The detection of the level of analytes, such as glucose, lactate, oxygen, and the like, in certain individuals is vitally important to their health. For example, the monitoring of glucose is particularly important to individuals with diabetes. Diabetics may need to monitor glucose levels to determine when insulin is needed to reduce glucose levels in their bodies or when additional glucose is needed to raise the level of glucose in their bodies.
Accordingly, of interest are devices that allow a user to test for one or more analytes, and provide glycemic control and therapy management.
Embodiments of the present disclosure also include method and apparatus for receiving mean glucose value information of a patient based on a predetermined time period, receiving a current HbA1C level of the patient and a target HbA1C level of the patient, determining a correlation between the received mean glucose value information and the retrieved current and target HbA1C levels, updating the target HbA1C level based on the determined correlation, and determining one or more parameters associated with the physiological condition of the patient based on the updated target HbA1C level.
Before the present disclosure is described, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges as also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.
The figures shown herein are not necessarily drawn to scale, with some components and features being exaggerated for clarity.
Generally, embodiments of the present disclosure relate to methods and devices for detecting at least one analyte such as glucose in body fluid. Embodiments relate to the continuous and/or automatic in vivo monitoring of the level of one or more analytes using a continuous analyte monitoring system that includes an analyte sensor at least a portion of which is to be positioned beneath a skin surface of a user for a period of time and/or the discrete monitoring of one or more analytes using an in vitro blood glucose (“BG”) meter and an analyte test strip. Embodiments include combined or combinable devices, systems and methods and/or transferring data between an in vivo continuous system and a BG meter system.
Embodiments of the present disclosure include method and apparatus for receiving mean glucose value information of a patient based on a predetermined time period, receiving an HbA1C (also referred to as A1C) level of the patient, determining a correlation between the received mean glucose value information and the HbA1C level, and determining a target HbA1C level based on the determined correlation, for example, for diabetes management or physiological therapy management. Additionally, in certain embodiments of the present disclosure there are provided method, apparatus, and system for receiving mean glucose value information of a patient based on a predetermined time period, receiving a current HbA1C level of the patient and a target HbA1C level of the patient, determining a correlation between the received mean glucose value information and the retrieved current and target HbA1C levels, updating the target HbA1C level based on the determined correlation, and determining one or more parameters associated with the physiological condition of the patient based on the updated target HbA1C level.
Accordingly, embodiments include analyte monitoring devices and systems that include an analyte sensor—at least a portion of which is positionable beneath the skin of the user—for the in vivo detection, of an analyte, such as glucose, lactate, and the like, in a body fluid. Embodiments include wholly implantable analyte sensors and analyte sensors in which only a portion of the sensor is positioned under the skin and a portion of the sensor resides above the skin, e.g., for contact to a transmitter, receiver, transceiver, processor, etc. The sensor may be, for example, subcutaneously positionable in a patient for the continuous or periodic monitoring of a level of an analyte in a patient's interstitial fluid. For the purposes of this description, continuous monitoring and periodic monitoring will be used interchangeably, unless noted otherwise. The sensor response may be correlated and/or converted to analyte levels in blood or other fluids. In certain embodiments, an analyte sensor may be positioned in contact with interstitial fluid to detect the level of glucose, in which detected glucose may be used to infer the glucose level in the patient's bloodstream. Analyte sensors may be insertable into a vein, artery, or other portion of the body containing fluid. Embodiments of the analyte sensors of the subject disclosure may be configured for monitoring the level of the analyte over a time period which may range from minutes, hours, days, weeks, or longer.
Of interest are analyte sensors, such as glucose sensors, that are capable of in vivo detection of an analyte for about one hour or more, e.g., about a few hours or more, e.g., about a few days of more, e.g., about three or more days, e.g., about five days or more, e.g., about seven days or more, e.g., about several weeks or at least one month. Future analyte levels may be predicted based on information obtained, e.g., the current analyte level at time to, the rate of change of the analyte, etc. Predictive alarms may notify the user of a predicted analyte level that may be of concern in advance of the user's analyte level reaching the future level. This provides the user an opportunity to take corrective action.
Analytes that may be monitored include, but are not limited to, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, creatinine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketone bodies, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. In those embodiments that monitor more than one analyte, the analytes may be monitored at the same or different times.
The analyte monitoring system 100 includes a sensor 101, a data processing unit 102 connectable to the sensor 101, and a primary receiver unit 104 which is configured to communicate with the data processing unit 102 via a communication link 103. In certain embodiments, the primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 to evaluate or otherwise process or format data received by the primary receiver unit 104. The data processing terminal 105 may be configured to receive data directly from the data processing unit 102 via a communication link which may optionally be configured for bi-directional communication. Further, the data processing unit 102 may include a transmitter or a transceiver to transmit and/or receive data to and/or from the primary receiver unit 104 and/or the data processing terminal 105 and/or optionally the secondary receiver unit 106.
Also shown in
Only one sensor 101, data processing unit 102 and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in
The analyte monitoring system 100 may be a continuous monitoring system, or semi-continuous, or a discrete monitoring system. In a multi-component environment, each component may be configured to be uniquely identified by one or more of the other components in the system so that communication conflict may be readily resolved between the various components within the analyte monitoring system 100. For example, unique IDs, communication channels, and the like, may be used.
In certain embodiments, the sensor 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to at least periodically sample the analyte level of the user and convert the sampled analyte level into a corresponding signal for transmission by the data processing unit 102. The data processing unit 102 is coupleable to the sensor 101 so that both devices are positioned in or on the user's body, with at least a portion of the analyte sensor 101 positioned transcutaneously. The data processing unit 102 may include a fixation element such as adhesive or the like to secure it to the user's body. A mount (not shown) attachable to the user and mateable with the data processing unit 102 may be used. For example, a mount may include an adhesive surface. The data processing unit 102 performs data processing functions, where such functions may include, but are not limited to, filtering and encoding of data signals, each of which corresponds to a sampled analyte level of the user, for transmission to the primary receiver unit 104 via the communication link 103. In one embodiment, the sensor 101 or the data processing unit 102 or a combined sensor/data processing unit may be wholly implantable under the skin layer of the user.
In certain embodiments, the primary receiver unit 104 may include an analog interface section including an RF receiver and an antenna that is configured to communicate with the data processing unit 102 via the communication link 103, and a data processing section for processing the received data from the data processing unit 102 such as data decoding, error detection and correction, data clock generation, data bit recovery, etc., or any combination thereof.
In operation, the primary receiver unit 104 in certain embodiments is configured to synchronize with the data processing unit 102 to uniquely identify the data processing unit 102, based on, for example, an identification information of the data processing unit 102, and thereafter, to periodically receive signals transmitted from the data processing unit 102 associated with the monitored analyte levels detected by the sensor 101.
Referring again to
The data processing terminal 105 may include an infusion device such as an insulin infusion pump or the like, which may be configured to administer insulin to patients, and which may be configured to communicate with the primary receiver unit 104 for receiving, among others, the measured analyte level. Alternatively, the primary receiver unit 104 may be configured to integrate an infusion device therein so that the primary receiver unit 104 is configured to administer insulin (or other appropriate drug) therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the data processing unit 102. An infusion device may be an external device or an internal device (wholly implantable in a user).
In certain embodiments, the data processing terminal 105, which may include an insulin pump, may be configured to receive the analyte signals from the data processing unit 102, and thus, incorporate the functions of the primary receiver unit 104 including data processing for managing the patient's insulin therapy and analyte monitoring. In certain embodiments, the communication link 103 as well as one or more of the other communication interfaces shown in
Further shown in
As can be seen in the embodiment of
In certain embodiments, a unidirectional input path is established from the sensor 101 (
The processor 204 may be configured to transmit control signals to the various sections of the data processing unit 102 during the operation of the data processing unit 102. In certain embodiments, the processor 204 also includes memory (not shown) for storing data such as the identification information for the data processing unit 102, as well as the data signals received from the sensor 101. The stored information may be retrieved and processed for transmission to the primary receiver unit 104 under the control of the processor 204. Furthermore, the power supply 207 may include a commercially available battery.
The data processing unit 102 is also configured such that the power supply section 207 is capable of providing power to the data processing unit 102 for a minimum period of time, e.g., at least about one month, e.g., at least about three months or more, of continuous operation. The minimum may be after (i.e., in addition to) a period of time, e.g., up to about eighteen months, of being stored in a low- or no-power (non-operating) mode. In certain embodiments, this may be achieved by the processor 204 operating in low power modes in the non-operating state, for example, drawing no more than minimal current, e.g., approximately 1 μA of current or less. In certain embodiments, a manufacturing process of the data processing unit 102 may place the data processing unit 102 in the lower power, non-operating state (i.e., post-manufacture sleep mode). In this manner, the shelf life of the data processing unit 102 may be significantly improved. Moreover, as shown in
Referring back to
Referring yet again to
The RF transmitter 206 of the data processing unit 102 may be configured for operation in a certain frequency band, e.g., the frequency band of 315 MHz to 322 MHz, for example, in the United States. The frequency band may be the same or different outside the United States. Further, in certain embodiments, the RF transmitter 206 is configured to modulate the carrier frequency by performing, e.g., Frequency Shift Keying and Manchester encoding, and/or other protocol(s). In certain embodiments, the data transmission rate is set for efficient and effective transmission. For example, in certain embodiments the data transmission rate may be about 19,200 symbols per second, with a minimum transmission range for communication with the primary receiver unit 104.
Also shown is a leak detection circuit 214 coupled to the guard contact (G) 211 and the processor 204 in the data processing unit 102 of the data monitoring and management system 100. The leak detection circuit 214 may be configured to detect leakage current in the sensor 101 to determine whether the measured sensor data is corrupt or whether the measured data from the sensor 101 is accurate. Such detection may trigger a notification to the user.
In certain embodiments, the test strip interface 301 includes a glucose level testing portion to receive a blood (or other body fluid sample) glucose test or information related thereto. For example, the interface may include a test strip port to receive a glucose test strip. The device may determine the glucose level of the test strip, and optionally display (or otherwise notice) the glucose level on the output 310 of the primary receiver unit 104. Any suitable test strip may be employed, e.g., test strips that only require a very small amount (e.g., one microliter or less, e.g., 0.5 microliter or less, e.g., 0.1 microliter or less), of applied sample to the strip in order to obtain accurate glucose information, e.g. FreeStyle® blood glucose test strips from Abbott Diabetes Care Inc. Glucose information obtained by the in vitro glucose testing device may be used for a variety of purposes, computations, and the like. For example, the information may be used to calibrate sensor 101, confirm results of the sensor 101 to increase the confidence thereof (e.g., in instances in which information obtained by sensor 101 is employed in therapy related decisions).
In further embodiments, the data processing unit 102 and/or the primary receiver unit 104 and/or the secondary receiver unit 106, and/or the data processing terminal/infusion section 105 may be configured to receive the blood glucose value wirelessly over a communication link from, for example, a blood glucose meter. In further embodiments, a user manipulating or using the analyte monitoring system 100 (
Additional detailed descriptions are provided in U.S. Pat. Nos. 5,262,035; 5,262,305; 5,264,104; 5,320,715; 5,593,852; 6,103,033; 6,134,461; 6,175,752; 6,560,471; 6,579,690; 6,605,200; 6,654,625; 6,746,582; 6,932,894; and in U.S. Published Patent Application No. 2004/0186365, now U.S. Pat. No. 7,811,231, the disclosures of each of which are herein incorporated by reference.
The sensor may be wholly implantable in a user or may be configured so that only a portion is positioned within (internal) a user and another portion outside (external) a user. For example, the sensor 400 may include a portion positionable above a surface of the skin 410, and a portion positioned below the skin. In such embodiments, the external portion may include contacts (connected to respective electrodes of the second portion by traces) to connect to another device also external to the user such as a transmitter unit. While the embodiment of
A first insulation layer such as a first dielectric layer 505 is disposed or layered on at least a portion of the first conducting layer 501, and further, a second conducting layer 509 may be disposed or stacked on top of at least a portion of the first insulation layer (or dielectric layer) 505. As shown in
A second insulation layer 506 such as a dielectric layer in one embodiment may be disposed or layered on at least a portion of the second conducting layer 509. Further, a third conducting layer 503 may provide the counter electrode 503. It may be disposed on at least a portion of the second insulation layer 506. Finally, a third insulation layer 507 may be disposed or layered on at least a portion of the third conducting layer 503. In this manner, the sensor 500 may be layered such that at least a portion of each of the conducting layers is separated by a respective insulation layer (for example, a dielectric layer). The embodiment of
In certain embodiments, some or all of the electrodes 501, 502, 503 may be provided on the same side of the substrate 504 in the layered construction as described above, or alternatively, may be provided in a co-planar manner such that two or more electrodes may be positioned on the same plane (e.g., side-by side (e.g., parallel) or angled relative to each other) on the substrate 504. For example, co-planar electrodes may include a suitable spacing there between and/or include dielectric material or insulation material disposed between the conducting layers/electrodes. Furthermore, in certain embodiments one or more of the electrodes 501, 502, 503 may be disposed on opposing sides of the substrate 504. In such embodiments, contact pads may be on the same or different sides of the substrate. For example, an electrode may be on a first side and its respective contact may be on a second side, e.g., a trace connecting the electrode and the contact may traverse through the substrate.
As noted above, analyte sensors may include an analyte-responsive enzyme to provide a sensing component or sensing layer. Some analytes, such as oxygen, can be directly electrooxidized or electroreduced on a sensor, and more specifically at least on a working electrode of a sensor. Other analytes, such as glucose and lactate, require the presence of at least one electron transfer agent and/or at least one catalyst to facilitate the electrooxidation or electroreduction of the analyte. Catalysts may also be used for those analytes, such as oxygen, that can be directly electrooxidized or electroreduced on the working electrode. For these analytes, each working electrode includes a sensing layer (see for example sensing layer 508 of
The sensing layer includes one or more components designed to facilitate the electrochemical oxidation or reduction of the analyte. The sensing layer may include, for example, a catalyst to catalyze a reaction of the analyte and produce a response at the working electrode, an electron transfer agent to transfer electrons between the analyte and the working electrode (or other component), or both.
A variety of different sensing layer configurations may be used. In certain embodiments, the sensing layer is deposited on the conductive material of a working electrode. The sensing layer may extend beyond the conductive material of the working electrode. In some cases, the sensing layer may also extend over other electrodes, e.g., over the counter electrode and/or reference electrode (or counter/reference is provided).
A sensing layer that is in direct contact with the working electrode may contain an electron transfer agent to transfer electrons directly or indirectly between the analyte and the working electrode, and/or a catalyst to facilitate a reaction of the analyte. For example, a glucose, lactate, or oxygen electrode may be formed having a sensing layer which contains a catalyst, such as glucose oxidase, lactate oxidase, or laccase, respectively, and an electron transfer agent that facilitates the electrooxidation of the glucose, lactate, or oxygen, respectively.
Examples of sensing layers that may be employed are described in U.S. patents and applications noted herein, including, e.g., in U.S. Pat. Nos. 5,262,035; 5,264,104; 5,543,326; 6,605,200; 6,605,201; 6,676,819; and 7,299,082; the disclosures of which are herein incorporated by reference.
In other embodiments the sensing layer is not deposited directly on the working electrode. Instead, the sensing layer may be spaced apart from the working electrode, and separated from the working electrode, e.g., by a separation layer. A separation layer may include one or more membranes or films or a physical distance. In addition to separating the working electrode from the sensing layer the separation layer may also act as a mass transport limiting layer and/or an interferent eliminating layer and/or a biocompatible layer.
Exemplary mass transport layers are described in U.S. patents and applications noted herein, including, e.g., in U.S. Pat. Nos. 5,593,852; 6,881,551; and 6,932,894, the disclosures of which are herein incorporated by reference.
In certain embodiments which include more than one working electrode, one or more of the working electrodes may not have a corresponding sensing layer, or may have a sensing layer which does not contain one or more components (e.g., an electron transfer agent and/or catalyst) needed to electrolyze the analyte. Thus, the signal at this working electrode may correspond to background signal which may be removed from the analyte signal obtained from one or more other working electrodes that are associated with fully-functional sensing layers by, for example, subtracting the signal.
In certain embodiments, the sensing layer includes one or more electron transfer agents. Electron transfer agents that may be employed are electroreducible and electrooxidizable ions or molecules having redox potentials that are a few hundred millivolts above or below the redox potential of the standard calomel electrode (SCE). The electron transfer agent may be organic, organometallic, or inorganic. Examples of organic redox species are quinones and species that in their oxidized state have quinoid structures, such as Nile blue and indophenol. Examples of organometallic redox species are metallocenes such as ferrocene. Examples of inorganic redox species are hexacyanoferrate (III), ruthenium hexamine, etc.
