2006 | A1 |
20060036139 | Brister et al. | Feb 2006 | A1 |
20060036140 | Brister et al. | Feb 2006 | A1 |
20060036141 | Kamath et al. | Feb 2006 | A1 |
20060036142 | Brister et al. | Feb 2006 | A1 |
20060036143 | Brister et al. | Feb 2006 | A1 |
20060036144 | Brister et al. | Feb 2006 | A1 |
20060036145 | Brister et al. | Feb 2006 | A1 |
20060058588 | Zdeblick | Mar 2006 | A1 |
20060154642 | Scannell | Jul 2006 | A1 |
20060155180 | Brister et al. | Jul 2006 | A1 |
20060166629 | Reggiardo | Jul 2006 | A1 |
20060173260 | Gaoni et al. | Aug 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060173444 | Choy et al. | Aug 2006 | A1 |
20060183984 | Dobbles et al. | Aug 2006 | A1 |
20060183985 | Brister et al. | Aug 2006 | A1 |
20060189863 | Peyser et al. | Aug 2006 | A1 |
20060193375 | Lee et al. | Aug 2006 | A1 |
20060198426 | Partyka | Sep 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060224109 | Steil et al. | Oct 2006 | A1 |
20060229512 | Petisce et al. | Oct 2006 | A1 |
20060247508 | Fennell | Nov 2006 | A1 |
20060253296 | Liisberg et al. | Nov 2006 | A1 |
20060264785 | Dring et al. | Nov 2006 | A1 |
20060264888 | Moberg et al. | Nov 2006 | A1 |
20060270922 | Brauker et al. | Nov 2006 | A1 |
20060272652 | Stocker et al. | Dec 2006 | A1 |
20060276714 | Holt et al. | Dec 2006 | A1 |
20060293607 | Alt et al. | Dec 2006 | A1 |
20070007133 | Mang et al. | Jan 2007 | A1 |
20070016381 | Kamath et al. | Jan 2007 | A1 |
20070017983 | Frank et al. | Jan 2007 | A1 |
20070026440 | Broderick et al. | Feb 2007 | A1 |
20070027381 | Stafford | Feb 2007 | A1 |
20070027507 | Burdett et al. | Feb 2007 | A1 |
20070032706 | Kamath et al. | Feb 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070038044 | Dobbles et al. | Feb 2007 | A1 |
20070053341 | Lizzi | Mar 2007 | A1 |
20070060814 | Stafford | Mar 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070066873 | Kamath et al. | Mar 2007 | A1 |
20070066877 | Arnold et al. | Mar 2007 | A1 |
20070071681 | Gadkar et al. | Mar 2007 | A1 |
20070073129 | Shah et al. | Mar 2007 | A1 |
20070078320 | Stafford | Apr 2007 | A1 |
20070078321 | Mazza et al. | Apr 2007 | A1 |
20070078322 | Stafford | Apr 2007 | A1 |
20070078323 | Reggiardo et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070100222 | Mastrototaro et al. | May 2007 | A1 |
20070106133 | Satchwell et al. | May 2007 | A1 |
20070106135 | Sloan et al. | May 2007 | A1 |
20070118030 | Bruce et al. | May 2007 | A1 |
20070124002 | Estes et al. | May 2007 | A1 |
20070135697 | Reggiardo | Jun 2007 | A1 |
20070149875 | Ouyang et al. | Jun 2007 | A1 |
20070153705 | Rosar et al. | Jul 2007 | A1 |
20070156094 | Safabash et al. | Jul 2007 | A1 |
20070163880 | Woo et al. | Jul 2007 | A1 |
20070168224 | Letzt et al. | Jul 2007 | A1 |
20070170893 | Kao et al. | Jul 2007 | A1 |
20070173706 | Neinast et al. | Jul 2007 | A1 |
20070173712 | Shah et al. | Jul 2007 | A1 |
20070173761 | Kanderian et al. | Jul 2007 | A1 |
20070179349 | Hoyme et al. | Aug 2007 | A1 |
20070179352 | Randlov et al. | Aug 2007 | A1 |
20070191701 | Feldman et al. | Aug 2007 | A1 |
20070191702 | Yodfat et al. | Aug 2007 | A1 |
20070203407 | Hoss et al. | Aug 2007 | A1 |
