Method and apparatus for providing omnidirectional lighting in a scanning device

Information

  • Patent Grant
  • 8282000
  • Patent Number
    8,282,000
  • Date Filed
    Friday, November 11, 2011
    13 years ago
  • Date Issued
    Tuesday, October 9, 2012
    12 years ago
Abstract
Systems and methods are provided for selectively controlling the illumination, and particularly dark field illumination, applied to a symbol to be decoded, and for determining a suitable or optimized level of lighting for decoding the symbol. A method includes providing a light source comprising a plurality of individually-controllable lighting elements for providing low angle dark field illumination; activating an image sensor for detecting image data reflected from an encoded data symbol when the encoded data symbol is illuminated by the light source; and providing a controller connected to each of the individually-controllable lighting elements, the controller being programmed for: selectively activating the individually-controllable lighting elements to vary the direction of the low angle dark field illumination provided by the light source; and processing the image data detected by the image.
Description
FIELD OF THE INVENTION

This invention relates to illuminators and more particularly to illuminators for image acquisition devices and machine vision systems.


BACKGROUND OF THE INVENTION

Machine vision systems use image acquisition devices that include camera sensors to deliver information on a viewed subject. The system then interprets this information according to a variety of algorithms to perform a programmed decision-making and/or identification function. For an image to be most-effectively acquired by a sensor in the visible, and near-visible light range, the subject should be properly illuminated.


In the example of barcode scanning using an image sensor, good lighting is highly desirable. Barcode scanning entails the aiming of an image acquisition sensor (CMOS camera, CCD, etc.) at a location on an object that contains a bar code, and retrieval of an image of that barcode. The bar code contains a set of predetermined patterns that represent an ordered group of characters or symbols from which an attached data processor (for example a microcomputer) can derive useful information about the object (e.g. its serial number, type, model, price, etc.). Barcodes are available in a variety of shapes and sizes. Two of the most commonly employed barcode types are the so-called one-dimensional barcode, consisting a line of vertical stripes of varying width and spacing, and the so-called two-dimensional barcode consisting of a two-dimensional array of dots or rectangles.


In reading barcodes or other subjects of interest the type of illumination employed is of concern. Where barcodes and other viewed subjects are printed on a flat surface with contrasting ink or paint, a diffuse, high-angle “bright field” illumination may best highlight these features for the sensor. By high-angle it is meant, generally, light that strikes the subject nearly perpendicularly (normal) or at an angle that is typically no more than about 45 degrees from perpendicular (normal) to the surface of the item being scanned. Such illumination is subject to substantial reflection back toward the sensor. By way of example, barcodes and other subjects requiring mainly bright field illumination may be present on a printed label adhered to an item or container, or on a printed field in a relatively smooth area of item or container.


Conversely, where a barcode or other subject is formed on a more-irregular surface or is created by etching or peening a pattern directly on the surface, the use of highly reflective bright field illumination may be inappropriate. A peened/etched surface has two-dimensional properties that tend to scatter bright field illumination, thereby obscuring the acquired image. Where a viewed subject has such decidedly two-dimensional surface texture, it may be best illuminated with dark field illumination. This is an illumination with a characteristic low angle (approximately 45 degrees or less, for example) with respect to the surface of the subject (i.e. an angle of more than approximately 45 degrees with respect to normal). Using such low-angle, dark field illumination, two-dimensional surface texture is contrasted more effectively (with indents appearing as bright spots and the surroundings as shadow) for better image acquisition.


To take full advantage of the versatility of a camera image sensor, it is desirable to provide both bright field and dark field illumination for selective or simultaneous illumination of a subject. However, dark field illumination must be presented close to a subject to attain the low incidence angle thereto. Conversely, bright field illumination is better produced at a relative distance to ensure full area illumination.


In addition, a current-production sensor may have a resolution of 640×480 (over 300 K) or 1280×1024 (over 1.3 M) pixels within its native field of view. This resolution is desirable for attaining an accurate image of the subject. However, processing speed may be compromised by the need to acquire every pixel in the field of view even if the subject is a relatively small part of that field (for example, the narrow strip of a one-dimensional barcode). If the field of view is to be narrowed to only encompass an area of interest, then a system for aiming the camera onto that area of interest is desirable. Likewise, where a given field of view may contain multiple codes or subjects, the ability to focus upon particular parts of that field of view to discern the selected subject is also desirable.


SUMMARY OF THE INVENTION

In one aspect, the present invention provides a method for decoding an encoded data symbol. The method comprises steps including providing a light source comprising a plurality of individually-controllable lighting elements for providing low angle dark field illumination; activating an image sensor for detecting image data reflected from an encoded data symbol when the encoded data symbol is illuminated by the light source; and providing a controller connected to each of the individually-controllable lighting elements, the controller being programmed for: selectively activating the individually-controllable lighting elements to vary the direction of the low angle dark field illumination provided by the light source; and processing the image data detected by the image.


In another aspect of the invention, a method for decoding an encoded data symbol is provided comprising steps including (a) providing a plurality of individually-controllable lighting elements arranged around the encoded data symbol to provide low-angle dark field illumination; (b) providing a bright field illuminator directed at the encoded data symbol to provide bright field illumination; (c) selectively illuminating the encoded data symbol with at least one of the individually-controllable lighting elements; (d) acquiring an image data set; (e) evaluating the image data set for determining suitability for decoding; (f) selectively varying a lighting parameter for varying the light emitted from the individually-controllable lighting elements to vary the direction of the low-angle dark field illumination on the encoded data symbol and selectively activating the bright field illuminator; and (g) repeating steps (e) and (f) until the image data set is suitable for decoding.


In yet another aspect, the present invention provides a method comprising the steps of using a ring light source, projecting low angle dark field illumination to an adjacent surface including a symbol to be decoded; providing a controller connected to the ring light source and using the controller for selectively varying the direction of the low angle dark field illumination provided from the ring light source; using an image sensor connected to the controller, the image sensor acquiring image data of the symbol, wherein the controller is programmed for: evaluating the acquired image data and determining whether the image data is sufficient to decode the symbol; and varying the light projected from the ring light source until the image data is sufficient to decode the symbol.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention description below refers to the accompanying drawings, of which:



FIG. 1 is a perspective view of a handheld scanning system and subject employing a passive light pipe illuminator according to an embodiment of this invention;



FIG. 2 is a perspective view of a fixedly mounted scanning system and subject employing a passive light pipe illuminator according to an embodiment of this invention;



FIG. 3 is a schematic cross section of a passive light pipe and ring illuminator according to an embodiment of this invention;



FIG. 3A is a perspective view of a handheld scanning system including a light pipe and illumination ring having an arc configuration;



FIG. 4 is a side cross section of a sensor with dark field illuminating passive light pipe according to an embodiment of this invention;



FIG. 5 is a side cross section of a sensor with bright field illuminating passive light pipe and aiming illuminators according to an embodiment of this invention;