In certain embodiments, electron transfer agents have structures or charges which prevent or substantially reduce the diffusional loss of the electron transfer agent during the period of time that the sample is being analyzed. For example, electron transfer agents include, but are not limited to, a redox species, e.g., bound to a polymer which can in turn be disposed on or near the working electrode. The bond between the redox species and the polymer may be covalent, coordinative, or ionic. Although any organic, organometallic or inorganic redox species may be bound to a polymer and used as an electron transfer agent, in certain embodiments the redox species is a transition metal compound or complex, e.g., osmium, ruthenium, iron, and cobalt compounds or complexes. It will be recognized that many redox species described for use with a polymeric component may also be used, without a polymeric component.
One type of polymeric electron transfer agent contains a redox species covalently bound in a polymeric composition. An example of this type of mediator is poly(vinylferrocene). Another type of electron transfer agent contains an ionically-bound redox species. This type of mediator may include a charged polymer coupled to an oppositely charged redox species. Examples of this type of mediator include a negatively charged polymer coupled to a positively charged redox species such as an osmium or ruthenium polypyridyl cation. Another example of an ionically-bound mediator is a positively charged polymer such as quaternized poly(4-vinyl pyridine) or poly(l-vinyl imidazole) coupled to a negatively charged redox species such as ferricyanide or ferrocyanide. In other embodiments, electron transfer agents include a redox species coordinatively bound to a polymer. For example, the mediator may be formed by coordination of an osmium or cobalt 2,2′-bipyridyl complex to poly(l-vinyl imidazole) or poly(4-vinyl pyridine).
Suitable electron transfer agents are osmium transition metal complexes with one or more ligands, each ligand having a nitrogen-containing heterocycle such as 2,2′-bipyridine, 1,10-phenanthroline, 1-methyl, 2-pyridyl biimidazole, or derivatives thereof. The electron transfer agents may also have one or more ligands covalently bound in a polymer, each ligand having at least one nitrogen-containing heterocycle, such as pyridine, imidazole, or derivatives thereof. One example of an electron transfer agent includes (a) a polymer or copolymer having pyridine or imidazole functional groups and (b) osmium cations complexed with two ligands, each ligand containing 2,2′-bipyridine, 1,10-phenanthroline, or derivatives thereof, the two ligands not necessarily being the same. Some derivatives of 2,2′-bipyridine for complexation with the osmium cation include, but are not limited to, 4,4′-dimethyl-2,2′-bipyridine and mono-, di-, and polyalkoxy-2,2′-bipyridines, such as 4,4′-dimethoxy-2,2′-bipyridine. Derivatives of 1,10-phenanthroline for complexation with the osmium cation include, but are not limited to, 4,7-dimethyl-1,10-phenanthroline and mono, di-, and polyalkoxy-1,10-phenanthrolines, such as 4,7-dimethoxy-1,10-phenanthroline. Polymers for complexation with the osmium cation include, but are not limited to, polymers and copolymers of poly(l-vinyl imidazole) (referred to as “PVI”) and poly(4-vinyl pyridine) (referred to as “PVP”). Suitable copolymer substituents of poly(l-vinyl imidazole) include acrylonitrile, acrylamide, and substituted or quaternized N-vinyl imidazole, e.g., electron transfer agents with osmium complexed to a polymer or copolymer of poly(l-vinyl imidazole).
Embodiments may employ electron transfer agents having a redox potential ranging from about −200 mV to about +200 mV versus the standard calomel electrode (SCE). The sensing layer may also include a catalyst which is capable of catalyzing a reaction of the analyte. The catalyst may also, in some embodiments, act as an electron transfer agent. One example of a suitable catalyst is an enzyme which catalyzes a reaction of the analyte. For example, a catalyst, such as a glucose oxidase, glucose dehydrogenase (e.g., pyrroloquinoline quinone (PQQ), dependent glucose dehydrogenase, flavine adenine dinucleotide (FAD), or nicotinamide adenine dinucleotide (NAD) dependent glucose dehydrogenase), may be used when the analyte of interest is glucose. A lactate oxidase or lactate dehydrogenase may be used when the analyte of interest is lactate. Laccase may be used when the analyte of interest is oxygen or when oxygen is generated or consumed in response to a reaction of the analyte.
The sensing layer may also include a catalyst which is capable of catalyzing a reaction of the analyte. The catalyst may also, in some embodiments, act as an electron transfer agent. One example of a suitable catalyst is an enzyme which catalyzes a reaction of the analyte. For example, a catalyst, such as a glucose oxidase, glucose dehydrogenase (e.g., pyrroloquinoline quinone (PQQ), dependent glucose dehydrogenase or oligosaccharide dehydrogenase, flavine adenine dinucleotide (FAD) dependent glucose dehydrogenase, nicotinamide adenine dinucleotide (NAD) dependent glucose dehydrogenase), may be used when the analyte of interest is glucose. A lactate oxidase or lactate dehydrogenase may be used when the analyte of interest is lactate. Laccase may be used when the analyte of interest is oxygen or when oxygen is generated or consumed in response to a reaction of the analyte.
In certain embodiments, a catalyst may be attached to a polymer, cross linking the catalyst with another electron transfer agent (which, as described above, may be polymeric). A second catalyst may also be used in certain embodiments. This second catalyst may be used to catalyze a reaction of a product compound resulting from the catalyzed reaction of the analyte. The second catalyst may operate with an electron transfer agent to electrolyze the product compound to generate a signal at the working electrode. Alternatively, a second catalyst may be provided in an interferent-eliminating layer to catalyze reactions that remove interferents.
Certain embodiments include a Wired Enzyme™ sensing layer (Abbott Diabetes Care Inc.) that works at a gentle oxidizing potential, e.g., a potential of about +40 mV. This sensing layer uses an osmium (Os)-based mediator designed for low potential operation and is stably anchored in a polymeric layer. Accordingly, in certain embodiments, the sensing element is a redox active component that includes (1) Osmium-based mediator molecules attached by stable (bidente) ligands anchored to a polymeric backbone, and (2) glucose oxidase enzyme molecules. These two constituents are crosslinked together.
A mass transport limiting layer (not shown), e.g., an analyte flux modulating layer, may be included with the sensor to act as a diffusion-limiting barrier to reduce the rate of mass transport of the analyte, for example, glucose or lactate, into the region around the working electrodes. The mass transport limiting layers are useful in limiting the flux of an analyte to a working electrode in an electrochemical sensor so that the sensor is linearly responsive over a large range of analyte concentrations and is easily calibrated. Mass transport limiting layers may include polymers and may be biocompatible. A mass transport limiting layer may provide many functions, e.g., biocompatibility and/or interferent-eliminating, etc.
In certain embodiments, a mass transport limiting layer is a membrane composed of crosslinked polymers containing heterocyclic nitrogen groups, such as polymers of polyvinylpyridine and polyvinylimidazole. Embodiments also include membranes that are made of a polyurethane, or polyether urethane, or chemically related material, or membranes that are made of silicone, and the like.
A membrane may be formed by crosslinking in situ a polymer, modified with a zwitterionic moiety, a non-pyridine copolymer component, and optionally another moiety that is either hydrophilic or hydrophobic, and/or has other desirable properties, in an alcohol-buffer solution. The modified polymer may be made from a precursor polymer containing heterocyclic nitrogen groups. For example, a precursor polymer may be polyvinylpyridine or polyvinylimidazole. Optionally, hydrophilic or hydrophobic modifiers may be used to “fine-tune” the permeability of the resulting membrane to an analyte of interest. Optional hydrophilic modifiers, such as poly(ethylene glycol), hydroxyl or polyhydroxyl modifiers, may be used to enhance the biocompatibility of the polymer or the resulting membrane.
A membrane may be formed in situ by applying an alcohol-buffer solution of a crosslinker and a modified polymer over an enzyme-containing sensing layer and allowing the solution to cure for about one to two days or other appropriate time period. The crosslinker-polymer solution may be applied to the sensing layer by placing a droplet or droplets of the solution on the sensor, by dipping the sensor into the solution, or the like. Generally, the thickness of the membrane is controlled by the concentration of the solution, by the number of droplets of the solution applied, by the number of times the sensor is dipped in the solution, or by any combination of these factors. A membrane applied in this manner may have any combination of the following functions: (1) mass transport limitation, i.e., reduction of the flux of analyte that can reach the sensing layer, (2) biocompatibility enhancement, or (3) interferent reduction.
The electrochemical sensors may employ any suitable measurement technique. For example, may detect current or may employ potentiometry. Techniques may include, but are not limited to, amperometry, coulometry, and voltammetry. In some embodiments, sensing systems may be optical, colorimetric, and the like.
In certain embodiments, the sensing system detects hydrogen peroxide to infer glucose levels. For example, a hydrogen peroxide-detecting sensor may be constructed in which a sensing layer includes enzyme such as glucose oxides, glucose dehydrogenase, or the like, and is positioned proximate to the working electrode. The sensing layer may be covered by a membrane that is selectively permeable to glucose. Once the glucose passes through the membrane, it is oxidized by the enzyme and reduced glucose oxidase can then be oxidized by reacting with molecular oxygen to produce hydrogen peroxide.
Certain embodiments include a hydrogen peroxide-detecting sensor constructed from a sensing layer prepared by crosslinking two components together, for example: (1) a redox compound such as a redox polymer containing pendent Os polypyridyl complexes with oxidation potentials of about +200 mV vs. SCE, and (2) periodate oxidized horseradish peroxidase (HRP). Such a sensor functions in a reductive mode; the working electrode is controlled at a potential negative to that of the Os complex, resulting in mediated reduction of hydrogen peroxide through the HRP catalyst.
In another example, a potentiometric sensor can be constructed as follows. A glucose-sensing layer is constructed by crosslinking together (1) a redox polymer containing pendent Os polypyridyl complexes with oxidation potentials from about −200 mV to +200 mV vs. SCE, and (2) glucose oxidase. This sensor can then be used in a potentiometric mode, by exposing the sensor to a glucose containing solution, under conditions of zero current flow, and allowing the ratio of reduced/oxidized Os to reach an equilibrium value. The reduced/oxidized Os ratio varies in a reproducible way with the glucose concentration, and will cause the electrode's potential to vary in a similar way.
A sensor may also include an active agent such as an anticlotting and/or antiglycolytic agent(s) disposed on at least a portion of a sensor that is positioned in a user. An anticlotting agent may reduce or eliminate the clotting of blood or other body fluid around the sensor, particularly after insertion of the sensor. Examples of useful anticlotting agents include heparin and tissue plasminogen activator (TPA), as well as other known anticlotting agents. Embodiments may include an antiglycolytic agent or precursor thereof. Examples of antiglycolytic agents are glyceraldehyde, fluoride ion, and mannose.
Sensors may be configured to require no system calibration or no user calibration. For example, a sensor may be factory calibrated and need not require further calibrating. In certain embodiments, calibration may be required, but may be done without user intervention, i.e., may be automatic. In those embodiments in which calibration by the user is required, the calibration may be according to a predetermined schedule or may be dynamic, i.e., the time for which may be determined by the system on a real-time basis according to various factors, such as, but not limited to, glucose concentration and/or temperature and/or rate of change of glucose, etc.
Calibration may be accomplished using an in vitro test strip (or other reference), e.g., a small sample test strip such as a test strip that requires less than about 1 microliter of sample (for example FreeStyle® blood glucose monitoring test strips from Abbott Diabetes Care Inc.). For example, test strips that require less than about 1 nanoliter of sample may be used. In certain embodiments, a sensor may be calibrated using only one sample of body fluid per calibration event. For example, a user need only lance a body part one time to obtain sample for a calibration event (e.g., for a test strip), or may lance more than one time within a short period of time if an insufficient volume of sample is firstly obtained. Embodiments include obtaining and using multiple samples of body fluid for a given calibration event, where glucose values of each sample are substantially similar. Data obtained from a given calibration event may be used independently to calibrate or combined with data obtained from previous calibration events, e.g., averaged including weighted averaged, etc., to calibrate. In certain embodiments, a system need only be calibrated once by a user, where recalibration of the system is not required.
Calibration and validation protocols for the calibration and validation of in vivo continuous analyte systems including analyte sensors, for example, are described in e.g., U.S. Pat. Nos. 6,284,478; 7,299,082; and U.S. patent application Ser. No. 11/365,340, now U.S. Pat. No. 7,885,698; Ser. No. 11/537,991, now U.S. Pat. No. 7,618,369; Ser. Nos. 11/618,706; 12/242,823, now U.S. Pat. No. 8,219,173; and Ser. No. 12/363,712, now U.S. Pat. No. 8,346,335, the disclosures of each of which are herein incorporated by reference.
Analyte systems may include an optional alarm system that, e.g., based on information from a processor, warns the patient of a potentially detrimental condition of the analyte. For example, if glucose is the analyte, an alarm system may warn a user of conditions such as hypoglycemia and/or hyperglycemia and/or impending hypoglycemia, and/or impending hyperglycemia. An alarm system may be triggered when analyte levels approach, reach or exceed a threshold value. An alarm system may also, or alternatively, be activated when the rate of change, or acceleration of the rate of change, in analyte levels increases or decreases, approaches, reaches or exceeds a threshold rate or acceleration. A system may also include system alarms that notify a user of system information such as battery condition, calibration, sensor dislodgment, sensor malfunction, etc. Alarms may be, for example, auditory and/or visual. Other sensory-stimulating alarm systems may be used including alarm systems which heat, cool, vibrate, or produce a mild electrical shock when activated.
The embodiments of the present disclosure also include sensors used in sensor-based drug delivery systems. The system may provide a drug to counteract the high or low level of the analyte in response to the signals from one or more sensors. Alternatively, the system may monitor the drug concentration to ensure that the drug remains within a desired therapeutic range. The drug delivery system may include one or more (e.g., two or more) sensors, a processing unit such as a transmitter, a receiver/display unit, and a drug administration system. In some cases, some or all components may be integrated in a single unit. A sensor-based drug delivery system may use data from the one or more sensors to provide necessary input for a control algorithm/mechanism to adjust the administration of drugs, e.g., automatically or semi-automatically. As an example, a glucose sensor may be used to control and adjust the administration of insulin from an external or implanted insulin pump.
As is well established, HbA1C (also referred to as A1C) is the standard metric for determining an individual's glycemic control. Studies have recently derived relationships of HbA1C to mean blood glucose levels. The advent of continuous glucose monitoring (CGM) has enabled accurate and continuous measurements of mean glucose levels over extended periods of time.
It has been shown that controlling HbA1C levels as close to a normal level as possible is important to reduce the risk of diabetic complications. However, it is generally difficult to achieve the tight glycemic control necessary to obtain the desired reduction in HbA1C levels without potentially increasing the risk of hypoglycemic condition. In one aspect, mean glucose values may be associated or correlated with the HbA1C levels. For example, a slope of 36 mg/dL per 1% HbA1C illustrates the relationship between the regression analysis relating HbA1C level to mean glucose values. Further, a lower slope of approximately 18 mg/dL may indicate the relationship between HbA1C level and mean glucose values. Additionally, variability may exist between diabetic patients as pertains to the relationship between the HbA1C level and mean glucose values, indicating a potentially individualized characteristic of the rate of protein glycation that may effect long term complications of poorly controlled diabetic condition. Other variables such as race and ethnicity also may have effect in the HbA1C level adjusted for glycemic indices.
Accordingly, embodiments of the present disclosure include improvement in the HbA1C level estimation with the knowledge or information of the patient's individualized relationship between HbA1C level and the mean glucose values.
In one aspect, a diabetic patient or a subject with a lower slope (showing the relationship between HbA1C level and means glucose values) may be able to achieve a greater improvement in HbA1C level for a given decrease in average glucose levels, as compared with a patient with a higher slope. As such, the patient with the lower slope may be able to achieve a reduced risk of chronic diabetic complications by lower HbA1C level with a minimal increase in the risk of potentially severe hypoglycemia (due to a relatively modest reduction in the average glucose values in view of their lower slope).
Given the individualized information related to a patient's average glucose value relative to the HbA1C level, a physician or a care provider in one aspect may determine a suitable glycemic target for the particular patient such that the calculated reduction in the HbA1C level may be attained while minimizing the risk of severe hypoglycemia.
In one aspect, in the analyte monitoring system 100 (
With the average glucose level information, a patient's individual relationship between average glucose and HbA1C (or other glycated proteins) may be determined. The determined individual relationship may be represented or output as a slope (lower slope or higher slope in graphical representation, for example), based upon a line fit to two or more determinations of average glucose and HbA1C, for example.
Alternatively, the individualized relationship may be based upon a single assessment of average glucose level and HbA1C and an intercept value, which may correspond to an HbA1C of zero at zero mean glucose level. Based on this, the physician or the health care provider (or the analyte monitoring device of data management software) may determine appropriate or suitable individualized glycemic targets to achieve the desired reductions in HbA1C without the undesired risk of severe hypoglycemia. In one aspect, the analysis may be repeated one or more times (for example, quarterly with each regularly scheduled HbA1C test) to update the glycemic targets so as to optimize therapy management and treatment, and to account for or factor in any intra-person variability.
In this manner, in one aspect, there is provided a systematic and individualized approach to establish and update glycemic targets based upon the relationship between the mean glucose values (as may be determined using a continuous glucose monitoring system or a discrete in vitro blood glucose meter test) and their HbA1C level, and a determination of an acceptable level of risk of severe hypoglycemia.
