The present invention relates in general to telecommunications signal processing and more particularly to a method and apparatus for providing voice signals to and from a telecommunications switch.
The traditional circuit switched telecommunications network has been implemented to dedicate one voice line to one loop or copper pair. This has worked well for over a hundred years but does not efficiently utilize the bandwidth of the copper pair. In addition, there has been a surge in demand for second, and even third, residential phone lines. This demand is exhausting the supply of available copper circuits. Business customers also have a high demand for phone lines. To meet this demand, Regional Bell Operating Companies, Independent Local Exchange Carriers, and Competitive Local Exchange Carriers would have to build additional copper or fiber infrastructure.
New technology, such as Digital Subscriber Line, voice-over-IP, and asynchronous transfer mode techniques have created an environment where the copper pair's available bandwidth can be more fully utilized to carry voice and data. However, traditional voice traffic is time division multiplexed, a transport architecture that segments the network bandwidth into fixed time sequenced channels. The smallest channel is equivalent to a voice line. Time division multiplexed networks work well for uncompressed analog voice but not for bursty data. If a data network needs more than 64 kilobits per second of bandwidth, the amount of one channel, two channels would be needed to carry 65 kilobits per second, resulting in bandwidth inefficiencies.
With the explosion of the Internet, worldwide deployment of Digital Subscriber Lines will rapidly accelerate over the next few years. Today, however, the penetration rate for voice over DSL is at zero percent. With the increase in their deployment, DSL is a prime candidate for implementing a multiple voice line capability for telecommunications customers. There have been recent efforts to provide voice over DSL. However, these efforts have required a GR-303 connection with a Class 5 switch for the gateway device. This GR-303 connection is available at the regional bell operating company or independent local exchange carrier level but competitive local exchange carriers would need to provide there own Class 5 switch or digital loop carrier functionality to interface with the GR-303 connection. In order to implement this functionality, competitive local exchange carriers would have to incur costly expense in providing this infrastructure. Therefore, it is desirable to migrate voice services into the data transport network in order to efficiently use the bandwidth of the copper pair and avoid expensive infrastructure changes in allowing a competitive local exchange carrier to implement an increased and efficient voice transport capability.
From the foregoing, it may be appreciated that a need has arisen to efficiently provide voice signal transport without bandwidth inefficiency. In accordance with the present invention, a method and apparatus for providing voice signals to and from a telecommunications switch are provided which substantially eliminate or reduce disadvantages and problems associated with conventional voice transport techniques.
According to an embodiment of the present invention, there is provided an apparatus for providing voice signals from a telecommunications switch that includes an input port operable to receive an unbundled analog line from the telecommunications switch, wherein a voice signal is carried over the analog line. An analog-to-digital converter unit converts the voice signal carried on the analog line into a digital format. A compressing unit places the voice signal into a compressed format. A packetizing unit places the voice signal into a packet format for transport over a data network.
The present invention provides various technical advantages over conventional voice transport techniques. For example, one technical advantage is to provide unbundled analog line ports to a competitive local exchange carrier without the need for an overlay Class 5 switch or digital loop carrier architecture. Another technical advantage is to mimic the dynamic allocation of timeslots of a standard GR-303 interface without utilizing that interface in order to provide an oversubscription capability. Yet another technical advantage is the ability to support a multitude of voice transport framing philosophies. Still another technical advantage is to provide selective compression and packetizing capabilities for versatile voice transport operation. Other technical advantages may be readily apparent to those skilled in the art from the following figures, description, and claims.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings, wherein like reference numerals represent like parts, in which:
Office customer premises 12 may receive data and voice at an Integrated Access Device (IAD) 22. IAD 22 may provide data and voice to a private branch exchange 24 in order to support telephony operations at telephony devices 25 within office customer premises 12. IAD 22 may also provide data and voice to a local area network 26 through a router 27. Local area network 26 may have computers or other devices 28 connected thereto for processing the data and voice received from IAD 22 in order to support computer processing and telephony capability over local area network 26. Data and voice generated by devices 25 and 28 connected to local area network and private branch exchange 24 may also be transferred out of office customer premises 12 by IAD 22.
Residence customer premises 14 may receive data and voice at an IAD 30. IAD 30 may provide data and voice to telephony devices 32 and also to computing devices 34 connected thereto. Data and voice generated by either telephony devices 32 or computing devices 34 or both may be transferred out of residence customer premises 14 through IAD 30.
Information service provider 16 may receive data at an Internet gateway 40 from competitive local exchange carrier 20. Internet gateway 40 provides the interface to Internet 42. Information service provider 16 supports connections to Internet 42 for the passage of data thereto and therefrom through Internet gateway 40 as received from or provided to competitive local exchange carrier 20.