FIG. 6 is a plan view of a circular illumination pattern projected by the illuminating light pipe of FIG. 5;



FIG. 7 is a plan view of a rectangular/square illumination pattern projected by the illuminating light pipe of FIG. 5, encompassing the sensor's full field of view;



FIG. 8 is a side cross section of a sensor with bright field illuminating passive light pipe, nested within a dark field illuminating passive light pipe and aiming illuminators according to an embodiment of this invention;



FIG. 9 is a perspective view of a handheld scanning system employing a passive light pipe that illuminates a modified or restricted sensor field of view according to an alternate embodiment;



FIG. 10 is a plan view of a rectangular illumination pattern projected by the illuminating light pipe of FIG. 9, encompassing a modified/restricted sensor field of view;



FIG. 11 is a side cross section of the sensor and passive light pipe illuminator that can be used to generate a predetermined bright field pattern such as, for example that of FIG. 9;



FIG. 12 is a plan view of a dark field illuminating active light pipe according to another embodiment of the invention;



FIG. 13 is a side cross section of a sensor with the dark field illuminating active light pipe of FIG. 12;



FIG. 14 is a block diagram of a control system of a scanning device including an illumination ring constructed in accordance with any of the embodiments shown; and



FIG. 15 is a flow chart of illustrating steps for selecting lighting parameters by the control system of FIG. 14.





DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT


FIG. 1 shows a scanning system 100 adapted for handheld operation. An exemplary handheld scanning appliance or handpiece 102 is provided. It includes a grip section 104 and a body section 106. The sensor and other functional components described herein can be controlled and can direct image data to an onboard embedded processor 109. This processor can include a scanning software application 113 by which lighting is controlled, images are acquired and image data is interpreted into usable information (for example, alphanumeric strings derived from the barcode images). The decoded information can be directed via a cable 110 to a PC or other data storage device 112 having (for example) a display 114, keyboard 116 and mouse 118, where it can be stored and further manipulated using an appropriate application 120. Alternatively, the cable 110 can be directly connected to an interface in the scanning appliance and an appropriate interface in the computer 112. In this case the computer-based application 120 performs various image interpretation and lighting control functions as needed. The precise arrangement of the handheld scanning appliance with respect to an embedded processor, computer or other processor is highly variable. For example, a wireless interconnect can be provided in which no cable 110 is present. Likewise, the depicted microcomputer can be substituted with another processing device, including an onboard processor or a miniaturized processing unit such as a personal digital assistant or other small-scale computing device.


The scanning application 113 can be adapted to respond to inputs from the scanning appliance 102. For example, when the operator toggles a trigger 122 on the appliance 102, an internal camera image sensor (150, shown and described further below) acquires an image of a region of interest 130 on an item 132. The exemplary region of interest includes a two-dimensional bar code 134 that can be used to identify the part 132. Identification and other processing functions are carried out by the scanning application 113, based upon image data transmitted from the appliance 102 to the processor 109.


Simultaneously with, or in advance of acquisition of the image, the area of interest 130 is illuminated. In one embodiment, a switch 140 on the appliance 102 can be used to operate the illuminator, which consists of a novel light pipe arrangement 142 in accordance with this invention. Alternatively, as will be described below, the operation of the illuminator can be operated and controlled remotely by the scanning software application 120. The passive light pipe 142 consists of an extended barrel of light transmissive material terminating (in this embodiment) in an angled tip 144. As described further below, this tip is designed to cause internal reflection that projects a low-angle dark field illumination in the area of interest 130. As noted above, such dark field illumination is typically provided at an angle of no more than approximately 45 degrees with respect to the surface or more than 45 degrees normal to the optical axis. Extending through the center of the light pipe, which comprises a hollow tube, is a camera sensor 150 (shown in phantom and associated optics). The focal point of the camera is selected so that it is able to focus on the desired area of interest, as its field of view, in close proximity to the tip 144. In this manner, the tip can be placed very close to, or in contact with the area of interest for accurate viewing. As noted above, the bar code 134 in this embodiment is one that is best viewed using a dark field illumination. However, as will be described further below, the light pipes described in accordance with this invention also has the ability to provide bright field illumination for bar codes that are better suited to direct, high-angle illumination (for example, those printed with high contrast ink on a relatively smooth, matte surface).



FIG. 2 shows another implementation of the light pipe in accordance with an embodiment of this invention. An embedded processor 109 and/or computer 112 and associated applications 113 and/or 120 similar to those described above can be employed. An associated cable 210 interconnects the computer, via an interface, with a camera element 220. The camera element can be a conventional camera mounted on a fixed bracket 222. It includes a lens and electro-optical sensor assembly 224 (shown in phantom). The light pipe is removably mounted via a securing ring 226 with exemplary securing screws 228 in this embodiment. Note, while screws 228 are use, any fastener system can be substituted. A cable 230, shown in phantom, interconnects an internal ring illuminator, integral with light pipe, to either the processor 109 or the computer 112. This arrangement allows the light pipes of this invention to be secured as a retrofit to a variety of preexisting cameras. In any of the embodiments herein, the illuminator can be integrated with the camera's standard operating functions, such as its strobe and trigger mechanisms, or it can be controlled via the scanning application. Separate control circuitry (see FIGS. 14 and 15) can also be provided to modulate certain functions of the illuminator as described further below. In the example of FIG. 2, the illuminator is viewing parts or other items 260 moving along a conveyer 262. The area of interest 264 is a bar code that is best viewed using, for example, bright field illumination. As described below, the light pipe arrangement, in accordance with the various embodiments of this invention, can accommodate bright field illumination as well as dark field illumination. In both FIGS. 1 and 2, and other figures described herein, the image sensor is, typically, a commercially available CMOS or CCD image sensor with a resolution of, for example, 640×480 pixels or 1280×1024 pixels. Other resolutions and sensor types are expressly contemplated, however.


With reference to FIG. 3, a version of the light pipe 310 described in FIGS. 1 and 2 is shown. This light pipe includes an outer tube 312 and a nested, inner tube 314. The innermost wall of the inner tube 314 defines, in this example, a circular lumen or channel. This channel is a path through which light can pass from the area of interest 320 to a board-mounted or separately placed sensor 330. The lumen has a diameter WL that is equal to or greater than the diameter of the optics of the camera sensor. In this embodiment, note that the sensor is mounted on a circuit board 332 that also includes the ring illuminator 334. This ring illuminator consists of an outer ring of LEDs or other appropriate light sources 336 and an inner ring 338 of LEDs or other appropriate light sources. The number of light sources, size of the rings and their shape are highly variable. Thus, the term “ring” should be taken broadly to describe a variety of regular and irregular curved (ovular, etc.) and/or polygonal (rectangular, square, etc.) perimeter shapes. For example, in some applications, a rectangular or oval illumination pipe can be used, providing a reader having a profile that is less tall than it is wide. In these types of configurations, and particularly in oval configurations, the dark field region extends to a distance from the end of the tube that is proportional to the width of the tube. When the pipe is twice as wide as it is tall, for example, the angle of illumination from the sides of the light pipe causes the light to meets at a distance further from the end of the pipe than the light from the top and bottom. Therefore the dark field illumination extends further from the pipe, providing an enhanced, larger field of dark field illumination. In addition to this advantage, the oval and rectangular shape can be advantageous as it reduces the overall size of the light pipe, and, further, can be stronger and more rugged in construction. Furthermore, the shape of the pipe can be selected based on the size and shape of the symbol to be decoded, as described with reference to FIG. 9, below.