Accordingly, embodiments of the present disclosure provide individualized glycemic targets to be determined for a particular patient based upon their individualized rate of protein glycation, measured by the relationship between the mean glucose values and the HbA1C levels, such that the physician or the care provider, or the analyte monitoring system including data management software, for example, may determine the glycemic targets to achieve the desired reduction in HbA1C level without the unnecessary risk for hypoglycemic condition.
Additionally, based on the information or individualized relationship discussed above, embodiments of the present disclosure may be used to improve the estimation of subsequent HbA1C values based upon measured or monitored glucose values of a patient. In this manner the HbA1C level estimation may be improved by using the patient's individualized relationship between prior or past HbA1C levels, and mean glucose values to more accurately predict or estimate current HbA1C levels.
In this manner, in aspects of present disclosure, the HbA1C level estimation may be improved or enhanced based on a predetermined individualized relationship between a patient's average glucose values and their HbA1C and the current mean glucose level.
Eighty eight (88) subjects (out of a total 90 enrolled subjects N) used the FreeStyle Navigator® Continuous Glucose Monitoring (CGM) system over a 90 day period to obtain CGM system data and to perform discrete blood glucose measurements using the Freestyle® blood glucose meter built into the receiver of the CGM system for sensor calibration, confirmation of glucose related notifications or alarms, and insulin therapy adjustments. Threshold and projected alarms were enabled and subjects were not blinded to the real time monitored glucose data.
Mean CGM glucose data and self-monitoring of discrete blood glucose (SMBG) test readings were obtained over a 90 day period. The relationship between the mean glucose level and HbA1C level was determined for 88 subjects with Type 1 diabetes over this time period. Overall, 4.3±3.9 (mean±standard deviation (SD)) SMBG and 95.0±61.5 CGM readings were collected each day. Including only patient-days with at least one CGM (6194/7920) or SMBG (6197/7920) value, 5.4±3.5 SMBG and 121.5±40.2 CGM readings per day were obtained and available.
Equations for least-square linear regression fits of CGM and SMBG measurements to HbA1C were similar:
(mean glucose)=(slope±1SE)*HbA1C+(intercept±1SE)
mean CGM [mg/dL]=20.5±2.1*A1C+5.2±14.7,r2=0.52
mean SMBG [mg/dL]=19.0±2.6*A1C+16.2±18.1,r2=0.38
These slopes of 19.0 and 20.5 (mg/dL)/% differ markedly from the American Diabetes Association (ADA) value of 35.6 (mg/dL)/%, but are similar to reports from recent studies using CGM data. Mean CGM and mean SMBG levels were found to be closely correlated:
mean CGM [mg/dL]=(0.80±0.04)*mean SMBG+(27.9±6.4),r2=0.80
The low slope of less than 1 for mean CGM data compared to mean SMBG levels may indicate the measurement selection bias of SMBG levels before and after meals and in response to CGM system alarms or notification. This bias did not greatly affect the relationship to HbA1C levels. However, mean CGM data correlated more closely to the HbA1C levels and thus is a better indicator of the HbA1C level.
That the CGM data had an r2 (Pearson's correlation coefficient) value of only 0.52 indicates that individual differences in rates of protein glycation at a given blood glucose concentration may be an important factor when addressing glycemic control. The individual differences may be relevant in determining risk of future diabetic complications, and may suggest personalized goals of mean glucose for a given HbA1C target.
Referring now to the Figures,
Referring to
Referring again to
Based on data collected over the 90 day period, the following observations and results were determined. A correlation between HbA1C and mean glucose was observed, consistent with the indication that HbA1C level reflects the integral of blood glucose level over time. Similar slopes for the linear regression fits of CGM data and SMBG measurements to HbA1C of 20.5 and 19.0 (mg/dL)/%, respectively were observed. Further, both slopes were lower than the 35.6 (mg/dL)/% from HbA1C values paired with 7-point profiles from 1,439 subjects, but consistent with other studies using CGM data. Moreover, the weaker correlation of mean glucose level to HbA1C with SMBG values indicates that infrequent and inconsistently timed glucose measurements (SMBG) may not accurately reflect glucose concentrations over time as well as CGM data. Additionally, the results indicate an inter-individual variability in glycation rates or erythrocyte survival.
This study of 88 subjects with Type 1 diabetes mellitus and widely varying HbA1C levels demonstrated a strong correlation between CGM data averaged over the preceding 90 days and HbA1C level. Study subjects were compliant, using the FreeStyle Navigator® Continuous Glucose Monitoring System on greater than 78% of study days and logging an average of 121.5 CGM readings per day (CGM readings recorded every 10 minutes) on days with at least one CGM value.
Results from the studies have demonstrated that the rate of microvascular complications is correlated with HbA1C levels. Re-analysis of this data also indicates that mean glucose is correlated with macrovascular complications. Whereas real-time monitored CGM data may significantly improve the management of diabetes through the availability of glucose values, trend indicators, and alarms/alerts, it may be also used for the determination of mean glucose level and for the prediction of HbA1C level. These metrics have been shown to track long-term complications and are essential for physiological condition or therapy management.
Improved understanding of inter- and intra-individual variation in the relationship between mean glucose level and HbA1C level may be useful in the determination of glucose targets designed to optimize both the reduction in an individual's risk of the long-term complications of diabetes and their short-term risk of hypoglycemia. For example, patients with different relationships between mean glucose and HbA1C may be able to achieve similar reductions in the risk of microvascular complications of diabetes with markedly different decreases in mean glucose, with those patients with the lowest ratios of mean glucose to HbA1C experiencing the least risk of hypoglycemia.
In this experimental study, the objective was to assess glucose control. Threshold and projected alarms were enabled and subjects were not blinded to the glucose data. HbA1C measurements were obtained at the beginning of the study and at the end of the study.
Data collected from the use of FreeStyle Navigator® Continuous Glucose Monitoring System was evaluated under home use conditions. In this multi-center study 90 subjects with Type 1 diabetes wore the continuous glucose monitor (CGM) for 3 months. Fifty-six percent of the subjects were female and the average age was 42 years (range 18-72). At baseline, 38% of the subjects had HbA1C values <7.0%.
Questionnaires were completed at baseline, day 30 and day 90. Subjects were provided with no additional therapeutic instructions other than to make treatment decisions based on confirmatory blood glucose tests. HbA1C was measured by a central laboratory at baseline and 90 days. One-minute continuous glucose values were used to assess the glycemic profiles of study subjects.
Subjects were trained in a clinic visit of approximately 2 hours. Ninety-nine percent reported being confident in CGM use based on the training. Subjects inserted the sensors in the arm or abdomen with the most common adverse symptom being insertion site bleeding (59 episodes in 22 subjects). After 90 days, 92% reported an overall positive system experience. The most important system features to the study subjects were the glucose readings, glucose alarms and trend arrows.
Both subjects with baseline HbA1C≥8% (p=0.0036) and subjects with baseline HbA1C<8% (p=0.0001) had significant decreases in their HbA1C value after 90 days. The mean A1C decrease for subjects with baseline values of ≥8% was three times greater (−0.6%) than that of the subjects with baseline values of <8% (−0.2%; p=0.004).
After 90 days, 73% of subjects reported viewing the CGM data display more than 12 times per day. There was a direct correlation between subject's display reviews per day and corresponding HbA1C change. The improvement in glucose control was reflected in HbA1C changes after 90 days of CGM use with 55% of subjects reaching a target HbA1C value of <7.0%. The more frequently the patients viewed their glucose results, in general, the greater the improvement in HbA1C values. At baseline the subjects with an HbA1C of <7.0% had characteristics similar to those of subjects with an HbA1C of ≥7.0%. Eight-nine (89) percent of the subjects were Caucasian. Most subjects (72%) had completed a 4-year college degree.
Referring now to the Figures,
It can be seen that over the course of the 90 day study period using the CGM system, subjects/participants who reported viewing the display screen more frequently tended to have more improvement in HbA1C (
Based on the foregoing, it can be observed that improvement in glucose control resulted in HbA1C changes after 3 months of CGM system use. For example, subjects/participants that reported viewing the display screen more frequently trended toward having greater improvement in HbA1C level. Although subjects were not provided therapeutic instruction in CGM, the glucose levels recorded throughout the study were consistent with the final HbA1C values.
For example, Patient A may begin at an HbA1C of 8.0%. He may be knowledgeable about food-insulin balancing and mealtime glucose corrections, but still feels overwhelmed by mealtime decisions. Looking at HbA1C and CGM data summary, Patient A's health care provider (HCP) sees that at meal times he has the following characteristics:
The HCP may recommend continuing to focus on starting meals in target and staying there, and to maintain the rest of the therapy practices. Three months later, Patient A returns with these glucose metrics:
It can be seen that Patient A's HbA1C level is closer to target, and improving in the areas that Patient A focused on for the prior 3 months. At this point, the HCP recommends that glucose corrections at mealtimes should be the priority, while maintaining the rest of the therapy decisions. Patient A gets further training in mealtime corrections. As the months progress, Patient A improves mealtime glucose and has the following glucose metrics:
It can be seen that Patient A's HbA1C is now in target, and Patient A and the HCP decide to maintain the therapy practices for the next few months.
Accordingly, embodiments of the present disclosure provide determination of individualized HbA1C target levels based on mean glucose values as well as other parameters such as the patient's prior HbA1C levels (determined based on a laboratory result or by other ways) to improve glycemic control. Furthermore, other metrics or parameters may be factored into the determination of the individualized HbA1C target level such as, for example, conditions that may be relevant to the patient's hypoglycemic conditions including patient's age, hypoglycemia unawareness, whether the patient is living alone or in assisted care, or with others, history hypoglycemia, whether the patient is an insulin pump user, or is under insulin or other medication therapy, the patient's activity levels and the like.
Additionally, other parameters may also include different or variable weighing functions to determine the mean glucose values, based on, for example, the time of day, or time weighted measures, and the like. Furthermore, the determination of the individualized HbA1C target level may also include patient specific relationship between HbA1C and mean glucose values, including the rate of glycation, erythrocyte lifespan, among others. Also, embodiments may include weighing functions or parameters based on the patient's risk of high and low blood glucose levels.
In accordance with the embodiments of the present disclosure, the individualized HbA1C target level may be provided to the patient in real time or retrospectively, and further, one or more underlying therapy related parameters may be provided to the patient or programmed in an analyte monitoring system such as, for example, but not limited to, the receiver unit 104 of the analyte monitoring system 100 (
The illustrations below provide some non-limiting examples of determining an individual's glycemic targets based on the individual differences in glycability.
As shown in the Figure, based on the model (2040) applied in conjunction with the determined relationship between the mean glucose level and HbA1C level (2050), individualized HbA1C level may be determined either in real time, or retrospectively (2060). For example, using a retrospective data management system based on one or more data processing algorithms or routines, for example, based on the CoPilot™ system discussed above, determination of future or prediction of current HbA1C level may be ascertained based, for example, on feedback on performance over a predetermined time duration, such as 30 days, 45 days, 60 days, 90 days, and so on. In a further aspect, the individualized HbA1C level determination may be performed in real time, based on real time CGM data, with trend arrows or indicators on the CGM system reflecting a trend or glucose data rate of change over a 3 hour, 12 hour, 24 hour, weekly, or monthly time period, or other suitable time frame.
Referring back to
Referring to
In a 90-day, 90-subject home use study of the FreeStyle Navigator® continuous glucose monitoring (CGM) system, participants were instructed on the built-in electronic logbook feature to indicate meals. While not required to record meals, the study resulted in 3,679 analyzable mealtime glucose profiles for 37 participants when at least 30 meal profiles per subject were required. This data was retrospectively analyzed to assess mealtime glucose relative to established glucose targets, define per-subject summary mealtime glucose parameters, and discern summary parameters for subjects of different A1C levels.
Overall, the subjects had an average HbA1C level of 7.1% (SD=0.82%, min/max=5.6/9.2%), and were in target either before or after meals according to ADA guidelines (90-130 mg/dL premeal, <180 mg/dL peak postmeal) for 31% and 47% of meals, respectively. Only 20% of all meals were in target both before and after meals. On a per subject basis, the results indicate a correlation between HbA1C levels and mealtime glucose control, and CGM system use illustrates trends and patterns around meals that differentiated those with higher and lower HbA1C values. Those subjects with the lowest HbA1C were able to most consistently achieve three patterns around meals: 1) start the meal in target, 2) stay in target postmeal, and 3) correct to in-target levels postmeal if the premeal value is out-of-target. Consistent use of the CGM system combined with health-care professional guidance for learning strategies to manage mealtime glucose patterns has promise for improving therapy choices and glucose control.
In this manner, in one aspect, summary and assessment of glucose control around meals may be determined that can be effectively understood and acted upon by analyte monitoring system users and their health care providers.
Mealtime therapy decisions are complex, as there are many interacting variables or complications to arriving at a decision that will result in good glucose level control. At each meal, there may be different factors such as: (1) time, amount and nutrient content to be consumed, (2) accuracy of the consumed nutrient content estimation (ie. “carbohydrate counting”); (3) current state of health (sickness, menses, stress, other medications); (4) current amount of “insulin on board”; (5) recent prior activity level (exercising vigorously or not); (6) current glucose level; (7) current glucose trend (“rate of change”, (mg/dL)/min); (8) maximum glucose after the meal; (9) minimum glucose after the meal; or (10) glucose at some timepoint after the meal (i.e. 2 hours).
In addition, there are individual factors to add to the complexity of determining a suitable treatment option including, for example, time-of-day dependent insulin-to-carbohydrate ratio, and/or time-of-day dependent insulin sensitivity ratio.
As an individual and his or her health care provider (HCP) become more informed about the value and variation of these parameters, HbA1C level, monitored CGM level and meal times can be used to guide therapy modification and training choices. These factors may be related to CGM data and summarized for different HbA1C levels to guide therapy adjustments and training.
In aspects of the present disclosure, nonlimiting recommendations based on the routine set forth above (2222, 2223, 2232, 2233, 2234) include, for example, (1) improve understanding and enable improvement of estimates of meal amount and nutrient content, (2) improve understanding and enable adjustment of insulin dose needs, (3) improve understanding and enable adjustment of insulin-to-carbohydrate ratio, (4) improve understanding and enable adjustment of insulin sensitivity ratio, (5) improve understanding of effect of meal choices on glucose control, (6) improve understanding of effect of exercise choices on glucose control, (7) improve understanding of effect of states of health (sickness, menses, stress, other medications) on glucose control, (8) identify patients in need of additional training in different aspects of therapy-decision making, (9) balancing food and insulin, (10) correcting glucose level with insulin, and/or (11) balancing food intake and correcting glucose level with insulin.
Therapy guidelines are followed for a predetermined time period, such as 3 months (2240), before a new HbA1C level is measured (2250). Based on the new measured HbA1C level, therapy management and guidance may be altered accordingly.
In this manner, in one aspect, summary and assessment of glucose control around meal events may be determined that can be effectively understood and acted upon by analyte monitoring system users and their health care providers.
A method in one embodiment, may comprise receiving mean glucose value information of a patient based on a predetermined time period, receiving a current HbA1C level of the patient, determining whether the current HbA1C level of the patient received is within a predefined target range, and if it is determined that the current HbA1C level is not within the predefined target range, determining one or more corrective action for output to the patient, and if it is determined that the current HbA1C level is within the predetermined target range, analyzing the glucose directional change information around one or more meal events, and determining a modification to a current therapy profile.
An apparatus in one embodiment may comprise, a communication interface, one or more processors operatively coupled to the communication interface, and a memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to receive mean glucose value information of a patient based on a predetermined time period, receive a current HbA1C level of the patient, determine whether the current HbA1C level of the patient received is within a predefined target range, if it is determined that the current HbA1C level is not within the predefined target range, determine one or more corrective action for output to the patient, and if it is determined that the current HbA1C level is within the predetermined target range, to analyze the glucose directional change information around one or more meal events, and determine a modification to a current therapy profile.
In one embodiment, a method may include receiving mean glucose value information of a patient based on a predetermined time period, receiving a current HbA1C level of the patient and a target HbA1C level of the patient, determining a correlation between the received mean glucose value information and the retrieved current and target HbA1C levels, updating the target HbA1C level based on the determined correlation, and determining one or more parameters associated with the physiological condition of the patient based on the updated target HbA1C level.
In one aspect, receiving mean glucose value information may include receiving monitored glucose level information over the predetermined time period, and applying a weighting function to the received monitored glucose level information.
The weighting function may be based on a time of day information associated with the received monitored glucose level information.
The weighting function may be based on a time period associated with the received monitored glucose level information.
In another aspect, updating the target HbA1C level may include receiving one or more patient specific parameters, and applying the received one or more patient specific parameters to the determined correlation between the received mean glucose value information and the received current HbA1C level.
The one or more patient specific parameters may include an age of the patient, a history of hypoglycemia, an activity level of the patient, a medication intake information of the patient, or a risk associated with high or low blood glucose levels of the patient.
The determined correlation between the received mean glucose value information and the received current HbA1C level may include a rate of glycation of the patient.