Independent local exchange carrier central office 18 may receive data and voice carried by a public switched telephone network 50. A Class 5 switch 52 is the interface to and from public switched telephone network 50. Class 5 switch 52 passes voice and data received from public switched telephone network 50 to competitive local exchange carrier 20. Competitive local exchange carrier 20 provides voice and data to office customer premises 12 and residence customer premises 14 from Class 5 switch 52. Voice and data may be received from office customer premises 12 and residence customer premises 14 by competitive local exchange carrier 20 for transfer to Class 5 switch 52.
Competitive local exchange carrier 20 includes a voice gateway 64 receives voice and data from and provides voice and data Class 5 switch 52. Unbundled analog line connections 62 are provided from Class 5 switch 52 to voice gateway 64. By providing a capability to interconnect to Class 5 switch 52 using standard unbundled analog lines 62, competitive local exchange carrier 20 is able to provide voice functionality over its broadband network without needing its own overlay Class 5 switch or digital loop carrier architecture. A Digital Subscriber Line Access Multiplexer (DSLAM) device 66 provides an interface for voice and data with office customer premises 12 and residence customer premises 14. DSLAM device 66 and voice gateway 64 pass voice and data to and from each other or to and from information service provider 16 through a packet switch 68. Packet switch 68 may operate using any of a variety of packet techniques to include asynchronous transfer mode and frame relay. Voice and data may be transferred throughout telecommunications network 10 in any of a variety of packet formats to include asynchronous transfer mode cells, frame relay packets, and Internet protocol. Competitive local exchange carrier 20 may also implement multiple packet switches 68, each using a different packet technique. Though shown, competitive local exchange carrier 20 need not be colocated with independent local exchange carrier central office 18.
For voice operation from public switched telephone network 50, a voice signal is transferred over public switched telephone network 50 to Class 5 switch 52. Class 5 switch 52 routes the voice signal to voice gateway 64 over an unbundled analog line 62. Voice gateway processes the voice signal for transfer to DSLAM device 66 through packet switch 68. The processing that may be performed by voice gateway 64 may include multiplexing, analog-to-digital conversion, compression, and packetizing. DSLAM device 66 provides the voice signal to its intended destination, such as office customer premises 12 or residence customer premises 14.
For voice operation to public switched telephone network 50, a voice signal is generated at, for example, office customer premises 12 and transferred to DSLAM device 66. DSLAM device 66 receives the voice signal from office customer premises 12 and prepares the voice signal for transport over packet switch 68 to voice gateway 64. Upon receipt of the voice signal, voice gateway 64 converts the voice signal into its appropriate analog format for transfer over an unbundled analog line 62. The unbundled analog line 62 carries the voice signal to Class 5 switch 52. Class 5 switch 52 transfers the voice signal to its appropriate destination on public switched telephone network 50.
Voice gateway 64 provides a capability to packetize and compress circuit switched voice circuits from public switched telephone network 50 and deliver them over broadband networks to business and residential customers. With this capability, telecommunications service providers may offer, according to the preferred embodiment, twenty-four independent voice lines over one Digital Subscriber Line circuit. Voice gateway 64 supports a variety of types of network framing, such as voice over asynchronous transfer mode and voice over Internet protocol. Additionally, voice gateway 64 supports the latest in voice compression technologies so that calls placed through voice gateway 64 sound similar to calls placed over public switched telephone network 50. Multiple phone lines can be imbedded into the broadband data stream and additional lines can be added or subtracted on demand over a single copper circuit.
Compressors/de-compressors 82 may implement different compression ratios. For example, compressor/de-compressor R1 may perform voice compression using the standard G.711 compression technique of 64 kilobits per second pulse code modulation. Compressor/de-compressor R2 may perform voice compression using the standard G.722 compression technique of 32 kilobits per second adaptive differential pulse code modulation. Compressor/de-compressor R3 may perform voice compression using the standard G.726 compression technique of 16 kilobits per second compression. Whichever compression technique is selected for a voice signal, a customer experience of placing a call through voice gateway 64 will be indistinguishable from a call placed only over public switched telephone network 50. Selection of which compression technique to perform on a particular voice signal is determined by the configuration of a first switching matrix 90. First switching matrix 90 is capable of dynamically routing any voice signal received to any one of compressors/de-compressors 82 in order to support selective compression of voice signals. Appropriate de-compression is also performed followed by selective routing through first switching matrix 90 to an appropriate A/D and D/A converter 78.