In general, the ring illuminator's light sources are placed relatively close to the outer perimeter of the sensor and/or its optics and the number of sources is sufficient to fill in the illumination field and supply appropriate light to the subject. In general, any group of light sources or one or more continuous sources (e.g. tubes) arranged to light a perimeter of any size/shape can be broadly considered to be a “ring” light source herein.


Returning again to FIG. 3, in one embodiment, the ring can define a circle that is approximately 2-3 inches in outer diameter. Each ring is aligned with respect to one of the light pipes 312 and 314. As described below, appropriate baffles separate the rings from each other so that light from one ring does not leak into the other ring. Referring still to FIG. 3, the outer LED ring 336 can also be divided into individually-controllable segments. Here, the illumination ring 336 is shown as having has four exemplary segments that represent the quadrants 380, 382, 384 and 386 of the overall circumference each of which are connected to a lighting controller 370. The ring 336, as well as other light ring components described below, can be segmented into any number of individually controllable elements to provide improved lighting conditions, also as described below.


Referring now to FIG. 3A, an alternative embodiment of an illuminator 100 having a light pipe 311 and an arcuate illuminator 383 which extends over only a portion of a full ring is shown. The partial ring arced light pipe 311 and arcuate illuminator 383 are particularly useful for illuminating small areas, where, for example, a full light pipe cannot be brought close enough to the symbol to be illuminated. Situations in which these types of light pipes are useful include, for example, where it is necessary to illuminate a symbol positioned on or near a corner, in a seam, or on a round or curved surface.


Referring again also to FIG. 3, as noted, each passive light pipe is constructed from a light-transmissive material. This material can be acrylic, glass, or any other material capable of acting as a wave guide for visible and near-visible light. The wall thickness of each pipe may vary. In general, thicknesses are between approximately ⅛ inch and ¼ inch. However, larger or smaller thicknesses are expressly contemplated. The overall length of the outer light pipe is also highly variable. As noted above, it is set so that the focus on the desired field of view is attained near, but beyond, the end of the tip 340. In one embodiment, the outer light pipe has a length of approximately 3-4 inches. The inner light pipe 314 can be approximately the same length as the outer light pipe, but in this embodiment, the inner light pipe is recessed with respect to the outer, as shown, so that light can exit from the inner edge of the tip 340. The tip's light-transmissive region is shown by the dashed line 342. This inner edge light outlet can be formed by exposing and/or polishing a strip in the otherwise opaque overall surface of the outer light pipe 312. This light transmissive strip or region can extend (for example) ¼ inch, more or less, as shown by thickness T. The thickness T is variable. Due to internal reflection caused by the angled portion 350 of the tip 340, low angle illumination 352 exits from the open region 342. Similarly, the open tip 360 of the inner light pipe 314 facilitates direct, bright field illumination 362 on the area of interest 320. The mechanics of the nested light pipe 310 are described in further detail below. Reference will first be made to FIG. 4, which describes, more particularly, a dark field illuminator. Reference will also be made generally to the ring illuminator 334 and controller 370 of FIG. 3. Note that, while an opaque coating of paint or another acceptable material is used, to insulate the dark field light pipe against light leakage, it is contemplated that all or a portion of the light pipe can remain uncovered, particularly where the surface is sufficiently well-polished to cause near-total internal reflection along its length.


Referring now to FIG. 4, a CMOS, CCD or other electro-optical sensor 414 is provided on a circuit board 412. A single ring illuminator of LEDs or other light sources 410 may also be provided on the board 412, or separately from the board. The electro-optical sensor and light sources 410 interconnect to a controller and/or image acquisition processor similar to those shown in FIG. 3. A dark field-illuminating light pipe 420 is shown in cross-section. This surrounds the image sensor 414 and its associated optics 422, and is aligned with the light sources 410 which are transmitted through the light pipe 420 to provide dark field illumination as described above. A transparent window 424 can be provided in front of the optics 422 to protect the circuitry. As noted above, the tip 430 of the light pipe 420 is angled at an angle A (approximately 45 degrees or more) so that light is reflected to pass through an exposed thickness T along the inner perimeter of the light pipe using internal reflection. The light transmits with the desired low-angle (or a high angle (over 45 degrees) respect to optical axis centerline CL) dark field illumination pattern 440 that, in this embodiment, is within a range DD of 0-1.25 inch. Note that the angle A of the tip (approximately 45 degrees in this example) determines the general angular range of light exiting the tip. There tends to be a spread of angles, in fact, and the prevailing angle of light may vary somewhat from the angle of the tip. The angle A of the tip may be altered to generate the best angle and spread for light based upon the material used for the light pipe and it's wall thickness.


As also shown in FIG. 4 an extended bright field range DB of 3-4 inches extends beyond the dark field range. In one embodiment, the bright field is not illuminated or can be illuminated by a variety of other external sources. To this end, in an alternate embodiment, the dark field light source may further include an external bright field illuminator 450 and/or 460. In one example, the bright field illuminator is a ring light source (with or without a light pipe) 450 that may or may not be mounted on the circuit board 412 (see board extensions shown in phantom). The radial spacing of the optional, external bright field ring is variable. It may closely abut the dark field light pipe 420, or may be spaced away from this light pipe as shown. According to another alternative, a bright field illuminator 460 may be provided at another external location or locations. Note that the term “external” as used herein should be taken broadly to include a location that is inside the lumen of the dark field light pipe, such as, for example at the base of the pipe (adjacent to the circuit board, for example). This illuminator can be provided as the only bright field illuminator, or in addition to the bright field ring 450.


With reference now to FIG. 5, a light pipe having only a bright field illuminator is shown. A circuit board, 510, carries LEDs 512 surrounding a sensor 514 with associated optics 516 and a window 518 to protect them. A light pipe 520 communicates optically with the ring illuminator LEDs 512. The tip 522 of the light pipe 520 can be rounded or flat and can include a diffusing (frosted, for example) surface texture for enhanced scatter of bright field light. Note that other bright field light pipes described herein can have similar tip constructions and surfaces. The walls (inner and outer) of the light pipe 522 can be coated with an opaque, non-transmissive material or can remain transmissive. Surrounding the outer circumference of the light pipe 520 at various points are each of a set of individual directing rods/lenses 530 (shown in partial cross-section for clarity of rod-like structure) that each optically communicate with individual or clusters of LEDs 532. Because the field of view of the sensor is limited, and the subject must remain within the field of view to be properly read, the LEDs 532 project aiming points, typically of a different, noticeable color onto the item of interest. For example the aiming LEDs can project a prominent blue, red or green dot while the overall illumination is a whitish light. Note that the aiming point rods herein are circular in cross section. However, they may be triangular, square or any other shape that adequately denotes an aiming point.