The predetermined time period may include one of approximately 30 days, approximately 45 days, or approximately 90 days.
In another aspect, determining one or more parameters associated with the physiological condition of the patient may include one or more of providing modification to current alarm settings, providing modification to current target threshold settings related to the monitored analyte levels, or providing a modification to a medication intake level.
Furthermore, the method may include storing one or more of the mean glucose value information, the received current or target HbA1C level, the determined correlation between the received mean glucose value information and the current HbA1C level, and the updated target HbA1C level.
In another embodiment, an apparatus may include a communication interface, one or more processors operatively coupled to the communication interface, and a memory for storing instructions which, when executed by the one or more processors, may cause the one or more processors to receive mean glucose value information of a patient based on a predetermined time period, receive a current HbA1C level of the patient and a target HbA1C level of the patient, determine a correlation between the received mean glucose value information and the retrieved current and target HbA1C levels, update the target HbA1C level based on the determined correlation, and to determine one or more parameters associated with the physiological condition of the patient based on the updated target HbA1C level.
In one aspect, the memory for storing instructions which, when executed by the one or more processors, may cause the one or more processors to receive monitored glucose level information over the predetermined time period, to apply a weighting function to the received monitored glucose level information.
The weighting function may be based on a time of day information associated with the received monitored glucose level information.
The weighting function may be based on a time period associated with the received monitored glucose level information.
In another aspect, the memory for storing instructions which, when executed by the one or more processors, may cause the one or more processors to receive one or more patient specific parameters, and to apply the received one or more patient specific parameters to the determined correlation between the received mean glucose value information and the received current HbA1C level.
The one or more patient specific parameters may include an age of the patient, a history of hypoglycemia, an activity level of the patient, a medication intake information of the patient, or a risk associated with high or low blood glucose levels of the patient.
The determined correlation between the received mean glucose value information and the received current HbA1C level may include a rate of glycation of the patient.
The predetermined time period may include one of approximately 30 days, approximately 45 days, or approximately 90 days.
In another aspect, the memory for storing instructions which, when executed by the one or more processors, may cause the one or more processors to provide a modification to current alarm settings, provide modification to current target threshold settings related to the monitored analyte levels, or provide modification to a medication intake level.
In yet another aspect, the memory for storing instructions which, when executed by the one or more processors, may cause the one or more processors to store one or more of the mean glucose value information, the received current or target HbA1C level, the determined correlation between the received mean glucose value information and the HbA1C level, and the updated target HbA1C level.
The various processes described above including the processes performed by the processor 204 (
This application is a continuation of U.S. patent application Ser. No. 14/539,402 filed Nov. 12, 2014, now U.S. Pat. No. 9,931,075, which is a continuation of U.S. patent application Ser. No. 12/476,107 filed Jun. 1, 2009, now U.S. Pat. No. 8,924,159, which claims priority under 35 USC § 119(e) to U.S. Provisional Application No. 61/057,789 filed May 30, 2008, entitled “Method and Apparatus for Providing Glycemic Control”, and U.S. Provisional Application No. 61/097,504 filed Sep. 16, 2008, entitled “Therapy Management Based on Continuous Glucose Data and Meal Information”, the disclosures of each of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3581062 | Aston | May 1971 | A |
3926760 | Allen et al. | Dec 1975 | A |
3949388 | Fuller | Apr 1976 | A |
4036749 | Anderson | Jul 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4129128 | McFarlane | Dec 1978 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4327725 | Cortese et al. | May 1982 | A |
4344438 | Schultz | Aug 1982 | A |
4349728 | Phillips et al. | Sep 1982 | A |
4425920 | Bourland et al. | Jan 1984 | A |
4441968 | Emmer et al. | Apr 1984 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4478976 | Goertz et al. | Oct 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4509531 | Ward | Apr 1985 | A |
4527240 | Kvitash | Jul 1985 | A |
4538616 | Rogoff | Sep 1985 | A |
4545382 | Higgins et al. | Oct 1985 | A |
4561963 | Owen et al. | Dec 1985 | A |
4619793 | Lee | Oct 1986 | A |
4639062 | Taniguchi et al. | Jan 1987 | A |
4671288 | Gough | Jun 1987 | A |
4703756 | Gough et al. | Nov 1987 | A |
4711245 | Higgins et al. | Dec 1987 | A |
4731726 | Allen, III | Mar 1988 | A |
4749985 | Corsberg | Jun 1988 | A |
4752935 | Beck | Jun 1988 | A |
4757022 | Shults et al. | Jul 1988 | A |
4777953 | Ash et al. | Oct 1988 | A |
4779618 | Mund et al. | Oct 1988 | A |
4847785 | Stephens | Jul 1989 | A |
4854322 | Ash et al. | Aug 1989 | A |
4861454 | Ushizawa et al. | Aug 1989 | A |
4890620 | Gough | Jan 1990 | A |
4925268 | Iyer et al. | May 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4986271 | Wilkins | Jan 1991 | A |
4995402 | Smith et al. | Feb 1991 | A |
5000180 | Kuypers et al. | Mar 1991 | A |
5002054 | Ash et al. | Mar 1991 | A |
5019974 | Beckers | May 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5051688 | Murase et al. | Sep 1991 | A |
5055171 | Peck | Oct 1991 | A |
5082550 | Rishpon et al. | Jan 1992 | A |
5106365 | Hernandez | Apr 1992 | A |
5122925 | Inpyn | Jun 1992 | A |
5135004 | Adams et al. | Aug 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5202261 | Musho et al. | Apr 1993 | A |
5210778 | Massart | May 1993 | A |
5228449 | Christ et al. | Jul 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5243696 | Carr et al. | Sep 1993 | A |
5246867 | Lakowicz et al. | Sep 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5285792 | Sjoquist et al. | Feb 1994 | A |
5293877 | O'Hara et al. | Mar 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5320715 | Berg | Jun 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5330634 | Wong et al. | Jul 1994 | A |
5340722 | Wolfbeis et al. | Aug 1994 | A |
5342789 | Chick et al. | Aug 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5360404 | Novacek et al. | Nov 1994 | A |
5372427 | Padovani et al. | Dec 1994 | A |
5379238 | Stark | Jan 1995 | A |
5384547 | Lynk et al. | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5394877 | Orr et al. | Mar 1995 | A |
5402780 | Faasse, Jr. | Apr 1995 | A |
5408999 | Singh et al. | Apr 1995 | A |
5410326 | Goldstein | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5431160 | Wilkins | Jul 1995 | A |
5431921 | Thombre | Jul 1995 | A |
5438983 | Falcone | Aug 1995 | A |
5462645 | Albery et al. | Oct 1995 | A |
5472317 | Field et al. | Dec 1995 | A |
5482473 | Lord et al. | Jan 1996 | A |
5489414 | Schreiber et al. | Feb 1996 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5505828 | Wong et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5509410 | Hill et al. | Apr 1996 | A |
5514718 | Lewis et al. | May 1996 | A |
5529676 | Maley et al. | Jun 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5543326 | Heller et al. | Aug 1996 | A |
5552997 | Massart | Sep 1996 | A |
5555190 | Derby et al. | Sep 1996 | A |
5564434 | Halperin et al. | Oct 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5591137 | Stevens | Jan 1997 | A |
5593852 | Heller et al. | Jan 1997 | A |
5601435 | Quy | Feb 1997 | A |
5609575 | Larson et al. | Mar 1997 | A |
5628310 | Rao et al. | May 1997 | A |
5628890 | Carter et al. | May 1997 | A |
5640954 | Pfeiffer et al. | Jun 1997 | A |
5653239 | Pompei et al. | Aug 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5711001 | Bussan et al. | Jan 1998 | A |
5711861 | Ward et al. | Jan 1998 | A |
5726646 | Bane et al. | Mar 1998 | A |
5735285 | Albert et al. | Apr 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5794219 | Brown | Aug 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5820551 | Hill et al. | Oct 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5875186 | Belanger et al. | Feb 1999 | A |
5899855 | Brown | May 1999 | A |
5914026 | Blubaugh, Jr. et al. | Jun 1999 | A |
5918603 | Brown | Jul 1999 | A |
5919141 | Money et al. | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5942979 | Luppino | Aug 1999 | A |
5951521 | Mastrototaro et al. | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5961451 | Reber et al. | Oct 1999 | A |
5964993 | Blubaugh, Jr. et al. | Oct 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5971922 | Arita et al. | Oct 1999 | A |
5987353 | Khatchatrian et al. | Nov 1999 | A |
5995860 | Sun et al. | Nov 1999 | A |
6001067 | Shults et al. | Dec 1999 | A |
6004278 | Botich et al. | Dec 1999 | A |
6022315 | Iliff | Feb 2000 | A |
6024699 | Surwit et al. | Feb 2000 | A |
6028413 | Brockmann | Feb 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6052565 | Ishikura et al. | Apr 2000 | A |
6066243 | Anderson et al. | May 2000 | A |
6071391 | Gotoh et al. | Jun 2000 | A |
6081736 | Colvin et al. | Jun 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6091976 | Pfeiffer et al. | Jul 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6096364 | Bok et al. | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6115622 | Minoz | Sep 2000 | A |
6117290 | Say et al. | Sep 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6121611 | Lindsay et al. | Sep 2000 | A |
6122351 | Schlueter, Jr. et al. | Sep 2000 | A |
6129823 | Hughes et al. | Oct 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6141573 | Kumik et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6144837 | Quy | Nov 2000 | A |
6157850 | Diab et al. | Dec 2000 | A |
6159147 | Lichter et al. | Dec 2000 | A |
6161095 | Brown | Dec 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6167362 | Brown | Dec 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6180221 | Crotzer et al. | Jan 2001 | B1 |
6200265 | Walsh et al. | Mar 2001 | B1 |
6212416 | Ward et al. | Apr 2001 | B1 |
6212417 | Ikeda et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6223283 | Chaiken et al. | Apr 2001 | B1 |
6233471 | Berner et al. | May 2001 | B1 |
6248065 | Brown | Jun 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6275717 | Gross et al. | Aug 2001 | B1 |
6283761 | Joao | Sep 2001 | B1 |
6284478 | Heller et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6295506 | Heinonen et al. | Sep 2001 | B1 |
6299757 | Feldman et al. | Oct 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6309884 | Cooper et al. | Oct 2001 | B1 |
6314317 | Willis | Nov 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6338790 | Feldman et al. | Jan 2002 | B1 |
6340588 | Nova et al. | Jan 2002 | B1 |
6348640 | Navot et al. | Feb 2002 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6359444 | Grimes | Mar 2002 | B1 |
6360888 | McIvor et al. | Mar 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6368273 | Brown | Apr 2002 | B1 |
6377828 | Chaiken et al. | Apr 2002 | B1 |
6377894 | Deweese et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6387048 | Schulman et al. | May 2002 | B1 |
6400974 | Lesho | Jun 2002 | B1 |
6405066 | Essenpreis et al. | Jun 2002 | B1 |
6413393 | Van Antwerp et al. | Jul 2002 | B1 |
6418332 | Mastrototaro et al. | Jul 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6429876 | Morein | Aug 2002 | B1 |
6440068 | Brown et al. | Aug 2002 | B1 |
6461496 | Feldman et al. | Oct 2002 | B1 |
6471689 | Joseph et al. | Oct 2002 | B1 |
6478736 | Mault | Nov 2002 | B1 |
6484045 | Holker et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6493069 | Nagashimada et al. | Dec 2002 | B1 |
6498043 | Schulman et al. | Dec 2002 | B1 |
6503381 | Gotoh et al. | Jan 2003 | B1 |
6514460 | Fendrock | Feb 2003 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6520326 | McIvor et al. | Feb 2003 | B2 |
6540891 | Stewart et al. | Apr 2003 | B1 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6551494 | Heller et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6564105 | Starkweather et al. | May 2003 | B2 |
6565509 | Say et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6572542 | Houben et al. | Jun 2003 | B1 |
6574490 | Abbink et al. | Jun 2003 | B2 |
6576101 | Heller et al. | Jun 2003 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6591125 | Buse et al. | Jul 2003 | B1 |
6592745 | Feldman et al. | Jul 2003 | B1 |
6595919 | Berner et al. | Jul 2003 | B2 |
6600997 | Deweese et al. | Jul 2003 | B2 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6610012 | Mault | Aug 2003 | B2 |
6616819 | Liamos et al. | Sep 2003 | B1 |
6618934 | Feldman et al. | Sep 2003 | B1 |
6631281 | Kastle | Oct 2003 | B1 |
6633772 | Ford et al. | Oct 2003 | B2 |
6635014 | Starkweather et al. | Oct 2003 | B2 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6650471 | Doi | Nov 2003 | B2 |
6654625 | Say et al. | Nov 2003 | B1 |
6656114 | Poulson et al. | Dec 2003 | B1 |
6658396 | Tang et al. | Dec 2003 | B1 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6676816 | Mao et al. | Jan 2004 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6695860 | Ward et al. | Feb 2004 | B1 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6730025 | Platt | May 2004 | B1 |
6730200 | Stewart et al. | May 2004 | B1 |
6733446 | Lebel et al. | May 2004 | B2 |
6736957 | Forrow et al. | May 2004 | B1 |
6740075 | Lebel et al. | May 2004 | B2 |
6741877 | Shults et al. | May 2004 | B1 |
6743635 | Neel et al. | Jun 2004 | B2 |
6746582 | Heller et al. | Jun 2004 | B2 |
6749740 | Liamos et al. | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6764581 | Forrow et al. | Jul 2004 | B1 |
6770030 | Schaupp et al. | Aug 2004 | B1 |
6773671 | Lewis et al. | Aug 2004 | B1 |
6789195 | Prihoda et al. | Sep 2004 | B1 |
6790178 | Mault et al. | Sep 2004 | B1 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6837858 | Cunningham et al. | Jan 2005 | B2 |