20070203966 | Brauker et al. | Aug 2007 | A1 |
20070208245 | Brauker et al. | Sep 2007 | A1 |
20070219496 | Kamen et al. | Sep 2007 | A1 |
20070222609 | Duron et al. | Sep 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070249922 | Peyser et al. | Oct 2007 | A1 |
20070255321 | Gerber et al. | Nov 2007 | A1 |
20070255348 | Holtzclaw | Nov 2007 | A1 |
20070271285 | Eichorn et al. | Nov 2007 | A1 |
20080009692 | Stafford | Jan 2008 | A1 |
20080012701 | Kass et al. | Jan 2008 | A1 |
20080017522 | Heller et al. | Jan 2008 | A1 |
20080021666 | Goode, Jr. et al. | Jan 2008 | A1 |
20080021972 | Huelskamp et al. | Jan 2008 | A1 |
20080027586 | Hern et al. | Jan 2008 | A1 |
20080029391 | Mao et al. | Feb 2008 | A1 |
20080033254 | Kamath et al. | Feb 2008 | A1 |
20080039702 | Hayter et al. | Feb 2008 | A1 |
20080045824 | Tapsak et al. | Feb 2008 | A1 |
20080057484 | Miyata et al. | Mar 2008 | A1 |
20080058625 | McGarraugh et al. | Mar 2008 | A1 |
20080058626 | Miyata et al. | Mar 2008 | A1 |
20080058678 | Miyata et al. | Mar 2008 | A1 |
20080060955 | Goodnow | Mar 2008 | A1 |
20080062055 | Cunningham et al. | Mar 2008 | A1 |
20080064937 | McGarraugh et al. | Mar 2008 | A1 |
20080067627 | Boeck et al. | Mar 2008 | A1 |
20080071156 | Brister et al. | Mar 2008 | A1 |
20080071157 | McGarraugh et al. | Mar 2008 | A1 |
20080071158 | McGarraugh et al. | Mar 2008 | A1 |
20080081977 | Hayter et al. | Apr 2008 | A1 |
20080083617 | Simpson et al. | Apr 2008 | A1 |
20080086042 | Brister et al. | Apr 2008 | A1 |
20080086044 | Brister et al. | Apr 2008 | A1 |
20080086273 | Shults et al. | Apr 2008 | A1 |
20080092638 | Brenneman et al. | Apr 2008 | A1 |
20080097289 | Steil et al. | Apr 2008 | A1 |
20080108942 | Brister et al. | May 2008 | A1 |
20080154513 | Kovatchev et al. | Jun 2008 | A1 |
20080161666 | Feldman et al. | Jul 2008 | A1 |
20080167543 | Say et al. | Jul 2008 | A1 |
20080172205 | Breton et al. | Jul 2008 | A1 |
20080179187 | Ouyang et al. | Jul 2008 | A1 |
20080183060 | Steil et al. | Jul 2008 | A1 |
20080183061 | Goode et al. | Jul 2008 | A1 |
20080183399 | Goode et al. | Jul 2008 | A1 |
20080188731 | Brister et al. | Aug 2008 | A1 |
20080188796 | Steil et al. | Aug 2008 | A1 |
20080189051 | Goode et al. | Aug 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080194935 | Brister et al. | Aug 2008 | A1 |
20080194936 | Goode et al. | Aug 2008 | A1 |
20080194937 | Goode et al. | Aug 2008 | A1 |
20080194938 | Brister et al. | Aug 2008 | A1 |
20080195232 | Carr-Brendel et al. | Aug 2008 | A1 |
20080195967 | Goode et al. | Aug 2008 | A1 |
20080197024 | Simpson et al. | Aug 2008 | A1 |
20080200788 | Brister et al. | Aug 2008 | A1 |
20080200789 | Brister et al. | Aug 2008 | A1 |
20080200791 | Simpson et al. | Aug 2008 | A1 |
20080208025 | Shults et al. | Aug 2008 | A1 |
20080208113 | Damiano et al. | Aug 2008 | A1 |
20080212600 | Yoo | Sep 2008 | A1 |
20080214900 | Fennell et al. | Sep 2008 | A1 |
20080214915 | Brister et al. | Sep 2008 | A1 |
20080214918 | Brister et al. | Sep 2008 | A1 |
20080228051 | Shults et al. | Sep 2008 | A1 |
20080228054 | Shults et al. | Sep 2008 | A1 |
20080234943 | Ray et al. | Sep 2008 | A1 |
20080242961 | Brister et al. | Oct 2008 | A1 |