Two exemplary illumination patterns obtained with the bright field illuminator of FIG. 5 are shown, respectively in FIGS. 6 and 7. In FIG. 6, the field of view of the camera sensor, shown as a dashed line 602, is rectangular, while the circular bright field illuminator projects a circular illumination pattern 604. This may be desirable where the subject has a circular outline and the comers of the field of view are not needed, or where the symbol/subject orientation is unknown. The scanning application and/or image acquisition circuitry can be set to reject data within these comers to speed processing. To ensure that the user aligns the illuminator properly with respect to the subject, four aiming dots 610 are provided around the perimeter of the illumination field 604. These aiming dots give instant feedback to the user so that he or she properly aims the illumination and field of view of the appliance onto the subject. Similarly, as shown in FIG. 7, where a square light pipe is employed, a square illumination pattern 710 is provided. This falls within the relative field of view 602. Again, aiming dots 712 are used to ensure proper direction of the appliance by the user. In this embodiment, the dark field illumination range DB 1 spans generally between approximately 0 and 12 inches from the tip 522 of the light pipe. Other ranges are contemplated, of course.



FIG. 8 shows, in further detail, a nested light pipe arrangement in accordance with an illustrative embodiment of this invention. An inner ring of LEDs 802 and an outer ring of LEDs 804 are mounted on a circuit board 806 that also includes a sensor 810. Associated optics for the sensor 812 are provided within a window area 814. As noted above, the outer light pipe 820 includes a tip 822 that is angled so as to produce, through an opening, thickness T an internally reflected beam of dark field illumination with a span DD2 having a range of 0-1.25 inch in one embodiment. The walls of the light pipe 820 are coated with a non-transmissive, opaque coating and the LEDs 804 of the ring are sealed by baffles 830 that isolate this illumination source with respect to the inner LEDs 802 and associated inner bright field light pipe 840. The bright field light pipe is nested within the dark field light pipe 820 and its tips 842 are recessed so as not to interfere with the opening thickness T. The tips 842 can be rounded, angled or flat. They produce an appropriate bright field illumination pattern that, in this embodiment, can extend a distance DB2 from 0-6 inches with respect to the tip 822 of the dark field illuminator. In this manner, a bright field subject can be contacted by the appliance and still adequately illuminated. Though, for contact viewing of a subject, the inner diameter of the lumen formed by the light pipe assembly must be at least as large in diameter as the subject being viewed. Nevertheless, in certain embodiments, it is contemplated that it is smaller and that the scanning application can include mechanisms for assembling portions of an image formed as the appliance is moved around the image to take in all aspects of it when it is larger than the maximum field of view afforded to the sensor. Again, as noted above, the controller can determine either automatically or manually, whether to activate the dark field illumination ring LEDs 804 or the bright field illumination ring LEDs 802 depending upon the subject and/or image quality obtained. A set of perimeter LEDs 850 communicate with lenses 852 in the form of rods that provide aiming dots as described above.


As also described generally above, the light pipe can be used to restrict the native field of view of the sensor. FIG. 9 shows a scanning appliance 902 having a rectangular cross-section light pipe 904. This light pipe can either be a dark field or bright field (or combination) illuminator. In this example, an item 910 includes a long, narrow subject 912, namely a one-dimensional bar code. The illuminator projects a pattern similar in size and shape to the bar code itself. In this manner, when the user directs the illumination field to the item 910, he or she is naturally prompted to align the rectangular illumination pattern with the bar code. That is, the user receives immediate feedback as to the location of the reduced field of view, which appears as a bright area that generally conforms to the subject outline. The subject is better delineated by the reduced area, and any information outside this area can be omitted from the acquisition data stream, thus speeding image processing.


With reference to FIG. 10, the overall field of view of the camera, shown as dashed line 1002, is a large square while the illumination area is a substantially narrower rectangle 1004. Again, this rectangle conforms to the shape of a one-dimensional bar code in this example. A variety of other shapes and sizes can be provided for a selective illumination area with respect to the overall field of view. Small circles, ovals, squares and complex geometric patterns are all contemplated. Appropriately shaped light pipes are constructed to conform to these shapes. Likewise, these light pipes can include dark field, bright field or a combination of bright and dark field structures as described above. Similarly, the narrowed-field of view (or “reduced field of view”) illuminator can include aiming dots to further assist alignment on the subject.


Referring now to FIG. 11, in the example of a bright field illuminator, a ring of LEDs 1102 is mounted on a circuit board 1104, which also includes a sensor 1106. The board is interconnected with a controller or image acquisition device that includes scanning software applications. A bright field illumination pattern extends a distance DB3 from the tip of the light pipe 1120. In this example the distance DB3 is approximately 6-8 inches. However other distances are expressly contemplated. The scanning software application is adapted to reject pixels outside of the desired field of view either through knowledge of pixel addresses that fall outside of the desired field or because these pixels are not appropriately illuminated and are therefore rejected (e.g. they are too dark). An appropriate optics 1110 and window 1112 is also provided as well as a light pipe 1120 that is shaped as an elongated rectangle.


Referring now to FIGS. 12 and 13, an alternate embodiment of a scanning system 1200 including an active dark field illumination system is shown. Here, rather than providing the illumination ring at an end of a light pipe opposite the surface to be illuminated and directing the light through the pipe, as described with reference to FIGS. 3, 4 and 8 above, an illumination ring 1202 is mounted inside of an opaque cover or receptacle 1204 at the end of a pipe 1206 adjacent the surface to be illuminated. The purpose of the pipe 1206 is to position the illumination ring 1202 near the surface to be illuminated, and the pipe 1206 therefore does not need to be constructed of a transmissive material as described above. However, transparent tube material aids in visually placing the reader over the code to be read The opaque cover 1204 is sized and dimensioned to receive the illumination ring 1202, and includes a top opaque surface 1220, and an outer opaque surface 1224. The inner surface 1226 is either left open, or includes a plurality of mounting holes for receiving individual lighting elements such as light emitting diodes (LEDs) which form the illumination ring 1202. The opaque surfaces 1220 and 1224 prevent light from the illumination ring 1202 from being transmitted directly onto an underlying illumination surface adjacent the scanning system 1200, and directs light from the illumination ring 1202 instead inward, toward the center of the light pipe 1206. As shown in FIG. 13, as the light exits the light pipe 1206, it is therefore angled, providing dark field illumination to the surface to be illuminated. As described above, bright field illumination elements could also be provided in conjunction with the active dark field illumination pipe.