6850790 | Berner et al. | Feb 2005 | B2 |
6862465 | Shults et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6881551 | Heller et al. | Apr 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6893545 | Gotoh et al. | May 2005 | B2 |
6895263 | Shin et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6912413 | Rantala et al. | Jun 2005 | B2 |
6923763 | Kovatchev et al. | Aug 2005 | B1 |
6931327 | Goode, Jr. et al. | Aug 2005 | B2 |
6932892 | Chen et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6942518 | Liamos et al. | Sep 2005 | B2 |
6950708 | Bowman IV et al. | Sep 2005 | B2 |
6954662 | Freger et al. | Oct 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6965791 | Hitchcock et al. | Nov 2005 | B1 |
6968294 | Gutta et al. | Nov 2005 | B2 |
6968375 | Brown | Nov 2005 | B1 |
6971274 | Olin | Dec 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
6999854 | Roth | Feb 2006 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7003340 | Say et al. | Feb 2006 | B2 |
7003341 | Say et al. | Feb 2006 | B2 |
7011630 | Desai et al. | Mar 2006 | B2 |
7015817 | Copley et al. | Mar 2006 | B2 |
7016713 | Gardner et al. | Mar 2006 | B2 |
7022219 | Mansouri et al. | Apr 2006 | B2 |
7024245 | Lebel et al. | Apr 2006 | B2 |
7025774 | Freeman et al. | Apr 2006 | B2 |
7027848 | Robinson et al. | Apr 2006 | B2 |
7027931 | Jones et al. | Apr 2006 | B1 |
7029444 | Shin et al. | Apr 2006 | B2 |
7041068 | Freeman et al. | May 2006 | B2 |
7041468 | Drucker et al. | May 2006 | B2 |
7043287 | Khalil et al. | May 2006 | B1 |
7046153 | Oja et al. | May 2006 | B2 |
7052472 | Miller et al. | May 2006 | B1 |
7052483 | Wojcik | May 2006 | B2 |
7056302 | Douglas | Jun 2006 | B2 |
7074307 | Simpson et al. | Jul 2006 | B2 |
7081195 | Simpson et al. | Jul 2006 | B2 |
7092891 | Maus et al. | Aug 2006 | B2 |
7098803 | Mann et al. | Aug 2006 | B2 |
7108778 | Simpson et al. | Sep 2006 | B2 |
7110803 | Shults et al. | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7118667 | Lee | Oct 2006 | B2 |
7123950 | Mannheimer | Oct 2006 | B2 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7136689 | Shults et al. | Nov 2006 | B2 |
7153265 | Vachon | Dec 2006 | B2 |
7155290 | Von Arx et al. | Dec 2006 | B2 |
7167818 | Brown | Jan 2007 | B2 |
7171274 | Starkweather et al. | Jan 2007 | B2 |
7179226 | Crothall et al. | Feb 2007 | B2 |
7183102 | Monfre et al. | Feb 2007 | B2 |
7190988 | Say et al. | Mar 2007 | B2 |
7192450 | Brauker et al. | Mar 2007 | B2 |
7198606 | Boecker et al. | Apr 2007 | B2 |
7207974 | Safabash et al. | Apr 2007 | B2 |
7223236 | Brown | May 2007 | B2 |
7225535 | Feldman et al. | Jun 2007 | B2 |
7226442 | Sheppard et al. | Jun 2007 | B2 |
7226978 | Tapsak et al. | Jun 2007 | B2 |
7258666 | Brown | Aug 2007 | B2 |
7276029 | Goode, Jr. et al. | Oct 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7286894 | Grant et al. | Oct 2007 | B1 |
7299082 | Feldman et al. | Nov 2007 | B2 |
7310544 | Brister et al. | Dec 2007 | B2 |
7324012 | Mann et al. | Jan 2008 | B2 |
7329239 | Safabash et al. | Feb 2008 | B2 |
7335294 | Heller et al. | Feb 2008 | B2 |
7364592 | Carr-Brendel et al. | Apr 2008 | B2 |
7366556 | Brister et al. | Apr 2008 | B2 |
7379765 | Petisce et al. | May 2008 | B2 |
7381184 | Funderburk et al. | Jun 2008 | B2 |
7392167 | Brown | Jun 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7424318 | Brister et al. | Sep 2008 | B2 |
7429258 | Angel et al. | Sep 2008 | B2 |
7455663 | Bikovsky | Nov 2008 | B2 |
7460898 | Brister et al. | Dec 2008 | B2 |
7462264 | Heller et al. | Dec 2008 | B2 |
7467003 | Brister et al. | Dec 2008 | B2 |
7468125 | Kraft et al. | Dec 2008 | B2 |
7471972 | Rhodes et al. | Dec 2008 | B2 |
7494465 | Brister et al. | Feb 2009 | B2 |
7497827 | Brister et al. | Mar 2009 | B2 |
7499002 | Blasko et al. | Mar 2009 | B2 |
7501053 | Karinka et al. | Mar 2009 | B2 |
7519408 | Rasdal et al. | Apr 2009 | B2 |
7519478 | Bartkowiak et al. | Apr 2009 | B2 |
7523004 | Bartkowiak et al. | Apr 2009 | B2 |
7583990 | Goode, Jr. et al. | Sep 2009 | B2 |
7591801 | Brauker et al. | Sep 2009 | B2 |
7599726 | Goode, Jr. et al. | Oct 2009 | B2 |
7613491 | Boock et al. | Nov 2009 | B2 |
7615007 | Shults et al. | Nov 2009 | B2 |
7618369 | Hayter et al. | Nov 2009 | B2 |
7620438 | He | Nov 2009 | B2 |
7624028 | Brown | Nov 2009 | B1 |
7630748 | Budiman | Dec 2009 | B2 |
7632228 | Brauker et al. | Dec 2009 | B2 |
7635594 | Holmes et al. | Dec 2009 | B2 |
7637868 | Saint et al. | Dec 2009 | B2 |
7640048 | Dobbles et al. | Dec 2009 | B2 |
7643971 | Brown | Jan 2010 | B2 |
7651596 | Petisce et al. | Jan 2010 | B2 |
7651845 | Doyle, III et al. | Jan 2010 | B2 |
7653425 | Hayter et al. | Jan 2010 | B2 |
7654956 | Brister et al. | Feb 2010 | B2 |
7657297 | Simpson et al. | Feb 2010 | B2 |
7684999 | Brown | Mar 2010 | B2 |
7689440 | Brown | Mar 2010 | B2 |
7697967 | Stafford | Apr 2010 | B2 |
7699775 | Desai et al. | Apr 2010 | B2 |
7711402 | Shults et al. | May 2010 | B2 |
7711493 | Bartkowiak et al. | May 2010 | B2 |
7713574 | Brister et al. | May 2010 | B2 |
7715893 | Kamath et al. | May 2010 | B2 |
7727147 | Osorio et al. | Jun 2010 | B1 |
7731657 | Stafford | Jun 2010 | B2 |
7736310 | Taub | Jun 2010 | B2 |
7736344 | Moberg et al. | Jun 2010 | B2 |
7751864 | Buck, Jr. | Jul 2010 | B2 |
7754093 | Forrow et al. | Jul 2010 | B2 |
7756722 | Levine | Jul 2010 | B2 |
7763042 | Iio et al. | Jul 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7768387 | Fennell et al. | Aug 2010 | B2 |
7771352 | Shults et al. | Aug 2010 | B2 |
7778680 | Goode et al. | Aug 2010 | B2 |
7783442 | Mueller, Jr. et al. | Aug 2010 | B2 |
7811231 | Jin et al. | Oct 2010 | B2 |
7813809 | Strother et al. | Oct 2010 | B2 |
7822454 | Alden et al. | Oct 2010 | B1 |
7857760 | Brister et al. | Dec 2010 | B2 |
7866026 | Wang et al. | Jan 2011 | B1 |
7873595 | Singh et al. | Jan 2011 | B2 |
7874985 | Kovatchev et al. | Jan 2011 | B2 |
7877274 | Brown | Jan 2011 | B2 |
7877276 | Brown | Jan 2011 | B2 |
7885697 | Brister et al. | Feb 2011 | B2 |
7889069 | Fifolt et al. | Feb 2011 | B2 |
7899511 | Shults et al. | Mar 2011 | B2 |
7899545 | John | Mar 2011 | B2 |
7914460 | Melker et al. | Mar 2011 | B2 |
7921186 | Brown | Apr 2011 | B2 |
7937255 | Brown | May 2011 | B2 |
7938797 | Estes | May 2011 | B2 |
7941200 | Weinert et al. | May 2011 | B2 |
7941308 | Brown | May 2011 | B2 |
7941323 | Brown | May 2011 | B2 |
7941326 | Brown | May 2011 | B2 |
7941327 | Brown | May 2011 | B2 |
7946984 | Brister et al. | May 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7949507 | Brown | May 2011 | B2 |
7966230 | Brown | Jun 2011 | B2 |
7970620 | Brown | Jun 2011 | B2 |
7972267 | Brown | Jul 2011 | B2 |
7972296 | Braig et al. | Jul 2011 | B2 |
7976466 | Ward et al. | Jul 2011 | B2 |
7978063 | Baldus et al. | Jul 2011 | B2 |
7979259 | Brown | Jul 2011 | B2 |
7979284 | Brown | Jul 2011 | B2 |
7996158 | Hayter et al. | Aug 2011 | B2 |
8005524 | Brauker et al. | Aug 2011 | B2 |
8010174 | Goode et al. | Aug 2011 | B2 |
8010256 | Oowada | Aug 2011 | B2 |
8015025 | Brown | Sep 2011 | B2 |
8015030 | Brown | Sep 2011 | B2 |
8015033 | Brown | Sep 2011 | B2 |
8019618 | Brown | Sep 2011 | B2 |
8024201 | Brown | Sep 2011 | B2 |
8032399 | Brown | Oct 2011 | B2 |
8060173 | Goode, Jr. et al. | Nov 2011 | B2 |
8103471 | Hayter | Jan 2012 | B2 |
8116837 | Huang | Feb 2012 | B2 |
8140312 | Hayter et al. | Mar 2012 | B2 |
8160900 | Taub et al. | Apr 2012 | B2 |
8170803 | Kamath et al. | May 2012 | B2 |
8192394 | Estes et al. | Jun 2012 | B2 |
8216138 | McGarraugh et al. | Jul 2012 | B1 |
8216139 | Brauker et al. | Jul 2012 | B2 |
8239166 | Hayter et al. | Aug 2012 | B2 |
8255026 | Al-Ali | Aug 2012 | B1 |
8260558 | Hayter et al. | Sep 2012 | B2 |
8282549 | Brauker et al. | Oct 2012 | B2 |
8306766 | Mueller, Jr. et al. | Nov 2012 | B2 |
8374667 | Brauker et al. | Feb 2013 | B2 |
8374668 | Hayter et al. | Feb 2013 | B1 |
8376945 | Hayter et al. | Feb 2013 | B2 |
8377271 | Mao et al. | Feb 2013 | B2 |
8409093 | Bugler | Apr 2013 | B2 |
8444560 | Hayter et al. | May 2013 | B2 |
8457703 | Al-Ali | Jun 2013 | B2 |
8461985 | Fennell et al. | Jun 2013 | B2 |
8484005 | Hayter et al. | Jul 2013 | B2 |
8532935 | Budiman | Sep 2013 | B2 |
8543354 | Luo et al. | Sep 2013 | B2 |
8560038 | Hayter et al. | Oct 2013 | B2 |
8571808 | Hayter | Oct 2013 | B2 |
8583205 | Budiman et al. | Nov 2013 | B2 |
8597570 | Terashima et al. | Dec 2013 | B2 |
8600681 | Hayter et al. | Dec 2013 | B2 |
8612163 | Hayter et al. | Dec 2013 | B2 |
8657746 | Roy | Feb 2014 | B2 |
8682615 | Hayter et al. | Mar 2014 | B2 |
8710993 | Hayter et al. | Apr 2014 | B2 |
8834366 | Hayter et al. | Sep 2014 | B2 |
8845536 | Brauker et al. | Sep 2014 | B2 |
8924159 | Taub et al. | Dec 2014 | B2 |
9060719 | Hayter et al. | Jun 2015 | B2 |
9125548 | Hayter | Sep 2015 | B2 |
9289179 | Hayter et al. | Mar 2016 | B2 |
9398872 | Hayter et al. | Jul 2016 | B2 |
9408566 | Hayter et al. | Aug 2016 | B2 |
9439586 | Bugler | Sep 2016 | B2 |
9483608 | Hayter et al. | Nov 2016 | B2 |
9558325 | Hayter et al. | Jan 2017 | B2 |
9636450 | Hoss | May 2017 | B2 |
9743872 | Hayter et al. | Aug 2017 | B2 |
9797880 | Hayter et al. | Oct 2017 | B2 |
9804148 | Hayter et al. | Oct 2017 | B2 |
9833181 | Hayter et al. | Dec 2017 | B2 |
20010011224 | Brown | Aug 2001 | A1 |
20010020124 | Tamada | Sep 2001 | A1 |
20010037060 | Thompson et al. | Nov 2001 | A1 |
20010037366 | Webb et al. | Nov 2001 | A1 |
20010047604 | Valiulis | Dec 2001 | A1 |
20020016534 | Trepagnier et al. | Feb 2002 | A1 |
20020019022 | Dunn et al. | Feb 2002 | A1 |
20020032531 | Mansky et al. | Mar 2002 | A1 |
20020042090 | Heller et al. | Apr 2002 | A1 |
20020054320 | Ogino | May 2002 | A1 |
20020057993 | Maisey et al. | May 2002 | A1 |
20020065454 | Lebel et al. | May 2002 | A1 |
20020095076 | Krausman et al. | Jul 2002 | A1 |
20020103499 | Perez et al. | Aug 2002 | A1 |
20020106709 | Potts et al. | Aug 2002 | A1 |
20020111832 | Judge | Aug 2002 | A1 |
20020117639 | Paolini et al. | Aug 2002 | A1 |
20020120186 | Keimel | Aug 2002 | A1 |
20020128594 | Das et al. | Sep 2002 | A1 |
20020133107 | Darcey | Sep 2002 | A1 |
20020147135 | Schnell | Oct 2002 | A1 |
20020150959 | Lejeunne et al. | Oct 2002 | A1 |
20020156355 | Gough | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20020188748 | Blackwell et al. | Dec 2002 | A1 |
20030005464 | Gropper et al. | Jan 2003 | A1 |
20030021729 | Moller et al. | Jan 2003 | A1 |
20030023317 | Brauker et al. | Jan 2003 | A1 |
20030023461 | Quintanilla et al. | Jan 2003 | A1 |
20030028089 | Galley et al. | Feb 2003 | A1 |
20030032077 | Itoh et al. | Feb 2003 | A1 |
20030032867 | Crothall et al. | Feb 2003 | A1 |
20030032874 | Rhodes et al. | Feb 2003 | A1 |
20030042137 | Mao et al. | Mar 2003 | A1 |
20030050546 | Desai et al. | Mar 2003 | A1 |
20030054428 | Monfre et al. | Mar 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030060753 | Starkweather et al. | Mar 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030100040 | Bonnecaze et al. | May 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030134347 | Heller et al. | Jul 2003 | A1 |
20030147515 | Kai et al. | Aug 2003 | A1 |
20030163351 | Brown | Aug 2003 | A1 |
20030168338 | Gao et al. | Sep 2003 | A1 |
20030176933 | Lebel et al. | Sep 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030191377 | Robinson et al. | Oct 2003 | A1 |
20030199744 | Buse et al. | Oct 2003 | A1 |
20030199790 | Boecker et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030217966 | Tapsak et al. | Nov 2003 | A1 |
20030235817 | Bartkowiak et al. | Dec 2003 | A1 |
20040010186 | Kimball et al. | Jan 2004 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040011671 | Shults et al. | Jan 2004 | A1 |
20040015102 | Cummings et al. | Jan 2004 | A1 |
20040024553 | Monfre et al. | Feb 2004 | A1 |
20040040840 | Mao et al. | Mar 2004 | A1 |
20040041749 | Dixon | Mar 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040054263 | Moerman et al. | Mar 2004 | A1 |
20040060818 | Feldman et al. | Apr 2004 | A1 |
20040063435 | Sakamoto et al. | Apr 2004 | A1 |
20040064068 | DeNuzzio et al. | Apr 2004 | A1 |
20040073266 | Haefner et al. | Apr 2004 | A1 |
20040078215 | Dahlin et al. | Apr 2004 | A1 |
20040093167 | Braig et al. | May 2004 | A1 |
20040099529 | Mao et al. | May 2004 | A1 |
20040106858 | Say et al. | Jun 2004 | A1 |
20040111017 | Say et al. | Jun 2004 | A1 |
20040117204 | Mazar et al. | Jun 2004 | A1 |
20040117210 | Brown | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040128225 | Thompson et al. | Jul 2004 | A1 |
20040133164 | Funderbunk et al. | Jul 2004 | A1 |
20040133390 | Osorio et al. | Jul 2004 | A1 |
20040135571 | Uutela et al. | Jul 2004 | A1 |
20040135684 | Steinthal et al. | Jul 2004 | A1 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20040142403 | Hetzel et al. | Jul 2004 | A1 |
20040147872 | Thompson | Jul 2004 | A1 |
20040152622 | Keith et al. | Aug 2004 | A1 |
20040162678 | Hetzel et al. | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040171921 | Say et al. | Sep 2004 | A1 |
20040172307 | Gmber | Sep 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040186362 | Brauker et al. | Sep 2004 | A1 |
20040186365 | Jin et al. | Sep 2004 | A1 |
20040193020 | Chiba et al. | Sep 2004 | A1 |
20040193090 | Lebel et al. | Sep 2004 | A1 |
20040199056 | Husemann et al. | Oct 2004 | A1 |
20040199059 | Brauker et al. | Oct 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040223985 | Dunfiled et al. | Nov 2004 | A1 |
20040225338 | Lebel et al. | Nov 2004 | A1 |
20040236200 | Say et al. | Nov 2004 | A1 |
20040249253 | Racchini et al. | Dec 2004 | A1 |
20040254433 | Bandis et al. | Dec 2004 | A1 |
20040254434 | Goodnow et al. | Dec 2004 | A1 |
20040260478 | Schwamm | Dec 2004 | A1 |
20040267300 | Mace | Dec 2004 | A1 |
20050001024 | Kusaka et al. | Jan 2005 | A1 |
20050003470 | Nelson et al. | Jan 2005 | A1 |
20050004494 | Perez et al. | Jan 2005 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050017864 | Tsoukalis | Jan 2005 | A1 |
20050027177 | Shin et al. | Feb 2005 | A1 |
20050027181 | Goode et al. | Feb 2005 | A1 |
20050027182 | Siddiqui et al. | Feb 2005 | A1 |
20050031689 | Shults et al. | Feb 2005 | A1 |
20050038332 | Saidara et al. | Feb 2005 | A1 |
20050038680 | McMahon | Feb 2005 | A1 |
20050043598 | Goode et al. | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050049473 | Desai et al. | Mar 2005 | A1 |
20050060194 | Brown | Mar 2005 | A1 |
20050070774 | Addison et al. | Mar 2005 | A1 |
20050090607 | Tapsak et al. | Apr 2005 | A1 |
20050096511 | Fox et al. | May 2005 | A1 |
20050096516 | Soykan et al. | May 2005 | A1 |
20050112169 | Brauker et al. | May 2005 | A1 |
20050113648 | Yang et al. | May 2005 | A1 |
20050113886 | Fischell et al. | May 2005 | A1 |
20050114068 | Chey et al. | May 2005 | A1 |