20080254544 | Modzelewski et al. | Oct 2008 | A1 |
20080255434 | Hayter et al. | Oct 2008 | A1 |
20080255437 | Hayter | Oct 2008 | A1 |
20080255808 | Hayter | Oct 2008 | A1 |
20080256048 | Hayter | Oct 2008 | A1 |
20080262469 | Brister et al. | Oct 2008 | A1 |
20080267823 | Wang et al. | Oct 2008 | A1 |
20080275313 | Brister et al. | Nov 2008 | A1 |
20080287761 | Hayter | Nov 2008 | A1 |
20080287762 | Hayter | Nov 2008 | A1 |
20080287763 | Hayter | Nov 2008 | A1 |
20080287764 | Rasdal et al. | Nov 2008 | A1 |
20080287765 | Rasdal et al. | Nov 2008 | A1 |
20080287766 | Rasdal et al. | Nov 2008 | A1 |
20080288180 | Hayter | Nov 2008 | A1 |
20080288204 | Hayter et al. | Nov 2008 | A1 |
20080294024 | Cosentino et al. | Nov 2008 | A1 |
20080296155 | Shults et al. | Dec 2008 | A1 |
20080301436 | Yao et al. | Dec 2008 | A1 |
20080306368 | Goode et al. | Dec 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080306435 | Kamath et al. | Dec 2008 | A1 |
20080306444 | Brister et al. | Dec 2008 | A1 |
20080312841 | Hayter | Dec 2008 | A1 |
20080312842 | Hayter | Dec 2008 | A1 |
20080312844 | Hayter et al. | Dec 2008 | A1 |
20080312845 | Hayter et al. | Dec 2008 | A1 |
20080319295 | Bernstein et al. | Dec 2008 | A1 |
20080319296 | Bernstein et al. | Dec 2008 | A1 |
20080320587 | Vauclair et al. | Dec 2008 | A1 |
20090005665 | Hayter et al. | Jan 2009 | A1 |
20090006034 | Hayter et al. | Jan 2009 | A1 |
20090012379 | Goode et al. | Jan 2009 | A1 |
20090018424 | Kamath et al. | Jan 2009 | A1 |
20090030294 | Petisce et al. | Jan 2009 | A1 |
20090033482 | Hayter et al. | Feb 2009 | A1 |
20090036747 | Hayter et al. | Feb 2009 | A1 |
20090036758 | Brauker et al. | Feb 2009 | A1 |
20090036760 | Hayter | Feb 2009 | A1 |
20090036763 | Brauker et al. | Feb 2009 | A1 |
20090040022 | Finkenzeller | Feb 2009 | A1 |
20090043181 | Brauker et al. | Feb 2009 | A1 |
20090043182 | Brauker et al. | Feb 2009 | A1 |
20090043525 | Brauker et al. | Feb 2009 | A1 |
20090043541 | Brauker et al. | Feb 2009 | A1 |
20090043542 | Brauker et al. | Feb 2009 | A1 |
20090045055 | Rhodes et al. | Feb 2009 | A1 |
20090048503 | Dalal et al. | Feb 2009 | A1 |
20090054747 | Fennell | Feb 2009 | A1 |
20090055149 | Hayter et al. | Feb 2009 | A1 |
20090062633 | Brauker et al. | Mar 2009 | A1 |
20090062635 | Brauker et al. | Mar 2009 | A1 |
20090062767 | VanAntwerp et al. | Mar 2009 | A1 |
20090063187 | Johnson et al. | Mar 2009 | A1 |
20090063402 | Hayter | Mar 2009 | A1 |
20090076356 | Simpson et al. | Mar 2009 | A1 |
20090076359 | Peyser et al. | Mar 2009 | A1 |
20090076360 | Brister et al. | Mar 2009 | A1 |
20090076361 | Kamath et al. | Mar 2009 | A1 |
20090085873 | Betts et al. | Apr 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090094680 | Gupta et al. | Apr 2009 | A1 |
20090099436 | Brister et al. | Apr 2009 | A1 |
20090105570 | Sloan et al. | Apr 2009 | A1 |
20090105571 | Fennell et al. | Apr 2009 | A1 |
20090105636 | Hayter et al. | Apr 2009 | A1 |
20090124877 | Goode et al. | May 2009 | A1 |
20090124878 | Goode et al. | May 2009 | A1 |
20090124879 | Brister et al. | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090131768 | Simpson et al. | May 2009 | A1 |