As described above with reference to FIG. 3, the illumination ring 1202 of FIG. 13, as well as any of the dark field illumination rings and arcuate illuminators shown in FIGS. 3, 3A, 4, and 8, can be segmented into individually-controllable segments. These illuminators are described collectively hereafter as “illumination rings”. However, the discussion below applies equally to both rings and arcuate lighting segments, as described above with reference to FIG. 3A. The individually-controllable segments can comprise four segments, such as the quadrants 380, 382, 384 and 386 shown in FIG. 3, or be segmented in a number of alternate ways. For example, in alternate embodiments, the ring illuminator may be divided into halves, or any larger number of segments can be employed, including segments comprising individual LEDs. Irrespective of the selected segmentation, the segments can be separately controlled or addressed by the controller 370 (FIG. 3) to attain a desired dark field illumination pattern, as described below. The controller 370 can further selectively activate or modulate the light emitted from any of these elements, vary the exposure time of the sensor 330, or vary the focal point of the camera, also as described below.


Referring again to FIGS. 1, 2 and 3, and also to FIG. 14, a block diagram of a control system for use in controlling a ring illuminator as discussed with respect to FIGS. 3, 4, 8, and 13 is shown. As described above, the scanning device (100, 200, or 1200) includes onboard processing 109 including a scanning application 113. The processor 109 includes a controller 370, connected to the ring illuminator 382 for controlling the activation of lighting elements 380, 382, 384, and 386. The controller 370 is further connected to an image sensor 330 for acquiring image data, to a memory 371 for storing and retrieving image data, as well as lighting selection data, as described below, and to a transmitter/receiver 372 for transmitting data to and receiving data from a host computer 112. A user select input 374 can also be connected to provide data to the controller 370 to provide a manual selection of lighting conditions or other parameters as described below.


In operation, the on-board processing board 109 can be operated to assure adequate or optimized lighting conditions based upon an evaluation of feedback data for both handheld (FIGS. 1 and 12) and fixed applications (FIG. 2). To achieve such conditions, the scan lighting is controlled by the scanning application 113 and controller 370 to individually control each of the light segments, such as the quadrants 380, 382, 384, and 386, to selectively activate or deactivate the individual segments, dim or brighten selected segments, or to vary the exposure time of the lighting on the illumination surface. Re-orienting the applied lighting can be useful, for example, when illuminating metallic or curved surfaces, or when illuminating highly reflective surfaces. When illuminating metallic or similar grained surfaces, for example, it has been observed that illumination is often more effective when oriented along the grain of the material. With the ability to dim or deactivate illumination across the grain, a significantly improved image can be attained. Furthermore, when illuminating curved surfaces, improved results can be attained by illuminating the surface in a selected direction. Similarly, varying lighting conditions can be beneficial when working with reflective surfaces.


The scanning application 113 can entail, for example an initialization process in which the individually-controlled light segments 380, 382, 384, and 386 are cycled through a variety of preset on/off combinations is performed until the quality of the image is determined to be sufficient for evaluating a bar code or other symbol, or to determine which of the settings provides the best image quality. In this process, feedback in the form of image data acquired by the sensor 330 is evaluated by the controller 370. For example, the image data acquired by the sensor 330 can be processed for each different available setting of the individual quadrants 380, 382, 384, and 386, and when an acceptable and/or optimal image is attained, that particular setting can be selected for on-going data acquisition. Image optimization can be based upon recognition of known fiducials or detection of maximum contrast over a sufficiently wide portion of the viewed area of interest.


In a fixed-camera arrangement, this adjustment process can typically be carried out once, and the selected setting can be applied to each successive acquired image. Alternatively, in handheld scanning applications, where angles and orientations of the appliance relative to the item are likely to change, the adjustments can also be made dynamically for each scan, or selectively performed by the operator who selects the initialization mode, for example, when environmental conditions change. Even in handheld operations, however, a fixed setting can be effective where the scan will always be taken from approximately the same location, and/or in the same environmental conditions, or in a known subset of available conditions.


In embodiments which include both bright and dark field illumination, as shown, for example, in FIGS. 3, 4, and 8, the scan application 113 can also be programmed to select between dark field or bright field illumination depending on which type of illumination best suits a particular application. The selection between bright and dark field illumination can be made automatically by the image processor based feedback, as described above, or selected manually by the operator.


Referring again to FIGS. 1, 2, 3, 13 and particularly to FIG. 15, a flow chart illustrating a typical process for selecting lighting conditions is shown. As described above, the scanning system 100 can be initialized using a predetermined initial lighting configuration 1301, which can be, for example, a series of predetermined lighting variations, or, alternatively, a pre-selected general purpose setting, or a “cached” setting retrieved from the memory component 371. The stored setting can be, for example, the setting from the last successful or a previous successful decode attempt, a setting which has been determined statistically to be typically successful in the environment, or an average setting determined over a series of successful attempts. The initial setting can activate or deactivate various individually-controlled light segments such as the quadrants 380, 382, 384, and 386 of an illumination ring, activate or deactivate dark or bright field lighting, or modulate the brightness levels of any of these lighting elements by varying an analog signal applied to the light segments, applying a pulse-width modulated signal, or in various other ways which will be apparent to those of skill in the art. The exposure time of the sensor 330, and the focal length of the camera can also be varied to obtain optimal conditions.


After the symbol is illuminated, an image data set is acquired by the sensor 330 in step 1302, and this data set is evaluated in step 1303. Evaluation of the image data in step 1303 can comprise an attempt to decode the symbol, or, in the alternative, comprise a statistical evaluation of the acquired data set based on histograms or other statistical analyses known in the art to determine whether the contrast between white and black pixels in the acquired data is within an expected range. If the data set acquired in step 1302 is determined to be suitable for decoding, a “good read” has been established and, in step 1306, the symbol is decoded and the process is stopped. The settings established in step 1301 can also be stored or cached in the memory component 371 for later retrieval, as described above.


Data suitable for decoding can be based on a full read of the symbol, or on a partial read, in which data is reconstructed using error-correcting methods such as parity checks, check sums, and known symbol criteria such as the number of characters expected, or other parameters which will be apparent to those of skill in the art.


If the image data set is not suitable for decoding, in step 1304, the controller 370 changes the lighting settings by varying the selection of bright or dark field illumination, varying the set of individually-controllable light elements which are activated or deactivated, or by modifying the brightness of the light provided. These parameters can be determined, as described above, based on a pre-established set of parameters, by an analysis of the acquired data set, or by user selection. After new settings are selected in step 1305, a new image data set is acquired in step 1302, and steps 1303-1305 are repeated until a “good” data set is acquired, and the symbol is decoded.