20050115832 | Simpson et al. | Jun 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050121322 | Say et al. | Jun 2005 | A1 |
20050131346 | Douglas | Jun 2005 | A1 |
20050134731 | Lee et al. | Jun 2005 | A1 |
20050137530 | Campbell et al. | Jun 2005 | A1 |
20050143635 | Kamath et al. | Jun 2005 | A1 |
20050154271 | Rasdal et al. | Jul 2005 | A1 |
20050173245 | Feldman et al. | Aug 2005 | A1 |
20050176136 | Burd et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050184153 | Auchinleck | Aug 2005 | A1 |
20050187442 | Cho et al. | Aug 2005 | A1 |
20050187720 | Goode, Jr. et al. | Aug 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050195930 | Spital et al. | Sep 2005 | A1 |
20050196821 | Monfre et al. | Sep 2005 | A1 |
20050197793 | Baker | Sep 2005 | A1 |
20050199494 | Say et al. | Sep 2005 | A1 |
20050203360 | Brauker et al. | Sep 2005 | A1 |
20050204134 | Von Arx et al. | Sep 2005 | A1 |
20050214892 | Kovatchev et al. | Sep 2005 | A1 |
20050228883 | Brown | Oct 2005 | A1 |
20050239154 | Feldman et al. | Oct 2005 | A1 |
20050239156 | Drucker et al. | Oct 2005 | A1 |
20050241957 | Mao et al. | Nov 2005 | A1 |
20050245795 | Goode, Jr. et al. | Nov 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050251033 | Scarantino et al. | Nov 2005 | A1 |
20050277164 | Drucker et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20050287620 | Heller et al. | Dec 2005 | A1 |
20060001538 | Kraft et al. | Jan 2006 | A1 |
20060001551 | Kraft et al. | Jan 2006 | A1 |
20060010014 | Brown | Jan 2006 | A1 |
20060010098 | Goodnow et al. | Jan 2006 | A1 |
20060011474 | Schulein et al. | Jan 2006 | A1 |
20060015020 | Neale et al. | Jan 2006 | A1 |
20060015024 | Brister et al. | Jan 2006 | A1 |
20060016700 | Brister et al. | Jan 2006 | A1 |
20060017923 | Ruchti et al. | Jan 2006 | A1 |
20060019327 | Brister et al. | Jan 2006 | A1 |
20060020186 | Brister et al. | Jan 2006 | A1 |
20060020187 | Brister et al. | Jan 2006 | A1 |
20060020188 | Kamath et al. | Jan 2006 | A1 |
20060020189 | Brister et al. | Jan 2006 | A1 |
20060020190 | Kamath et al. | Jan 2006 | A1 |
20060020191 | Brister et al. | Jan 2006 | A1 |
20060020192 | Brister et al. | Jan 2006 | A1 |
20060020300 | Nghiem et al. | Jan 2006 | A1 |
20060025662 | Buse et al. | Feb 2006 | A1 |
20060025663 | Talbot et al. | Feb 2006 | A1 |
20060031094 | Cohen et al. | Feb 2006 | A1 |
20060036139 | Brister et al. | Feb 2006 | A1 |
20060036140 | Brister et al. | Feb 2006 | A1 |
20060036141 | Kamath et al. | Feb 2006 | A1 |
20060036142 | Brister et al. | Feb 2006 | A1 |
20060036143 | Brister et al. | Feb 2006 | A1 |
20060036144 | Brister et al. | Feb 2006 | A1 |
20060036145 | Brister et al. | Feb 2006 | A1 |
20060058588 | Zdeblick | Mar 2006 | A1 |
20060079740 | Silver et al. | Apr 2006 | A1 |
20060091006 | Wang et al. | May 2006 | A1 |
20060094947 | Kovatchev et al. | May 2006 | A1 |
20060142651 | Brister et al. | Jun 2006 | A1 |
20060154642 | Scannell | Jul 2006 | A1 |
20060166629 | Reggiardo | Jul 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060173444 | Choy et al. | Aug 2006 | A1 |
20060183984 | Dobbies et al. | Aug 2006 | A1 |
20060189851 | Tvig et al. | Aug 2006 | A1 |
20060189863 | Peyser et al. | Aug 2006 | A1 |
20060193375 | Lee et al. | Aug 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060226985 | Goodnow et al. | Oct 2006 | A1 |
20060229512 | Petisce et al. | Oct 2006 | A1 |
20060234202 | Brown | Oct 2006 | A1 |
20060235722 | Brown | Oct 2006 | A1 |
20060241975 | Brown | Oct 2006 | A1 |
20060247508 | Fennell | Nov 2006 | A1 |
20060247985 | Liamos et al. | Nov 2006 | A1 |
20060258929 | Goode et al. | Nov 2006 | A1 |
20060264785 | Dring et al. | Nov 2006 | A1 |
20060272652 | Stocker et al. | Dec 2006 | A1 |
20060281985 | Ward et al. | Dec 2006 | A1 |
20060285660 | Brown | Dec 2006 | A1 |
20060285736 | Brown | Dec 2006 | A1 |
20060287889 | Brown | Dec 2006 | A1 |
20060287931 | Brown | Dec 2006 | A1 |
20060290496 | Peeters et al. | Dec 2006 | A1 |
20060293607 | Alt et al. | Dec 2006 | A1 |
20070010950 | Abensour et al. | Jan 2007 | A1 |
20070011320 | Brown | Jan 2007 | A1 |
20070016381 | Kamath et al. | Jan 2007 | A1 |
20070016445 | Brown | Jan 2007 | A1 |
20070017983 | Frank et al. | Jan 2007 | A1 |
20070021984 | Brown | Jan 2007 | A1 |
20070027381 | Stafford | Feb 2007 | A1 |
20070027383 | Peyser et al. | Feb 2007 | A1 |
20070027507 | Burdett et al. | Feb 2007 | A1 |
20070032717 | Brister et al. | Feb 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070038044 | Dobbies et al. | Feb 2007 | A1 |
20070056858 | Chen et al. | Mar 2007 | A1 |
20070060814 | Stafford | Mar 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070060979 | Strother et al. | Mar 2007 | A1 |
20070061167 | Brown | Mar 2007 | A1 |
20070066873 | Kamath et al. | Mar 2007 | A1 |
20070066956 | Finkel | Mar 2007 | A1 |
20070068807 | Feldman et al. | Mar 2007 | A1 |
20070073129 | Shah et al. | Mar 2007 | A1 |
20070078320 | Stafford | Apr 2007 | A1 |
20070078321 | Mazza et al. | Apr 2007 | A1 |
20070078322 | Stafford | Apr 2007 | A1 |
20070078818 | Zvitz et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070095661 | Wang et al. | May 2007 | A1 |
20070106135 | Sloan et al. | May 2007 | A1 |
20070108048 | Wang et al. | May 2007 | A1 |
20070118030 | Bruce et al. | May 2007 | A1 |
20070118588 | Brown | May 2007 | A1 |
20070129621 | Kellogg et al. | Jun 2007 | A1 |
20070149875 | Ouyang et al. | Jun 2007 | A1 |
20070156457 | Brown | Jul 2007 | A1 |
20070163880 | Woo et al. | Jul 2007 | A1 |
20070173706 | Neinast et al. | Jul 2007 | A1 |
20070173709 | Petisce et al. | Jul 2007 | A1 |
20070173710 | Petisce et al. | Jul 2007 | A1 |
20070176867 | Reggiardo et al. | Aug 2007 | A1 |
20070179434 | Weinert et al. | Aug 2007 | A1 |
20070191701 | Feldman et al. | Aug 2007 | A1 |
20070191702 | Yodfat et al. | Aug 2007 | A1 |
20070199818 | Petyt et al. | Aug 2007 | A1 |
20070202562 | Curry et al. | Aug 2007 | A1 |
20070203407 | Hoss et al. | Aug 2007 | A1 |
20070203539 | Stone et al. | Aug 2007 | A1 |
20070203966 | Brauker et al. | Aug 2007 | A1 |
20070208244 | Brauker et al. | Sep 2007 | A1 |
20070208246 | Brauker et al. | Sep 2007 | A1 |
20070213605 | Brown | Sep 2007 | A1 |
20070213657 | Jennewine et al. | Sep 2007 | A1 |
20070227911 | Wang et al. | Oct 2007 | A1 |
20070228071 | Kamen et al. | Oct 2007 | A1 |
20070231846 | Cosentino et al. | Oct 2007 | A1 |
20070232878 | Kovatchev et al. | Oct 2007 | A1 |
20070233013 | Schoenberg et al. | Oct 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070249922 | Peyser et al. | Oct 2007 | A1 |
20070255321 | Gerber et al. | Nov 2007 | A1 |
20070255348 | Holtzclaw | Nov 2007 | A1 |
20070299617 | Willis | Dec 2007 | A1 |
20080004515 | Jennewine et al. | Jan 2008 | A1 |
20080004601 | Jennewine et al. | Jan 2008 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080009692 | Stafford | Jan 2008 | A1 |
20080012701 | Kass et al. | Jan 2008 | A1 |
20080017522 | Heller et al. | Jan 2008 | A1 |
20080021666 | Goode, Jr. et al. | Jan 2008 | A1 |
20080021972 | Huelskamp et al. | Jan 2008 | A1 |
20080029391 | Mao et al. | Feb 2008 | A1 |
20080033254 | Kamath et al. | Feb 2008 | A1 |
20080039702 | Hayter et al. | Feb 2008 | A1 |
20080045824 | Tapsak et al. | Feb 2008 | A1 |
20080058773 | John | Mar 2008 | A1 |
20080060955 | Goodnow | Mar 2008 | A1 |
20080061961 | John | Mar 2008 | A1 |
20080066305 | Wang et al. | Mar 2008 | A1 |
20080071156 | Brister et al. | Mar 2008 | A1 |
20080081977 | Hayter et al. | Apr 2008 | A1 |
20080083617 | Simpson et al. | Apr 2008 | A1 |
20080086042 | Brister et al. | Apr 2008 | A1 |
20080086044 | Brister et al. | Apr 2008 | A1 |
20080086273 | Shults et al. | Apr 2008 | A1 |
20080092638 | Brenneman et al. | Apr 2008 | A1 |
20080102441 | Chen et al. | May 2008 | A1 |
20080108942 | Brister et al. | May 2008 | A1 |
20080114228 | McCluskey et al. | May 2008 | A1 |
20080114229 | Brown | May 2008 | A1 |
20080119703 | Brister et al. | May 2008 | A1 |
20080119708 | Budiman | May 2008 | A1 |
20080125636 | Ward et al. | May 2008 | A1 |
20080127052 | Rostoker | May 2008 | A1 |
20080139910 | Mastrototaro et al. | Jun 2008 | A1 |
20080148873 | Wang | Jun 2008 | A1 |
20080161666 | Feldman et al. | Jul 2008 | A1 |
20080172205 | Breton et al. | Jul 2008 | A1 |
20080177149 | Weinert et al. | Jul 2008 | A1 |
20080177165 | Blomquist et al. | Jul 2008 | A1 |
20080183061 | Goode, Jr. et al. | Jul 2008 | A1 |
20080183399 | Goode, Jr. et al. | Jul 2008 | A1 |
20080188731 | Brister et al. | Aug 2008 | A1 |
20080189051 | Goode, Jr. et al. | Aug 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080194935 | Brister et al. | Aug 2008 | A1 |
20080194936 | Goode, Jr. et al. | Aug 2008 | A1 |
20080194937 | Goode, Jr. et al. | Aug 2008 | A1 |
20080194938 | Brister et al. | Aug 2008 | A1 |
20080195232 | Carr-Brendel et al. | Aug 2008 | A1 |
20080195967 | Goode, Jr. et al. | Aug 2008 | A1 |
20080197024 | Simpson et al. | Aug 2008 | A1 |
20080200788 | Brister et al. | Aug 2008 | A1 |
20080200789 | Brister et al. | Aug 2008 | A1 |
20080200791 | Simpson et al. | Aug 2008 | A1 |
20080201325 | Doniger et al. | Aug 2008 | A1 |
20080208025 | Shults et al. | Aug 2008 | A1 |
20080214900 | Fennell et al. | Sep 2008 | A1 |
20080214910 | Buck | Sep 2008 | A1 |
20080214915 | Brister et al. | Sep 2008 | A1 |
20080214918 | Brister et al. | Sep 2008 | A1 |
20080218180 | Waffenschmidt et al. | Sep 2008 | A1 |
20080227846 | Singh et al. | Sep 2008 | A1 |
20080228051 | Shults et al. | Sep 2008 | A1 |
20080228054 | Shults et al. | Sep 2008 | A1 |
20080228055 | Sher | Sep 2008 | A1 |
20080234943 | Ray et al. | Sep 2008 | A1 |
20080242961 | Brister et al. | Oct 2008 | A1 |
20080242963 | Essenpreis et al. | Oct 2008 | A1 |
20080253522 | Boyden et al. | Oct 2008 | A1 |
20080254544 | Modzelewski et al. | Oct 2008 | A1 |
20080262469 | Brister et al. | Oct 2008 | A1 |
20080267823 | Wang et al. | Oct 2008 | A1 |
20080269571 | Brown | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080275313 | Brister et al. | Nov 2008 | A1 |
20080278332 | Fennel et al. | Nov 2008 | A1 |
20080281179 | Fennel et al. | Nov 2008 | A1 |
20080287761 | Hayter | Nov 2008 | A1 |
20080287764 | Rasdal et al. | Nov 2008 | A1 |
20080287765 | Rasdal et al. | Nov 2008 | A1 |
20080287766 | Rasdal et al. | Nov 2008 | A1 |
20080294024 | Cosentino et al. | Nov 2008 | A1 |
20080296155 | Shults et al. | Dec 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20080306368 | Goode, Jr. et al. | Dec 2008 | A1 |
20080306434 | Dobbies et al. | Dec 2008 | A1 |
20080306435 | Kamath et al. | Dec 2008 | A1 |
20080306444 | Brister et al. | Dec 2008 | A1 |
20080314395 | Kovatchev et al. | Dec 2008 | A1 |
20080319085 | Wright et al. | Dec 2008 | A1 |
20080319294 | Taub et al. | Dec 2008 | A1 |
20080319295 | Bernstein et al. | Dec 2008 | A1 |
20080319296 | Bernstein et al. | Dec 2008 | A1 |
20090005665 | Hayter et al. | Jan 2009 | A1 |
20090005666 | Shin et al. | Jan 2009 | A1 |
20090005729 | Hendrixson et al. | Jan 2009 | A1 |
20090006034 | Hayter et al. | Jan 2009 | A1 |
20090006061 | Thukral et al. | Jan 2009 | A1 |
20090006133 | Weinert et al. | Jan 2009 | A1 |
20090012376 | Agus | Jan 2009 | A1 |
20090012377 | Jennewine et al. | Jan 2009 | A1 |
20090012379 | Goode, Jr. et al. | Jan 2009 | A1 |
20090018424 | Kamath et al. | Jan 2009 | A1 |
20090018425 | Ouyang et al. | Jan 2009 | A1 |
20090030293 | Cooper et al. | Jan 2009 | A1 |
20090030294 | Petisce et al. | Jan 2009 | A1 |
20090036747 | Hayter et al. | Feb 2009 | A1 |
20090036758 | Brauker et al. | Feb 2009 | A1 |
20090036763 | Brauker et al. | Feb 2009 | A1 |
20090040022 | Finkenzeller | Feb 2009 | A1 |
20090043181 | Brauker et al. | Feb 2009 | A1 |
20090043182 | Brauker et al. | Feb 2009 | A1 |
20090043525 | Brauker et al. | Feb 2009 | A1 |
20090043541 | Brauker et al. | Feb 2009 | A1 |
20090043542 | Brauker et al. | Feb 2009 | A1 |
20090045055 | Rhodes et al. | Feb 2009 | A1 |
20090048503 | Dalal et al. | Feb 2009 | A1 |
20090054745 | Jennewine et al. | Feb 2009 | A1 |
20090054747 | Fennell | Feb 2009 | A1 |
20090054748 | Feldman et al. | Feb 2009 | A1 |
20090054749 | He | Feb 2009 | A1 |
20090054753 | Robinson et al. | Feb 2009 | A1 |
20090062633 | Brauker et al. | Mar 2009 | A1 |
20090062635 | Brauker et al. | Mar 2009 | A1 |
20090063187 | Johnson et al. | Mar 2009 | A1 |
20090063964 | Huang et al. | Mar 2009 | A1 |
20090076356 | Simpson et al. | Mar 2009 | A1 |
20090076360 | Brister et al. | Mar 2009 | A1 |
20090076361 | Kamath et al. | Mar 2009 | A1 |
20090082693 | Stafford | Mar 2009 | A1 |
20090085873 | Betts et al. | Apr 2009 | A1 |
20090088614 | Taub | Apr 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090099436 | Brister et al. | Apr 2009 | A1 |
20090105560 | Solomon | Apr 2009 | A1 |
20090105568 | Bugler | Apr 2009 | A1 |
20090105570 | Sloan et al. | Apr 2009 | A1 |
20090105571 | Fennell et al. | Apr 2009 | A1 |
20090112626 | Talbot et al. | Apr 2009 | A1 |
20090124877 | Goode, Jr. et al. | May 2009 | A1 |
20090124878 | Goode, Jr. et al. | May 2009 | A1 |
20090124879 | Brister et al. | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090131768 | Simpson et al. | May 2009 | A1 |
20090131769 | Leach et al. | May 2009 | A1 |
20090131776 | Simpson et al. | May 2009 | A1 |
20090131777 | Simpson et al. | May 2009 | A1 |
20090131860 | Nielsen | May 2009 | A1 |
20090137886 | Shariati et al. | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090143659 | Li et al. | Jun 2009 | A1 |
20090143660 | Brister et al. | Jun 2009 | A1 |
20090143661 | Taub et al. | Jun 2009 | A1 |
20090143725 | Peyser et al. | Jun 2009 | A1 |
20090149728 | Van Antwerp et al. | Jun 2009 | A1 |
20090156919 | Brister et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163790 | Brister et al. | Jun 2009 | A1 |
20090163791 | Brister et al. | Jun 2009 | A1 |
20090163855 | Shin et al. | Jun 2009 | A1 |
20090177068 | Stivoric et al. | Jul 2009 | A1 |
20090178459 | Li et al. | Jul 2009 | A1 |
20090182217 | Li et al. | Jul 2009 | A1 |
20090182517 | Gandhi et al. | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192380 | Shariati et al. | Jul 2009 | A1 |
20090192722 | Shariati et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Kamath et al. | Jul 2009 | A1 |
20090192751 | Kamath et al. | Jul 2009 | A1 |
20090203981 | Brauker et al. | Aug 2009 | A1 |
20090204341 | Brauker et al. | Aug 2009 | A1 |
20090216100 | Ebner et al. | Aug 2009 | A1 |
20090216103 | Brister et al. | Aug 2009 | A1 |
20090240120 | Mensinger et al. | Sep 2009 | A1 |
20090240128 | Mensinger et al. | Sep 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090242399 | Kamath et al. | Oct 2009 | A1 |
20090242425 | Kamath et al. | Oct 2009 | A1 |
20090247855 | Boock et al. | Oct 2009 | A1 |
20090247856 | Boock et al. | Oct 2009 | A1 |