20090131769 | Leach et al. | May 2009 | A1 |
20090131776 | Simpson et al. | May 2009 | A1 |
20090131777 | Simpson et al. | May 2009 | A1 |
20090137886 | Shariati et al. | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090143659 | Li et al. | Jun 2009 | A1 |
20090143660 | Brister et al. | Jun 2009 | A1 |
20090146826 | Gofman et al. | Jun 2009 | A1 |
20090156919 | Brister et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163790 | Brister et al. | Jun 2009 | A1 |
20090163791 | Brister et al. | Jun 2009 | A1 |
20090164190 | Hayter | Jun 2009 | A1 |
20090164239 | Hayter et al. | Jun 2009 | A1 |
20090164251 | Hayter | Jun 2009 | A1 |
20090178459 | Li et al. | Jul 2009 | A1 |
20090182217 | Li et al. | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192380 | Shariati et al. | Jul 2009 | A1 |
20090192722 | Shariati et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Kamath et al. | Jul 2009 | A1 |
20090192751 | Kamath et al. | Jul 2009 | A1 |
20090198118 | Hayter et al. | Aug 2009 | A1 |
20090203981 | Brauker et al. | Aug 2009 | A1 |
20090204340 | Feldman et al. | Aug 2009 | A1 |
20090204341 | Brauker et al. | Aug 2009 | A1 |
20090216103 | Brister et al. | Aug 2009 | A1 |
20090237216 | Twitchell, Jr. | Sep 2009 | A1 |
20090240120 | Mensinger et al. | Sep 2009 | A1 |
20090240128 | Mensinger et al. | Sep 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090242399 | Kamath et al. | Oct 2009 | A1 |
20090242425 | Kamath et al. | Oct 2009 | A1 |
20090247855 | Boock et al. | Oct 2009 | A1 |
20090247856 | Boock et al. | Oct 2009 | A1 |
20090287073 | Boock et al. | Nov 2009 | A1 |
20090287074 | Shults et al. | Nov 2009 | A1 |
20090296742 | Sicurello et al. | Dec 2009 | A1 |
20090299155 | Yang et al. | Dec 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20090299162 | Brauker et al. | Dec 2009 | A1 |
20090299276 | Brauker et al. | Dec 2009 | A1 |
20100010329 | Taub et al. | Jan 2010 | A1 |
20100025238 | Gottlieb et al. | Feb 2010 | A1 |
20100057040 | Hayter | Mar 2010 | A1 |
20100057041 | Hayter | Mar 2010 | A1 |
20100057042 | Hayter | Mar 2010 | A1 |
20100057044 | Hayter | Mar 2010 | A1 |
20100057057 | Hayter et al. | Mar 2010 | A1 |
20100105999 | Dixon et al. | Apr 2010 | A1 |
20100110931 | Shim et al. | May 2010 | A1 |
20100119881 | Patel et al. | May 2010 | A1 |
20100152554 | Steine et al. | Jun 2010 | A1 |
20100160759 | Celentano et al. | Jun 2010 | A1 |
20100168538 | Keenan et al. | Jul 2010 | A1 |
20100168545 | Kamath et al. | Jul 2010 | A1 |
20100174266 | Estes | Jul 2010 | A1 |
20100185071 | Simpson et al. | Jul 2010 | A1 |
20100185175 | Kamen et al. | Jul 2010 | A1 |
20100191085 | Budiman | Jul 2010 | A1 |
20100198142 | Sloan et al. | Aug 2010 | A1 |
20100213080 | Celentano et al. | Aug 2010 | A1 |
20100235439 | Goodnow et al. | Sep 2010 | A1 |
20100267161 | Wu et al. | Oct 2010 | A1 |
20100313105 | Nekoomaram et al. | Dec 2010 | A1 |
20100324403 | Brister et al. | Dec 2010 | A1 |
20100331646 | Hoss et al. | Dec 2010 | A1 |
20100332142 | Shadforth et al. | Dec 2010 | A1 |
20110031986 | Bhat et al. | Feb 2011 | A1 |
20110074349 | Ghovanloo | Mar 2011 | A1 |
20110125040 | Crawford et al. | May 2011 | A1 |