Although the variation of lighting has been described above as an automatically-controlled process, as shown in FIG. 14, the controller 370 can also receive manual commands from the user through a user select input 374. The user select input can receive, for example, an input signal from a single or multi-position switch provided on the scanning device, an input provided through other software or hardware-based user interfaces provided on the scanning device, or through software on a computer 112 connected to the controller through the transmitter/receiver 372. Various other ways for providing an interface for users to select lighting parameters will be apparent to those of skill in the art. Through the user select input 374, the user can manually choose, for example, to activate individual quadrants or segments in the illumination ring, select a predetermined sequence of segments, vary the brightness of the illumination, select between bright and dark field illumination, or re-start an initialization process which provides a predetermined set of variable illuminations, as described above. Other manual selections, as will be apparent to those of skill in the art, could be provided through a user input.


The foregoing has been a detailed description of illustrative embodiments of this invention. Various modifications and additions can be made without departing from the spirit and scope thereof For example, although a block diagram comprising a specific configuration for the control system is shown, it will be apparent to those of skill in the art that this is a simplified representation and that various methods of constructing the hardware can be used. Additionally, it is expressly contemplated that any of the features described in any of the above embodiments can be combined with other features to produce various light pipe arrangements. Likewise, a wide variety of data processing devices, scanning application programs and/or hardware systems can be incorporated to control illumination and acquire images. Finally, the light pipes described herein can be provided with integral illuminators on a circuit board that also includes a sensor and control functions that allow the sensor to communicate with the illuminator. Alternatively, the illuminator, light pipe and camera can all be separate components that are interconnected via one or more controllers, or all connected to a common computer or processor through appropriate interfaces. Various combinations of sensor, optics, illuminator and light pipes are all expressly contemplated. For example, sensors may be provided on the same circuit board as the processor and the light sources, or any/all of these components. can be separate. Appropriate interfaces and attachment mechanisms, that should be clear to those of ordinary skill, can be provided to facilitate interaction between the various components described herein. In addition, while the bright field light pipe is described as nested within the dark field light pipe, it is expressly contemplated that these two pipes can be reversed by positioning the bright field illuminator outside the dark field light pipe. Likewise, either light pipe (or light source therefor) may be defined as a broken ring, with non-illuminated segments along their perimeters. Accordingly, this description is meant to be taken only by way of example and not to otherwise limit the scope of the invention.

Claims
  • 1. A method for decoding an encoded data symbol, the method comprising: providing a light source comprising a plurality of individually-controllable lighting elements for providing low angle dark field illumination;activating an image sensor for detecting image data reflected from an encoded data symbol when the encoded data symbol is illuminated by the light source; andproviding a controller connected to each of the individually-controllable lighting elements, the controller being programmed for: selectively activating the individually-controllable lighting elements to vary the direction of the low angle dark field illumination provided by the light source;evaluating the detected image data and determining whether the detected image data is sufficient to decode the encoded data symbol;varying the low angle dark field illumination provided by the light source until the detected image data is sufficient to decode the encoded data symbol; andprocessing the image data detected by the image sensor.
  • 2. The method according to claim 1, wherein the individually controllable lighting elements comprise portions of at least one of a circular ring, an oval ring, a rectangular ring, and an elliptical ring.
  • 3. The method according to claim 1, wherein the individually-controllable lighting elements comprise a plurality of electrically-connected individual light elements.
  • 4. The method according to claim 1, further including the controller evaluating the image data detected by the image sensor and varying the dark field illumination to optimize symbol decoding.
  • 5. The method according to claim 1, wherein the dark field light source comprises a passive light pipe or an active light pipe.
  • 6. The method according to claim 1, further including providing a manual control connected to the controller for manually selecting at least one of the individually-controllable lighting elements to be activated.
  • 7. The method according to claim 1, further including providing a memory component for storing data corresponding to the individually-controllable lighting elements.
  • 8. The method according to claim 1, further including the controller varying an exposure time of the image sensor.
  • 9. The method according to claim 1, further including the controller determining whether the image data detected is sufficient to decode the encoded data symbol based on a statistical analysis of the image data detected.
  • 10. The method according to claim 1, further including the controller determining whether the image data detected is sufficient to decode the encoded data symbol based on an attempt to decode the encoded data symbol.
  • 11. The method according to claim 1, wherein the image sensor is connected to the controller for detecting light reflected from the encoded data symbol and for providing feedback to the controller for varying lighting conditions.
  • 12. The method according to claim 1, wherein the dark field light source is arcuate.
  • 13. The method of claim 1, further including providing a bright field light source for providing bright field illumination; wherein the controller is connected to the bright field illumination source and programmed for selectively activating the bright field light source.
  • 14. The method according to claim 13, further including providing a handheld enclosure for housing the dark field light source, the bright field light source, and the image sensor.
  • 15. The method according to claim 13, further including providing a fixed mount enclosure for housing the dark field light source, the bright field light source, and the image sensor.
  • 16. A method for decoding an encoded data symbol, the method comprising the steps of: (a) providing a plurality of individually-controllable lighting elements arranged around the encoded data symbol to provide low-angle dark field illumination;(b) providing a bright field illuminator directed at the encoded data symbol to provide bright field illumination;(c) selectively illuminating the encoded data symbol with at least one of the individually-controllable lighting elements;(d) acquiring an image data set;(e) evaluating the image data set for determining suitability for decoding;(f) selectively varying a lighting parameter for varying the light emitted from the individually-controllable lighting elements to vary the direction of the low-angle dark field illumination on the encoded data symbol and selectively activating the bright field illuminator; and(g) repeating steps (d), (e) and (f) until the image data set is suitable for decoding.
  • 17. The method according to claim 16, further including the step of arranging the individually controllable lighting elements in quadrants.
  • 18. The method according to claim 17, wherein wherein successive occurrences of step (c) further includes sequentially activating at least one combination of the quadrants.
  • 19. The method according to claim 16, further including the step of storing the lighting parameter found to be suitable for decoding the image data set.
  • 20. The method according to claim 16, wherein step (c) further includes retrieving a stored illumination setting.
  • 21. The method according to claim 16, wherein step (a) further includes retrieving default parameters for activating each of the lighting elements.
  • 22. The method according to claim 16, wherein step (e) further includes evaluating the image date set for decoding the encoded data symbol.
  • 23. The method according to claim 16, wherein step (e) further includes evaluating the image data set for evaluating a relative concentration of light and dark pixels.
  • 24. The method according to claim 16, wherein step (f) further includes selectively varying the light emitted by modulating a signal applied to at least one of the individually-controllable lighting elements to vary a brightness of the illumination.
  • 25. The method according to claim 16, wherein step (f) further includes selectively varying an exposure time for illuminating the encoded data symbol.
  • 26. The method according to claim 16, wherein step (f) further includes selectively varying a focus parameter.
  • 27. The method according to claim 16, wherein step (f) further includes selectively activating at least one of the individually-controllable lighting elements.
  • 28. The method according to claim 16, wherein step (a) further includes angling the light emitted from the individually-controllable lighting elements to provide the low angle dark field illumination.
  • 29. A method comprising: using a ring light source, projecting low angle dark field illumination to an adjacent surface including a symbol to be decoded;providing a controller connected to the ring light source and using the controller for selectively varying the direction of the low angle dark field illumination provided from the ring light source;using an image sensor connected to the controller, the image sensor acquiring image data of the symbol, wherein the controller is programmed for:evaluating the acquired image data and determining whether the image data is sufficient to decode the symbol; andvarying the light projected from the ring light source until the image data is sufficient to decode the symbol.
  • 30. The method according to claim 29, further comprising using a bright field light source, projecting bright field illumination to the adjacent surface, wherein the controller is further programmed for selectively activating the bright field light source to illuminate the symbol.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 12/552,107, filed on Sep. 1, 2009, now U.S. Pat. No. 8,061,613, and entitled “Method And Apparatus For Providing Omnidirectional Lighting In A Scanning Device,” which is a continuation of U.S. patent application Ser. No. 10/911,989, filed on Aug. 5, 2004, now U.S. Pat. No. 7,604,174, and entitled “Method And Apparatus For Providing Omnidirectional Lighting In A Scanning Device,” which is a continuation-in-part of U.S. patent application Ser. No. 10/693,626 filed Oct. 24, 2003 now U.S. Pat. No. 7,826,783 entitled “Light Pipe Illumination System and Method,” each of which are hereby incorporated by reference.