20090247857 | Harper et al. | Oct 2009 | A1 |
20090248380 | Brown | Oct 2009 | A1 |
20090253973 | Bashan et al. | Oct 2009 | A1 |
20090257911 | Thomas et al. | Oct 2009 | A1 |
20090287073 | Boock et al. | Nov 2009 | A1 |
20090287074 | Shults et al. | Nov 2009 | A1 |
20090296742 | Sicurello et al. | Dec 2009 | A1 |
20090298182 | Schulat et al. | Dec 2009 | A1 |
20090299151 | Taub et al. | Dec 2009 | A1 |
20090299152 | Taub et al. | Dec 2009 | A1 |
20090299155 | Yang et al. | Dec 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20090299162 | Brauker et al. | Dec 2009 | A1 |
20090299276 | Brauker et al. | Dec 2009 | A1 |
20090312622 | Regittnig | Dec 2009 | A1 |
20100010324 | Brauker et al. | Jan 2010 | A1 |
20100010331 | Brauker et al. | Jan 2010 | A1 |
20100010332 | Brauker et al. | Jan 2010 | A1 |
20100016687 | Brauker et al. | Jan 2010 | A1 |
20100016698 | Rasdal et al. | Jan 2010 | A1 |
20100022855 | Brauker et al. | Jan 2010 | A1 |
20100022988 | Wochner et al. | Jan 2010 | A1 |
20100030038 | Brauker et al. | Feb 2010 | A1 |
20100030053 | Goode, Jr. et al. | Feb 2010 | A1 |
20100030484 | Brauker et al. | Feb 2010 | A1 |
20100030485 | Brauker et al. | Feb 2010 | A1 |
20100036215 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036216 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036222 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036223 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036225 | Goode, Jr. et al. | Feb 2010 | A1 |
20100041971 | Goode, Jr. et al. | Feb 2010 | A1 |
20100045465 | Brauker et al. | Feb 2010 | A1 |
20100049024 | Saint et al. | Feb 2010 | A1 |
20100057041 | Hayter et al. | Mar 2010 | A1 |
20100063373 | Kamath et al. | Mar 2010 | A1 |
20100064764 | Hayter et al. | Mar 2010 | A1 |
20100075353 | Heaton | Mar 2010 | A1 |
20100076283 | Simpson et al. | Mar 2010 | A1 |
20100081905 | Bommakanti et al. | Apr 2010 | A1 |
20100081908 | Dobbies et al. | Apr 2010 | A1 |
20100081909 | Budiman et al. | Apr 2010 | A1 |
20100081910 | Brister et al. | Apr 2010 | A1 |
20100081953 | Syeda-Mahmood et al. | Apr 2010 | A1 |
20100087724 | Brauker et al. | Apr 2010 | A1 |
20100093786 | Watanabe et al. | Apr 2010 | A1 |
20100094111 | Heller et al. | Apr 2010 | A1 |
20100094251 | Estes et al. | Apr 2010 | A1 |
20100096259 | Zhang et al. | Apr 2010 | A1 |
20100099970 | Shults et al. | Apr 2010 | A1 |
20100099971 | Shults et al. | Apr 2010 | A1 |
20100105999 | Dixon et al. | Apr 2010 | A1 |
20100119693 | Tapsak et al. | May 2010 | A1 |
20100121167 | McGarraugh et al. | May 2010 | A1 |
20100121169 | Petisce et al. | May 2010 | A1 |
20100141429 | Bruegger et al. | Jun 2010 | A1 |
20100141656 | Krieftewirth | Jun 2010 | A1 |
20100145172 | Petisce et al. | Jun 2010 | A1 |
20100146300 | Brown | Jun 2010 | A1 |
20100152554 | Steine et al. | Jun 2010 | A1 |
20100152561 | Goodnow et al. | Jun 2010 | A1 |
20100160759 | Celentano et al. | Jun 2010 | A1 |
20100160760 | Shults et al. | Jun 2010 | A1 |
20100161269 | Kamath et al. | Jun 2010 | A1 |
20100168538 | Keenan et al. | Jul 2010 | A1 |
20100168540 | Kamath et al. | Jul 2010 | A1 |
20100168541 | Kamath et al. | Jul 2010 | A1 |
20100168542 | Kamath et al. | Jul 2010 | A1 |
20100168543 | Kamath et al. | Jul 2010 | A1 |
20100168544 | Kamath et al. | Jul 2010 | A1 |
20100168545 | Kamath et al. | Jul 2010 | A1 |
20100168546 | Kamath et al. | Jul 2010 | A1 |
20100168657 | Kamath et al. | Jul 2010 | A1 |
20100174157 | Brister et al. | Jul 2010 | A1 |
20100174158 | Kamath et al. | Jul 2010 | A1 |
20100174163 | Brister et al. | Jul 2010 | A1 |
20100174164 | Brister et al. | Jul 2010 | A1 |
20100174165 | Brister et al. | Jul 2010 | A1 |
20100174166 | Brister et al. | Jul 2010 | A1 |
20100174167 | Kamath et al. | Jul 2010 | A1 |
20100174168 | Goode et al. | Jul 2010 | A1 |
20100174266 | Estes | Jul 2010 | A1 |
20100179399 | Goode et al. | Jul 2010 | A1 |
20100179400 | Brauker et al. | Jul 2010 | A1 |
20100179401 | Rasdal et al. | Jul 2010 | A1 |
20100179402 | Goode et al. | Jul 2010 | A1 |
20100179404 | Kamath et al. | Jul 2010 | A1 |
20100179405 | Goode et al. | Jul 2010 | A1 |
20100179407 | Goode et al. | Jul 2010 | A1 |
20100179408 | Kamath et al. | Jul 2010 | A1 |
20100179409 | Kamath et al. | Jul 2010 | A1 |
20100185065 | Goode et al. | Jul 2010 | A1 |
20100185069 | Brister et al. | Jul 2010 | A1 |
20100185070 | Brister et al. | Jul 2010 | A1 |
20100185071 | Simpson et al. | Jul 2010 | A1 |
20100185072 | Goode et al. | Jul 2010 | A1 |
20100185073 | Goode et al. | Jul 2010 | A1 |
20100185074 | Goode et al. | Jul 2010 | A1 |
20100185075 | Brister et al. | Jul 2010 | A1 |
20100185175 | Kamen et al. | Jul 2010 | A1 |
20100191082 | Brister et al. | Jul 2010 | A1 |
20100191085 | Budiman | Jul 2010 | A1 |
20100191472 | Doniger et al. | Jul 2010 | A1 |
20100198035 | Kamath et al. | Aug 2010 | A1 |
20100198036 | Kamath et al. | Aug 2010 | A1 |
20100198142 | Sloan et al. | Aug 2010 | A1 |
20100204557 | Kiaie et al. | Aug 2010 | A1 |
20100213057 | Feldman et al. | Aug 2010 | A1 |
20100213080 | Celentano et al. | Aug 2010 | A1 |
20100230285 | Hoss et al. | Sep 2010 | A1 |
20100234710 | Budiman et al. | Sep 2010 | A1 |
20100257490 | Lyon et al. | Oct 2010 | A1 |
20100261987 | Kamath et al. | Oct 2010 | A1 |
20100268477 | Mueller, Jr. et al. | Oct 2010 | A1 |
20100274111 | Say et al. | Oct 2010 | A1 |
20100280441 | Willinska et al. | Nov 2010 | A1 |
20100292948 | Feldman et al. | Nov 2010 | A1 |
20100298686 | Reggiardo et al. | Nov 2010 | A1 |
20100312176 | Lauer et al. | Dec 2010 | A1 |
20100313105 | Nekoomaram et al. | Dec 2010 | A1 |
20100317952 | Budiman et al. | Dec 2010 | A1 |
20100324392 | Yee et al. | Dec 2010 | A1 |
20100326842 | Mazza et al. | Dec 2010 | A1 |
20110004085 | Mensinger et al. | Jan 2011 | A1 |
20110024043 | Boock et al. | Feb 2011 | A1 |
20110024307 | Simpson et al. | Feb 2011 | A1 |
20110027127 | Simpson et al. | Feb 2011 | A1 |
20110027453 | Boock et al. | Feb 2011 | A1 |
20110027458 | Boock et al. | Feb 2011 | A1 |
20110028815 | Simpson et al. | Feb 2011 | A1 |
20110028816 | Simpson et al. | Feb 2011 | A1 |
20110029247 | Kalathil | Feb 2011 | A1 |
20110031986 | Bhat et al. | Feb 2011 | A1 |
20110040163 | Telson et al. | Feb 2011 | A1 |
20110044333 | Sicurello et al. | Feb 2011 | A1 |
20110077490 | Simpson et al. | Mar 2011 | A1 |
20110077494 | Doniger et al. | Mar 2011 | A1 |
20110082484 | Saravia et al. | Apr 2011 | A1 |
20110105955 | Yudovsky et al. | May 2011 | A1 |
20110106126 | Love et al. | May 2011 | A1 |
20110112696 | Yodfat et al. | May 2011 | A1 |
20110148905 | Simmons et al. | Jun 2011 | A1 |
20110190603 | Stafford | Aug 2011 | A1 |
20110191044 | Stafford | Aug 2011 | A1 |
20110208027 | Wagner et al. | Aug 2011 | A1 |
20110208155 | Palerm et al. | Aug 2011 | A1 |
20110257495 | Hoss et al. | Oct 2011 | A1 |
20110257895 | Brauker et al. | Oct 2011 | A1 |
20110263958 | Brauker et al. | Oct 2011 | A1 |
20110282327 | Kellogg et al. | Nov 2011 | A1 |
20110287528 | Fern et al. | Nov 2011 | A1 |
20110288574 | Curry et al. | Nov 2011 | A1 |
20110289497 | Kiaie et al. | Nov 2011 | A1 |
20110320130 | Valdes et al. | Dec 2011 | A1 |
20120004512 | Kovatchev et al. | Jan 2012 | A1 |
20120078071 | Bohm et al. | Mar 2012 | A1 |
20120108931 | Taub et al. | May 2012 | A1 |
20120108934 | Valdes et al. | May 2012 | A1 |
20120165626 | Irina et al. | Jun 2012 | A1 |
20120165640 | Galley et al. | Jun 2012 | A1 |
20120173200 | Breton et al. | Jul 2012 | A1 |
20120179017 | Satou et al. | Jul 2012 | A1 |
20120186997 | Li et al. | Jul 2012 | A1 |
20120209099 | Ljuhs et al. | Aug 2012 | A1 |
20120215462 | Goode et al. | Aug 2012 | A1 |
20120245447 | Karan et al. | Sep 2012 | A1 |
20120283542 | McGarraugh | Nov 2012 | A1 |
20120318670 | Karinka et al. | Dec 2012 | A1 |
20130035575 | Mayou et al. | Feb 2013 | A1 |
20130130215 | Bock et al. | May 2013 | A1 |
20130137953 | Harper et al. | May 2013 | A1 |
20130225959 | Bugler | Aug 2013 | A1 |
20130231541 | Hayter et al. | Sep 2013 | A1 |
20130235166 | Jones et al. | Sep 2013 | A1 |
20130245547 | El-Khatib et al. | Sep 2013 | A1 |
20130324823 | Koski et al. | Dec 2013 | A1 |
20140005499 | Catt et al. | Jan 2014 | A1 |
20140046160 | Terashima et al. | Feb 2014 | A1 |
20140088392 | Bernstein et al. | Mar 2014 | A1 |
20140221966 | Buckingham et al. | Aug 2014 | A1 |
20140275898 | Taub et al. | Sep 2014 | A1 |
20150141770 | Rastogi et al. | May 2015 | A1 |
20150241407 | Ou et al. | Aug 2015 | A1 |
20160245791 | Hayter et al. | Aug 2016 | A1 |
20160302701 | Bhavaraju et al. | Oct 2016 | A1 |
20160317069 | Hayter et al. | Nov 2016 | A1 |
20170053084 | McMahon et al. | Feb 2017 | A1 |
20170185748 | Budiman et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
4401400 | Jul 1995 | DE |
0098592 | Jan 1984 | EP |
0127958 | Dec 1984 | EP |
0320109 | Jun 1989 | EP |
0353328 | Feb 1990 | EP |
0390390 | Oct 1990 | EP |
0396788 | Nov 1990 | EP |
0286118 | Jan 1995 | EP |
1048264 | Nov 2000 | EP |
1 413 245 | Apr 2004 | EP |
1 075 209 | Oct 2014 | EP |
WO-1996025089 | Aug 1996 | WO |
WO-1996035370 | Nov 1996 | WO |
WO-1998035053 | Aug 1998 | WO |
WO-1999056613 | Nov 1999 | WO |
WO-2000049940 | Aug 2000 | WO |
WO-2000059370 | Oct 2000 | WO |
WO-2000074753 | Dec 2000 | WO |
WO-2000078992 | Dec 2000 | WO |
WO 0152727 | Jul 2001 | WO |
WO-2001052935 | Jul 2001 | WO |
WO-2001054753 | Aug 2001 | WO |
WO-2002016905 | Feb 2002 | WO |
WO-0237337 | May 2002 | WO |
WO 03032411 | Apr 2003 | WO |
WO-2003076893 | Sep 2003 | WO |
WO-2003082091 | Oct 2003 | WO |
WO 2005026689 | Mar 2005 | WO |
WO 2005041766 | May 2005 | WO |
WO 2005065542 | Jul 2005 | WO |
WO-2006024671 | Mar 2006 | WO |
WO-2008086541 | Jul 2008 | WO |
WO-2010077329 | Jul 2010 | WO |
Entry |
---|
U.S. Appl. No. 15/789,950, Office Action dated Apr. 6, 2018. |
U.S. Appl. No. 15/789,950, Advisoty Action dated Dec. 18, 2018. |
U.S. Appl. No. 15/789,950, Notice of Allowance dated Feb. 4, 2019. |
U.S. Appl. No. 15/789,950, Office Action dated Oct. 5, 2018. |
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526. |
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1070. |
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33. |
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10. |
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56. |
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671. |
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244. |
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779. |
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004. |
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No, 1, 2006, pp. 44-50. |
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652. |
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719. |
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198. |
Jovanovic, L., “The Role of Continuous Glucose Monitoring in Gestational Diabetes Mellitus”, Diabetes Technology & Therapeutics, vol. 2, Sup. 1, 2000, pp. S67-S71. |
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250. |
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304. |
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549. |
Kovatchev, B. P., et al., “Graphical and Numerical Evaluation of Continuous Glucose Sensing Time Lag”, Diabetes Technology & Therapeutics, vol. 11, No. 3, 2009, pp. 139-143. |
Li, Y., et al., “In Vivo Release From a Drug Delivery MEMS Device”, Journal of Controlled Release, vol. 100, 2004, 99. 211-219. |
Lortz, J., et al., “What is Bluetooth? We Explain The Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74. |
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658. |
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages. |
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376. |
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532. |
Panteleon, A. E., et al., “The Role of the Independent Variable to Glucose Sensor Calibration”, Diabetes Technology & Therapeutics, vol. 5, No. 3, 2003, pp. 401-410. |
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346. |
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217. |
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272. |
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161. |
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241. |
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158. |
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322. |
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308. |
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299. |
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406. |
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor-Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313. |
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210. |
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9 No. 3, 1986, pp. 298-301. |
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131. |
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942. |
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40. |
Suarez, L., “New ADA Recommendations More Comprehensive”, Diabetic Microvascular Complications Today, 2005, pp. 10-12. |
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261. |
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115. |
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137. |
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964. |
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617. |
PCT Application No. PCT/US2009/045766, International Preliminary Report on Patentability dated Dec. 9, 2010. |
PCT Application No. PCT/US2009/045766, International Search Report and Written Opinion of the International Searching Authority dated Jul. 14, 2009. |
U.S. Appl. No. 12/476,093, Advisory Action dated May 23, 2013. |
U.S. Appl. No. 12/476,093, Notice of Allowance dated Oct. 3, 2013. |
U.S. Appl. No. 12/476,093, Office Action dated Jul. 20, 2012. |
U.S. Appl. No. 12/476,093, Office Action dated Jul. 3, 2013. |
U.S. Appl. No. 12/476,093, Office Action dated Mar. 11, 2013. |
U.S. Appl. No. 12/476,107, Advisory Action dated Sep. 23, 2013. |
U.S. Appl. No. 12/476,107, Notice of Allowance dated Oct. 24, 2014. |
U.S. Appl. No. 12/476,107, Office Action dated Dec. 26, 2012. |
U.S. Appl. No. 12/476,107, Office Action dated Feb. 7, 2012. |
U.S. Appl. No. 12/476,107, Office Action dated Jul. 16, 2013. |
U.S. Appl. No. 14/089,322, Notice of Allowance dated Sep. 21, 2016. |
U.S. Appl. No. 14/089,322, Office Action dated Aug. 26, 2016. |
U.S. Appl. No. 14/089,322, Office Action dated Feb. 25, 2016. |
U.S. Appl. No. 14/174,657, Office Action dated Aug. 25, 2016. |
U.S. Appl. No. 14/539,402, Notice of Allowance dated Feb. 9, 2018. |
U.S. Appl. No. 14/539,402, Office Action dated Jan. 8, 2018. |
U.S. Appl. No. 14/539,402, Office Action dated Jun. 30, 2017. |