Packetizers/de-packetizers 86 may implement different transport framing philosophies. For example, packetizer/de-packetizer P1 may packetize the voice signal into asynchronous transfer mode cells. Packetizer/de-packetizer P2 may packetize the voice signal into frame relay packets. Packetizer/de-packetizer P3 may packetize the voice signal into an Internet protocol format. The Internet protocol format may then be carried in the asynchronous transfer mode or frame relay format. Selection of which packetizing technique to perform on a particular voice signal is determined by the configuration of a second switching matrix 92. Second switching matrix 92 is capable of dynamically routing any voice signal received to any one of packetizers/de-packetizers 86 in order to support selective packetizing of voice signals. Appropriate de-packetizing is also performed followed by selective routing through second switching matrix 92 to an appropriate compressor/de-compressor 82.
For voice operation from Class 5 switch 52, a voice signal carried over an associated unbundled analog line 62 is received at input port 70. Input port 70 performs electrical analog termination of the incoming unbundled analog line 62 and insures that the lines are properly terminated. Input port 70 provides the voice signal to a corresponding A/D and D/A converter 76 in analog-to-digital and digital-to-analog converter unit 74. Analog-to-digital and digital-to-analog converter unit 74 may also perform coding and decoding functions of a conventional CODEC unit to include a ring and digit detection unit 75. A control processor 77 may be part of analog-to-digital and digital-to-analog converter unit 74 to supervise and control CODEC functionality. A distinctive ring detection may also be employed to provide an oversubscription capability discussed in more detail later. Analog-to-digital and digital-to-analog converter unit 74 detects a ring condition on unbundled analog line 62 and the corresponding A/D and D/A converter 78 places the voice signal into a digital format. The digitized voice signal passes through first switching matrix 90 where it is routed to a desired compressor/de-compressor 82 in compressing/de-compressing unit 80. The voice signal is compressed and passes through second switching matrix 92 where it is routed to a desired packetizer/de-packetizer 86 in packetizing/de-packetizing unit 84. The voice signal in its packet format transfers through output port 88, possibly multiplexed with other packetized voice signals, and is passed to DSLAM device 66 over an appropriate output line through packet switch 68 for ultimate delivery to office customer premises 12 or residence customer premises 14 over associated digital subscriber lines.
For voice operation to Class 5 switch 52, the voice signal is originated at office customer premises 12 or residence customer premises 14, passes through DSLAM device 66 and packet switch 68, and is received at output port 88 of voice gateway 64. Output port 88 de-multiplexes the voice signal provides the voice signal to an associated packetizer/de-packetizer 86 in packetizing/de-packetizing unit 84 according to an available unbundled analog line 62. The packetizer/de-packetizer 86 removes the voice signal from its transport frame. The voice signal then passes through second switching matrix 92 for routing to an appropriate compressor/de-compressor 82 in compressing/de-compressing unit 80. Compressor/de-compressor 82 de-compresses the voice signal into its full digital format. The voice signal then passes through first switching matrix 90 for routing to an appropriate A/D and D/A converter 78 in analog-to-digital and digital-to-analog converting unit 76. A/D and D/A converter 78 places the voice signal into its analog format. The voice signal is then placed onto its corresponding unbundled analog line 62 at input port 70. The voice signal then passes on to Class 5 switch 52 for further routing through public switched telephone network 50.
Voice gateway 64 may also support an oversubscription capability. Each unbundled analog line 62 may be provisioned to carry voice traffic in a 1:1 ratio where there are the same number of unbundled analog lines 62 for each telephone number. Each unbundled analog line 62 may also be oversubscribed, for example in a 4:1 ratio, where there are four telephone numbers per unbundled analog line 62. Unbundled analog line 62 may also be an Integrated Services Digital Network Basic Rate Interface line with a capability to transfer two simultaneous voice channels. The use of this type of line allows for the immediate doubling of call capacity with or without oversubscription.
For outgoing calls toward Class 5 switch 52, a first telephone device associated with a first one of the four telephone numbers may be in use and thus occupying its associated unbundled analog line 62. A second telephone device associated with a second one of the telephone numbers may be put into use as long as there is a free unbundled analog line 62 connected to voice gateway 64. Output port 88 determines if there is a free unbundled analog line 62 available for connection of the second telephone device, such as through a hunt group search. Output port 88 is capable of connecting any telephone device of office customer premises 12 and residence customer premises 14 to any available unbundled analog line 62 in order to support the oversubscription capability.
For incoming calls from Class 5 switch 52, voice gateway 64 is capable of detecting a distinctive ring given to each telephone number assigned to unbundled analog line 62. In the 4:1 oversubscription example, each of the four telephone numbers has its own unique ring associated therewith. Voice gateway 64 determines which of the customer telephone devices to route the call to according to the detected ring. Though described with reference to a 4:1 ratio, other oversubscription ratios may be equally implemented through this technique.