US Referenced Citations (225)
Number Name Date Kind
2357378 Benford Sep 1944 A
3726998 Szpak et al. Apr 1973 A
3857626 Rosenberger et al. Dec 1974 A
3961198 Angst et al. Jun 1976 A
4240748 Blanc et al. Dec 1980 A
4282425 Chadima et al. Aug 1981 A
4570057 Chadima, Jr. et al. Feb 1986 A
4743773 Katana et al. May 1988 A
4766300 Chadima, Jr. et al. Aug 1988 A
4820911 Arackellian et al. Apr 1989 A
4894523 Chadima et al. Jan 1990 A
4969037 Poleschinski et al. Nov 1990 A
5019699 Koenck May 1991 A
5149948 Chisholm Sep 1992 A
5177346 Chisholm Jan 1993 A
5202817 Koenck Apr 1993 A
5227614 Danielson et al. Jul 1993 A
5239169 Thomas Aug 1993 A
5258606 Chadima, Jr. et al. Nov 1993 A
5291009 Rotaei Mar 1994 A
5313373 Bjorner et al. May 1994 A
5319182 Havens et al. Jun 1994 A
5331176 San't Anselmo et al. Jul 1994 A
5349172 Rotaei Sep 1994 A
5354977 Rotaie Oct 1994 A
5359185 Hanson Oct 1994 A
5367439 Mayer et al. Nov 1994 A
5374817 Bard et al. Dec 1994 A
5378883 Batterman et al. Jan 1995 A
5406060 Gitin Apr 1995 A
5408084 Brandorff et al. Apr 1995 A
5414251 Durbin May 1995 A
5422472 Tavislan et al. Jun 1995 A
5430285 Karpen et al. Jul 1995 A
5442247 Suzuki et al. Aug 1995 A
5449892 Yamada Sep 1995 A
5461417 White et al. Oct 1995 A
5463214 Longacre, Jr. et al. Oct 1995 A
5469294 Wilt et al. Nov 1995 A
5481098 Davis et al. Jan 1996 A
5484994 Rotaei Jan 1996 A
5500516 Durbin Mar 1996 A
5504317 Takahashi Apr 1996 A
5504367 Arackellian et al. Apr 1996 A
5514858 Ackley May 1996 A
5515452 Penkethman et al. May 1996 A
5532467 Rotaei et al. Jul 1996 A
5569902 Wood et al. Oct 1996 A
5576527 Sawanobori Nov 1996 A
5585616 Roxby et al. Dec 1996 A
5586212 McConica et al. Dec 1996 A
5591955 Laser Jan 1997 A
5598007 Bunce et al. Jan 1997 A
5606160 Tani et al. Feb 1997 A
5619029 Roxby et al. Apr 1997 A
5623137 Powers et al. Apr 1997 A
5654533 Suzuki et al. Aug 1997 A
5654540 Stanton et al. Aug 1997 A
5659167 Wang et al. Aug 1997 A
5684290 Arackellian et al. Nov 1997 A
5690417 Polidor et al. Nov 1997 A
5697699 Seo et al. Dec 1997 A
5703348 Suzuki et al. Dec 1997 A
5715095 Hiratsuka et al. Feb 1998 A
5723868 Hammond, Jr. et al. Mar 1998 A
5734153 Swartz et al. Mar 1998 A
5743633 Chau et al. Apr 1998 A
5750974 Sasaki et al. May 1998 A
5756981 Rotaei et al. May 1998 A
5773810 Hussey et al. Jun 1998 A
5777314 Rotaei Jul 1998 A
5780834 Havens et al. Jul 1998 A
5783811 Feng et al. Jul 1998 A
5786586 Pidhimy et al. Jul 1998 A
5793033 Feng et al. Aug 1998 A
5811784 Tach et al. Sep 1998 A
5834754 Feng et al. Nov 1998 A
5859418 Li et al. Jan 1999 A
5861910 McGarry et al. Jan 1999 A
5886338 Arackellian et al. Mar 1999 A
5894348 Bacchi et al. Apr 1999 A
5903391 Toshima et al. May 1999 A
5907148 Iwafuchi et al. May 1999 A
5919057 Kameyama Jul 1999 A
5920643 White et al. Jul 1999 A
5923020 Kurokawa et al. Jul 1999 A
5949057 Feng Sep 1999 A
5949763 Lund Sep 1999 A
5969321 Danielson et al. Oct 1999 A
5979763 Wang Nov 1999 A
5984494 Chapman et al. Nov 1999 A
5992751 Laser Nov 1999 A
6011586 Lepoir et al. Jan 2000 A
6022124 Bourn et al. Feb 2000 A
6033090 Seo Mar 2000 A
6034379 Bunte et al. Mar 2000 A
6036095 Seo Mar 2000 A
6039254 FroesePeeck et al. Mar 2000 A
6039255 Seo Mar 2000 A
6042012 Olmstead et al. Mar 2000 A
6045047 Pidhimy et al. Apr 2000 A
6060722 Havens et al. May 2000 A
6065678 Li et al. May 2000 A
6073852 Seo Jun 2000 A
6105869 Scharf et al. Aug 2000 A
6119939 Schwartz et al. Sep 2000 A
6141046 Roth et al. Oct 2000 A
6158661 Chadima, Jr. et al. Dec 2000 A
6164544 Schwartz et al. Dec 2000 A
6210013 Boufield Apr 2001 B1
6223986 Bobba et al. May 2001 B1
6234397 He et al. May 2001 B1
6247645 Harris et al. Jun 2001 B1
6249008 Bunte et al. Jun 2001 B1
6250551 He et al. Jun 2001 B1
6260763 Svetal Jul 2001 B1
6267294 Stern et al. Jul 2001 B1
6283374 Fantone et al. Sep 2001 B1
6330974 Ackley Dec 2001 B1
6340114 Correa et al. Jan 2002 B1
6341878 Chiang Jan 2002 B1
6347163 Rotaei et al. Feb 2002 B2
6347874 Boyd et al. Feb 2002 B1
6352204 Hattersley et al. Mar 2002 B2
6360948 Yang et al. Mar 2002 B1
6371374 Schwartz et al. Apr 2002 B1
6385352 Rotaei May 2002 B1
6385507 Buijtels et al. May 2002 B1
6394349 Shigeka et al. May 2002 B1
6405925 He et al. Jun 2002 B2