U.S. Appl. No. 15/400,959, Notice of Allowance dated Aug. 11, 2017. |
U.S. Appl. No. 15/400,959, Office Action dated Feb. 28, 2017. |
U.S. Appl. No. 15/400,959, Office Action dated Jun. 30, 2017. |
Abbott's Continuous Blood Glucose Monitor Approval Soon, 3 pages, Oct. 3, 2006. |
Apple, The Wayback Machine—Introduction, Apple Rubber Products (1999). |
Apple, “The Apple Rubber Seal Design Guide,” Apple Rubber Products, Inc. (2020). |
ASTM D-2240-05, Standard Test Method for Rubber Property, Durometer Hardness, ASTM International (2005). |
Black et al., “Handbook of Biomaterial Properties,” Springer US, 1st Edition (1998). |
Children with Diabetes, Report from Diabetes Technology Meeting, 3 pages, Nov. 6-8, 2003. |
Claremont et al., “In vivo chemical sensors and biosensors in clinical medicine,” Biosensors fundamentals and applications, Oxford Science publications, Oxford, 356-376 (1987). |
Declaration of John Mastrototaro, Ph.D. (2022). |
Dexcom Leading the Way for You and Your Patients with Continuous Glucose Monitoring (2010). |
Diabetes Close Up—Conferences #2—Diabetes Technology (2003). |
Dufresne et al., “How Reliable are Trial Dates relied on by the PTAB in the Fintiv analysis?” Perkins Coie 1600 PTAB and Beyond, 4 pages (2021). |
FDA U.S. Food and Drug Administration, Premarket Approval, Freestyle Navigator Continuous Glucose Monitor (2005). |
Federal Register, vol. 86, No. 211, Thursday, Nov. 4, 2021, pp. 60827-60829. |
Feldman et al., “A Continuous Glucose Sensor Based on Wired Enzyme Technology—Results from a 3Day Trial in Patients with Type 1 Diabetes,” Diabetes Technology & Therapeutics, vol. 5, No. 5, 769-779 (2003). |
Freestyle Navigator Continuous Glucose Monitoring System Users Guide (2008). |
Fujipoly, Zebra Elastomeric Connectors, The Wayback Machine (2003). |
Fujipoly, New High Performance Silver Zebra Connector (2006). |
Fujipoly, New High Performance Silver Zebra Connector (2002). |
FujiPoly New High Performance Silver Zebra Connector, Jan. 9, 2007. |
Gandrud et al., “Functionality of the MiniMed Continuous Glucose Monitoring System (CGMS) in Young Childen with Type 1 Diabetes,” Abstracts of the 64th Scientific Sessions of the American Diabetes Association, vol. 50, Supplement 2 (2004). |
Heide, “Silicone Rubber for Medical Device Applications,” Medical Device & Diagnostic Industry (1999). |
Heinemann et al., “Benefits and Limitations of MARD as a Performance Parameter for Continuous Glucose Monitoring in the Interstitial Space,” Journal of Diabetes Science and Technology, vol. 14 (1) 135-150 (2020). |
Heller et al., “Electrochemical Glucose Sensors and Their Applications in Diabetes Management,” Chem. Rev., 108, 2482-2505 (2008). |
Heller et al., “Electrochemistry in Diabetes Management,” Accounts of Chemical Research, vol. 43, No. 7, 963-973 (2010). |
Heller et al., “Integrated Medical Feedback Systems for Drug Delivery,” Bioengineering, Food and Natural Products, American Institute of Chemical Engineers, vol. 51, No. 4, 1054-1066 (2005). |
Kass, “Fintiv Fails: PTAB Uses Remarkably Inaccurate Trial Dates,” Law360 (2021). |
Kovatchev et al., “Evaluating the Accuracy of Continuous Glucose-Monitoring Sensors,” Diabetes Care, vol. 27, No. 8, 1922-1928 (2004). |
Kreith, “The CRC Handbook of Mechanical Engineering,” Materials, 12-33 (1998). |
Krieth et al., “The CRC Handbook of Mechanical Engineer,” Second Edition, CRC Press Inc. (2004). |
Moussay et al., “Performamce of Subcutaneously Implanted Needle-Type Glucose Sensors Employing a Novel Trilayer Coating,” Anal. Chem., 65, 2072-2077 (1993). |
Moussy, “32.2: Implantable Glucose Sensor: Progress and Problems,” IEEE, 270-273 (2002). |
Original Premarket Approval Application (PMA), Freestyle Navigator Continuous Glucose Monitoring System, Jun. 7, 2005. |
Premarket Approval Application Amendment, Freestyle Navigator Continuous Glucose Monitoring System, May 11, 2006. |
Princy et al., “Studies on Conductive Silicone Rubber Compounds,” Journal of Applied Polymer Science, vol. 69, 1043-1050 (1998). |
Reiterer et al., “Significance and Reliability of MARD for the Accuracy of CGM Systems,” Journal of Diabetes Science and Technology, vol. 11 (1) 59-67 (2017). |
Resource Center Library References/Bibliography, Available at: https://www.dexcom.com/sites/dexcom.com/files/professionals/CGM_Resource_Center_Reference-Bibliography_LBL_010629_Rev_02.pdf (“Dexcom CGM Resource Center Library”) (Freestyle Navigator), Jun. 12, 2011. |
Silastic MDX4-4210 BioMedical Grade Elastomer, Product Information, Dow Corning (2005). |
“Silicone Rubber for Medical Device Applications,” Medical Device & Diagnostic Industry Qmed, 9 pages (1999). |
The Wayback Machine—Z-Carbon LCD Connector (2022) https://web.archive.org/web/20041211190712/http:/www.zaxisconnector.com:80/Z-. . . . |
Therasense Files Premarket Approval Application for Freestyle Navigator Continuous Glucose Monitor, 3 pages, Dec. 13, 2003. |
Therasense Navigates Continuous Glucose Monitor PMA, Prepares for Flash, The Gray Sheet, vol. 29, No. 37, p. 18, Sep. 15, 2003. |
U.S. Appl. No. 60/614,764. |
U.S. Sec, Form S-1, DexCom, Inc. (2005). |
U.S. Sec, Form 10K, DexCom, Inc. (2005). |
Ward et al., “Rise in background current over time in subcutaneous glucose sensor in the rabbit: relevance to calibration and accuracy,” Biosensors & Bioelectronics, 53-61 (2000). |
Ward et al., “A Wire-Based Dual-Analyte Sensor for Glucose and Lactate: In Vitro and In Vivo Evaluation,” Diabetes Technology & Therapeutics, vol. 6, No. 3, 389-401 (2004), Edited by Friedl, Military Metabolic Monitoring. |
Wilson et al., “Introduction to the Glucose Sensing Problem,” In Vivo Glucose Sensing (2010). |
Z-Axis Z-Silver Connector, Jul. 9, 2004. |
Exhibit CP-2, Expert Report of Dr. Cesar C. Palerm, Sep. 20, 2022: Sparacino, et al., Glucose Concentration can be Predicted Ahead in Time From Continuous Glucose Monitoring Sensor Time-Series, IEEE Transactions on Biomedical Engineering, vol. 54, No. 5, pp. 931-937 (2007). |
Exhibit CP-3, Expert Report of Dr. Cesar C. Palerm, Sep. 20, 2022: in Vivo Glucose Sensing, Chemical Analysis, a Series of Monographs on Analytical Chemistry and Its Applications, vol. 174, Wiley (2010). |
Exhibit CP-4, Expert Report of Dr. Cesar C. Palerm, Sep. 20, 2022: Animas® Vibelm, the First Integrated Offering from Animas Corporation and Dexcom, Inc., Receives European CE Mark Approval (2011). |
Exhibit CP-6, Second Expert Report of Dr. Cesar C. Palerm, Oct. 21, 2022: Bailey, et al., Reduction in Hemoglobin A1 c with Real-Time Continuous Glucose Monitoring: Results from a 12-Week Observational Study, Diabetes Technology & Therapeutics, vol. 9, No. 3, pp. 203-210 (2007). |
Exhibit CP-7, Second Expert Report of Dr. Cesar C. Palerm, Oct. 21, 2022: Garg, et al., Improvement in Glycemic Excusions With a Transcutaneous, Real-Time Continuous Glucose Sensor, Diabetes Care, vol. 29, No. 1, pp. 44-50 (2006). |
Exhibit CP-8, Second Expert Report of Dr. Cesar C. Palerm, Oct. 21, 2022: Garg, et al., Relatioship of Fasting and Hourly Blood Glucose Levels to HbA1c Values, Diabetes Care, vol. 29, No. 12, pp. 2644-2649 (2006). |
Exhibit CP-9, Second Expert Report of Dr. Cesar C. Palerm, Oct. 21, 2022: Welcome to Your FreeStyle Libre System, In-Service Guide, Abbott (2017). |
Exhibit CP-10, Second Expert Report of Dr. Cesar C. Palerm, Oct. 21, 2022: Standards of Medical Care in Diabetes-2009, American Diabetes Association, Diabetes Care, vol. 32, Supplement 1, pp. S13-S61 (2009). |
Exhibit No. 23, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: CGMS® System Gold™ Continuous Glucose Monitoring Overview, Medtronic MiniMed (2004). |
Exhibit No. 20, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Continuous Glucose Sensors: Continuing Questions about Clinical Accuracy, J Diabetes Sci Technol vol. 1, Issue 5, pp. 669-675 (2007). |
Exhibit No. 19, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Glucose Concentrations of Less Than 3.0 mmol/L (54 mg/dL) Should Be Reported in Clinical Trials: A Joint Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes, Diabetes Care, vol. 40, pp. 155-157 (2017). |
Exhibit No. 18, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Aleppo, et al., Replace-BG: A Randomized Trial Comparing Continuous Glucose Monitoring With and Without Routine Blood Glucose Monitoring in Adults With Well-Controlled Type 1 Diabetes, Diabetes Care, vol. 40, pp. 538-545 (2017). |
Exhibit No. 17, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Diabetes (type 1), NIHR (2011). |
Exhibit No. 16, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Pickup, et al., Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data, BMJ (2011). |
Exhibit No. 15, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Oxford Textbook of Endocrinology and Diabetes (2011). |
Exhibit No. 14, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Type 1 diabetes: diagnosis and management of type 1 diabetes in children, young people and adults, Clinical Guideline 15, NHS, National Institute for Clinical Excellence (2004). |
Exhibit No. 13, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Training in flexible, intensive, insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial, BMJ, vol. 325 (2002). |
Exhibit No. 12, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Modern Standards and Service Models, Diabetes, National Service Framework for Diabetes: Standards, Department of Health (2000). |
Exhibit No. 11, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: the Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus, The New England Journal of Medicine, vol. 329, No. 14 (1993). |
Exhibit No. 10, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Type 1 Diabetes Research Roadmap, Identifying the strengths and weaknesses, gaps and opportunities of UK type 1 diabetes research; clearing a path to the cure, JDRF Improving Lives. Curing Type 1 Diabetes. Join us in finding the cure for type 1 diabetes (2013). |
Exhibit No. 9, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Guideline on clinical investigation of medicinal products in the treatment or prevention of diabetes mellitus, European Medicines Agency, Science Medicines Health (2012). |
Exhibit No. 8, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Oxford Textbook of Endocrinology and Diabetes (2011). |
Exhibit No. 7, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Cryer, Preventing hypoglycaemia: what is the appropriate glucose alert value?, Diabetologia, vol. 52, pp. 35-37 (2009). |
Exhibit No. 6, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Frier, Defining hypoglycaemia: what level has clinical relevance?, Diabetologia, vol. 52, pp. 31-34 (2009). |
Exhibit No. 5, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Swinnen, et al., Changing the glucose cut-off values that define hypoglycaemia has a major effect on reported frequencies of hypoglycaemia, Diabetologia, vol. 52, pp. 38-41 (2009). |
Exhibit No. 4, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Amiel, et al., Review Article, Hypoglycaemia in Type 2 diabetes, Diabetic Medicine, vol. 25, pp. 245-254 (2008). |
Exhibit No. 3, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Defining and Reporting Hypoglycemia in Diabetes, Diabetes Care, vol. 28, No. 5, pp. 1245-1249 (2005). |
Exhibit No. 2, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Committee for Proprietary Medicinal Products (CPMP), Note for Guidance on Clinical Investigation of Medicinal Products in the Treatment of Diabetes Mellitus, EMEA, The European Agency for the Evaluation of Medicinal Products (2002). |
Exhibit No. 28, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: FreeStyle Navigator II, Continuous Glucose Monitoring System, User's Manual, Abbott (2011-2013). |
Exhibit No. 27, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: FreeStyle Navigator, Continuous Glucose Monitoring System, User Guide, Abbott (2008, 2010). |
Exhibit No. 26, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: CGMS® iPro™ Continuous Glucose Recorder, User Guide, Medtronic MiniMed (2007). |
Exhibit No. 25, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Guardian® REAL-Time, Continuous Glucose Monitoring System, User Guide, Medtronic MiniMed (2006). |
Exhibit No. 24, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: GlucoWatch G2, Automatic Glucose Biographer and Auto Sensors (2002). |
Exhibit No. 20, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Continuous Glucose Sensors: Continuing Questions about Clinical Accuracy, Journal of Diabetes Science and Technology, vol. 1, Issue 5, pp. 669-675 (2007). |
Exhibit No. 29, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Dexcom G4, Continuous Glucose Monitoring System, User's Guide (2013). |
Exhibit No. 31, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Revised Specification for EP625. |
Exhibit No. 32, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Puhr, et al., Real-World Hypoglycemia Avoidance with a Predictive Low Glucose Alert Does Not Depend on Frequent Screen Views, Journal of Diabetes Science and Technology, vol. 14(1), pp. 83-86 (2020). |
Exhibit No. 33, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Rilstone, et al., the impact of CGM with a predictive hypoglycaemia alert function on hypoglycaemia in physical activity for people with type 1 diabetes: PACE study (2022). |
Exhibit No. 34, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: FreeStyle Libre 2, Flash Glucose Monitoring System, User's Manual, Abbott (2019-2021). |
Exhibit No. 35, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: FreeStyle Libre 3, Continuous Glucose Monitoring System, User's Manual, Abbott (2022). |
Exhibit No. 30, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Revised Specification for US 2007/208244A1. |
Exhibit No. 22, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: Innovation Milestones, et al. |
Exhibit No. 21, to the Expert Report of Professor Nick Oliver, Sep. 20, 2022: DeVries, Glucose Sensing Issues for the Artificial Pancreas, Journal of Diabetes Science and Technology, vol. 2, Issue 4, pp. 732-734 (2008). |
Exhibit No. 37, to the Second Expert Report of Professor Nick Oliver, Oct. 21, 2022: Oliver, et al., Review Article, Glucose sensors a review of current and emerging technology, Diabetic Medicine, vol. 26, pp. 197-210 (2009). |
“DexCom's 7-Day STS Continuous Glucose Monitoring System”, Jun. 1, 2007 https://newatlas.com/dexcoms-7-day-sts-continuous-glucose-monitoring-system/7376/ 1 page. |
Number | Date | Country | |
---|---|---|---|
20180220959 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
61097504 | Sep 2008 | US | |
61057789 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14539402 | Nov 2014 | US |
Child | 15943675 | US | |
Parent | 12476107 | Jun 2009 | US |
Child | 14539402 | US |