20110148905 | Simmons et al. | Jun 2011 | A1 |
20110184268 | Taub | Jul 2011 | A1 |
20110191059 | Farrell et al. | Aug 2011 | A1 |
20110230741 | Liang et al. | Sep 2011 | A1 |
20110257895 | Brauker et al. | Oct 2011 | A1 |
20110270112 | Manera et al. | Nov 2011 | A1 |
20110287528 | Fern et al. | Nov 2011 | A1 |
20120108931 | Taub et al. | May 2012 | A1 |
20120148054 | Rank et al. | Jun 2012 | A1 |
20120190989 | Kaiser et al. | Jul 2012 | A1 |
20120215092 | Harris, III et al. | Aug 2012 | A1 |
20130035575 | Mayou et al. | Feb 2013 | A1 |
20130235166 | Jones et al. | Sep 2013 | A1 |
20150335245 | Fennell et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
0098592 | Jan 1984 | EP |
0127958 | Dec 1984 | EP |
0320109 | Jun 1989 | EP |
0353328 | Feb 1990 | EP |
0390390 | Oct 1990 | EP |
0396788 | Nov 1990 | EP |
0286118 | Jan 1995 | EP |
1048264 | Nov 2000 | EP |
WO-1996025089 | Aug 1996 | WO |
WO-1996035370 | Nov 1996 | WO |
WO-1998035053 | Aug 1998 | WO |
WO-1999056613 | Nov 1999 | WO |
WO-2000049940 | Aug 2000 | WO |
WO-2000059370 | Oct 2000 | WO |
WO-2000060350 | Oct 2000 | WO |
WO-2000078992 | Dec 2000 | WO |
WO-2001052935 | Jul 2001 | WO |
WO-2001054753 | Aug 2001 | WO |
WO-2002016905 | Feb 2002 | WO |
WO-2002058537 | Aug 2002 | WO |
WO-2003076893 | Sep 2003 | WO |
WO-2003082091 | Oct 2003 | WO |
WO-2003085372 | Oct 2003 | WO |
WO-2004061420 | Jul 2004 | WO |
WO-2005010756 | Feb 2005 | WO |
WO-2005041766 | May 2005 | WO |
WO-2005089103 | Sep 2005 | WO |
WO-2005117269 | Dec 2005 | WO |
WO-2006024671 | Mar 2006 | WO |
Entry |
---|
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526. |
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33. |
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10. |
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/1988, pp. 45-56. |
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose” Analytical Chemistry, vol. 56, No. 4, 1984, 667-671. |
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244. |
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779. |
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004. |
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652. |
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719. |
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198. |
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250. |
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304. |
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549. |
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74. |
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658. |
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages. |
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376. |
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532. |
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/1988, pp. 335-346. |
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217. |
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272. |
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161. |
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241. |
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158. |
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322. |