6429934 Dunn et al. Aug 2002 B1
6435411 Massieu et al. Aug 2002 B1
6491223 Longacre, Jr. et al. Dec 2002 B1
6505778 Reddersen et al. Jan 2003 B1
6513714 Davis et al. Feb 2003 B1
6547146 Meksavan et al. Apr 2003 B1
6575367 Longacre, Jr. Jun 2003 B1
6581838 Meksavan et al. Jun 2003 B1
6592040 Barkan Jul 2003 B2
6595422 Doljack Jul 2003 B1
6598797 Lee Jul 2003 B2
6601768 McCall et al. Aug 2003 B2
6607128 Schwartz et al. Aug 2003 B1
6607132 Dvorkis et al. Aug 2003 B1
6621065 Fukumoto et al. Sep 2003 B1
6659350 Schwartz et al. Dec 2003 B2
6661521 Stern et al. Dec 2003 B1
6681037 Koljonen Jan 2004 B1
6689998 Bremer Feb 2004 B1
6729546 Rotaei May 2004 B2
6760165 Wulff et al. Jul 2004 B2
6803088 Kaminsky et al. Oct 2004 B2
6809847 McQueen Oct 2004 B2
6831290 Mentzer Dec 2004 B2
6832725 Gardiner et al. Dec 2004 B2
6854650 Hattersley et al. Feb 2005 B2
6860428 Dowling et al. Mar 2005 B1
6914679 Nettekoven et al. Jul 2005 B2
7021542 Patel et al. Apr 2006 B2
7025271 Dvorkis et al. Apr 2006 B2
7025272 Yavid et al. Apr 2006 B2
7025273 Breytman et al. Apr 2006 B2
7038853 Li et al. May 2006 B2
7044377 Patel et al. May 2006 B2
7090132 Havens et al. Aug 2006 B2
7128266 Zhu et al. Oct 2006 B2
7131587 He et al. Nov 2006 B2
7159764 White et al. Jan 2007 B1
7163149 He et al. Jan 2007 B2
7180052 Barkan et al. Feb 2007 B1
7187825 Lim et al. Mar 2007 B2
7204418 Josep et al. Apr 2007 B2
7204420 Barken et al. Apr 2007 B2
7224540 Olmstead et al. May 2007 B2
7225989 Zhu et al. Jun 2007 B2
7240844 Zhu et al. Jul 2007 B2
7253384 Barnes et al. Aug 2007 B2
7267282 Zhu et al. Sep 2007 B2
7270274 Hennick et al. Sep 2007 B2
7278575 Zhu et al. Oct 2007 B2
7281661 Zhu et al. Oct 2007 B2
7296749 Massieu Nov 2007 B2
7306155 Hennick et al. Dec 2007 B2
7314173 Philyaw et al. Jan 2008 B2
7331524 Vinogradov et al. Feb 2008 B2
7360705 Heinrich Apr 2008 B2
7451917 McCall et al. Nov 2008 B2
7490774 Zhu et al. Feb 2009 B2
7520434 Jolivet et al. Apr 2009 B2
7568628 Wang et al. Aug 2009 B2
7604174 Gerst et al. Oct 2009 B2
7823783 Gerst et al. Nov 2010 B2
20010027999 Lee Oct 2001 A1
20020000472 Hattersley et al. Jan 2002 A1
20020030094 Curry et al. Mar 2002 A1
20020074403 Krichever et al. Jun 2002 A1
20020096566 Schwartz et al. Jul 2002 A1
20020104887 Schlieffers et al. Aug 2002 A1
20020125322 McCall et al. Sep 2002 A1
20020170970 Ehrhart Nov 2002 A1
20030001018 Hussey et al. Jan 2003 A1
20030029917 Hennick et al. Feb 2003 A1
20030034394 Gannon et al. Feb 2003 A1
20030058631 Yoneda Mar 2003 A1
20030062413 Gardiner et al. Apr 2003 A1
20030062418 Barber et al. Apr 2003 A1
20030080187 Piva et al. May 2003 A1
20030080189 Patel et al. May 2003 A1
20030163623 Yeung Aug 2003 A1
20040069855 Patel et al. Apr 2004 A1
20040156539 Jansson et al. Aug 2004 A1
20040217173 Lizotte et al. Nov 2004 A1
20040238637 Rsell et al. Dec 2004 A1
20050029439 Benedict Feb 2005 A1
20050047723 Li Mar 2005 A1
20050117144 Greenway et al. Jun 2005 A1
20050180037 Masterson Aug 2005 A1
20050199725 Caraen et al. Sep 2005 A1
20060027657 Ninnink et al. Feb 2006 A1
20060027659 Patel et al. Feb 2006 A1
20060032921 Gerst et al. Feb 2006 A1
20060060653 Wittenberg et al. Mar 2006 A1
20060131419 Nunnink Jun 2006 A1
20060133757 Nunnink Jun 2006 A1
20070206183 Lebens Sep 2007 A1
Foreign Referenced Citations (28)
Number Date Country
1426570 Jun 2003 CN
3737792 May 1989 DE
3931044 Mar 1991 DE
4003983 Aug 1991 DE
4123916 Jan 1992 DE
10026301 Nov 2001 DE
10113426 Sep 2002 DE
0185 782 Mar 1989 EP
0356680 Mar 1990 EP
1158460 Nov 2001 EP
S53-62387 Jun 1978 JP
H3-53784 Mar 1991 JP
04-223583 Aug 1992 JP
06124361 May 1994 JP
08129597 May 1996 JP
08287176 Nov 1996 JP
10134133 May 1998 JP
2000-231600 Aug 2000 JP
2001-307011 Nov 2001 JP
200728088 Jan 2007 JP
WO 9112489 Aug 1991 WO
WO-9216909 Oct 1992 WO
WO 9949347 Sep 1999 WO
WO 0016073 Mar 2000 WO
WO 0163258 Aug 2001 WO
WO-0165469 Sep 2001 WO
WO 02075637 Sep 2002 WO
WO 2004006438 Jan 2004 WO
Related Publications (1)
Number Date Country
20120118966 A1 May 2012 US
Continuations (2)
Number Date Country
Parent 12552107 Sep 2009 US
Child 13294285 US
Parent 10911989 Aug 2004 US
Child 12552107 US
Continuation in Parts (1)
Number Date Country
Parent 10693626 Oct 2003 US
Child 10911989 US