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308. |
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299. |
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406. |
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor” Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313. |
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210. |
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301. |
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131. |
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942. |
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40. |
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261. |
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115. |
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137. |
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964. |
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617. |
Canadian Patent Application No. 2,683,721, Examiner's Report dated Mar. 17, 2015. |
European Patent Application No. 08745799.0, Extended European Search Report dated Oct. 16, 2012. |
PCT Application No. PCT/US2008/060273, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Oct. 29, 2009. |
PCT Application No. PCT/US2008/060273, International Search Report and Written Opinion of the International Searching Authority dated Oct. 1, 2008. |
U.S. Appl. No. 12/102,836, Notice of Allowance dated Jun. 18, 2010. |
U.S. Appl. No. 12/102,836, Office Action dated Mar. 11, 2010. |
U.S. Appl. No. 12/894,004, Notice of Allowance dated Apr. 7, 2011. |
U.S. Appl. No. 12/894,004, Office Action dated Dec. 30, 2010. |
U.S. Appl. No. 12/894,004, Office Action dated Jan. 21, 2011. |
U.S. Appl. No. 13/114,029, Notice of Allowance dated Jan. 18, 2012. |
U.S. Appl. No. 13/114,029, Office Action dated Nov. 2, 2011. |
U.S. Appl. No. 13/437,894, Notice of Allowance dated Jan. 15, 2013. |
U.S. Appl. No. 13/437,894, Office Action dated Oct. 17, 2012. |
U.S. Appl. No. 13/867,948, Notice of Allowance dated Feb. 4, 2014. |
U.S. Appl. No. 13/867,948, Office Action dated Dec. 16, 2013. |
U.S. Appl. No. 13/867,948, Office Action dated Jul. 10, 2013. |
U.S. Appl. No. 14/188,659, Notice of Allowance dated Nov. 26, 2014. |
U.S. Appl. No. 14/188,659, Office Action dated Sep. 17, 2014. |
U.S. Appl. No. 14/596,759, Notice of Allowance dated Apr. 20, 2016. |
U.S. Appl. No. 14/596,759, Office Action dated Jan. 25, 2016. |
U.S. Appl. No. 15/209,741, Office Action dated May 4, 2017. |
U.S. Appl. No. 15/209,741, Notice of Allowance dated May 11, 2017. |
Number | Date | Country | |
---|---|---|---|
20170354356 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
60911866 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15209741 | Jul 2016 | US |
Child | 15686156 | US | |
Parent | 14596759 | Jan 2015 | US |
Child | 15209741 | US | |
Parent | 14188659 | Feb 2014 | US |
Child | 14596759 | US | |
Parent | 13867948 | Apr 2013 | US |
Child | 14188659 | US | |
Parent | 13437894 | Apr 2012 | US |
Child | 13867948 | US | |
Parent | 13114029 | May 2011 | US |
Child | 13437894 | US | |
Parent | 12849004 | Aug 2010 | US |
Child | 13114029 | US | |
Parent | 12102836 | Apr 2008 | US |
Child | 12849004 | US |