Thus, it is apparent that there has been provided, in accordance with the present invention, a method and apparatus for providing voice signals to and from a telecommunications switch that satisfies the advantages set forth above. Although the present invention has been described in detail, it should be understood that various changes, substitutions, and alterations may be readily ascertainable by those skilled in the art and may be made herein without departing from the spirit and scope of the present invention as defined by the following claims.
This application is a continuation of U.S. application Ser. No. 09/491,299 filed Jan. 25, 2000 and now U.S. Pat. No. 7,099,310, which is a continuation of U.S. application Ser. No. 09/356,250 filed Jul. 16, 1999 and now U.S. Pat. No. 6,512,764, each of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4381427 | Cheal et al. | Apr 1983 | A |
4493092 | Adams | Jan 1985 | A |
4504942 | Aro et al. | Mar 1985 | A |
4507793 | Adams | Mar 1985 | A |
4512025 | Frankel et al. | Apr 1985 | A |
4578537 | Faggin et al. | Mar 1986 | A |
4608686 | Barsellotti | Aug 1986 | A |
4627046 | Bellamy | Dec 1986 | A |
4740963 | Eckley | Apr 1988 | A |
4748656 | Gibbs et al. | May 1988 | A |
4757497 | Beierle et al. | Jul 1988 | A |
4843606 | Bux et al. | Jun 1989 | A |
4853949 | Schorr et al. | Aug 1989 | A |
4881226 | Lechner et al. | Nov 1989 | A |
4903292 | Dillon | Feb 1990 | A |
5033062 | Morrow et al. | Jul 1991 | A |
5034948 | Mizutani et al. | Jul 1991 | A |
5042028 | Ogawa | Aug 1991 | A |
5050164 | Chao | Sep 1991 | A |
5127003 | Doll, Jr. et al. | Jun 1992 | A |
5134611 | Steinka et al. | Jul 1992 | A |
5142568 | Ogata et al. | Aug 1992 | A |
5142571 | Suzuki et al. | Aug 1992 | A |
5151923 | Fujiwara | Sep 1992 | A |
5216704 | Williams et al. | Jun 1993 | A |
5220560 | Ogasawara | Jun 1993 | A |
5247347 | Litteral et al. | Sep 1993 | A |
5267300 | Kao et al. | Nov 1993 | A |
5305312 | Fornek et al. | Apr 1994 | A |
5317627 | Richardson, Jr. et al. | May 1994 | A |
5341374 | Lewen et al. | Aug 1994 | A |
5349640 | Dunn et al. | Sep 1994 | A |
5367522 | Otani | Nov 1994 | A |
5396494 | Roposh | Mar 1995 | A |
5410343 | Coddington et al. | Apr 1995 | A |
5426692 | Fujise | Jun 1995 | A |
5448635 | Biehl et al. | Sep 1995 | A |
5459788 | Kim | Oct 1995 | A |
5473675 | Chapman et al. | Dec 1995 | A |
5479407 | Ko et al. | Dec 1995 | A |
5479447 | Chow et al. | Dec 1995 | A |
5493609 | Winseck, Jr. et al. | Feb 1996 | A |
5499241 | Thompson et al. | Mar 1996 | A |
5535198 | Baker et al. | Jul 1996 | A |
5604737 | Iwami et al. | Feb 1997 | A |
5606553 | Christie et al. | Feb 1997 | A |
5610910 | Focsaneanu et al. | Mar 1997 | A |
5610922 | Balatoni | Mar 1997 | A |
5613069 | Walker | Mar 1997 | A |
5617423 | Li et al. | Apr 1997 | A |
5625404 | Grady et al. | Apr 1997 | A |
5625685 | Allegranza et al. | Apr 1997 | A |
5638363 | Gittins et al. | Jun 1997 | A |
5661785 | Carpenter et al. | Aug 1997 | A |
5668857 | McHale | Sep 1997 | A |
5671251 | Blackwell et al. | Sep 1997 | A |
5673290 | Cioffi | Sep 1997 | A |
5675575 | Wall, Jr. et al. | Oct 1997 | A |
5692035 | O'Mahony et al. | Nov 1997 | A |
5719870 | Baker et al. | Feb 1998 | A |
5737333 | Civanlar et al. | Apr 1998 | A |
5771236 | Sansom et al. | Jun 1998 | A |
5781547 | Wilson | Jul 1998 | A |
5781617 | McHale et al. | Jul 1998 | A |
5787088 | Dagdeviren et al. | Jul 1998 | A |
5793843 | Morris | Aug 1998 | A |
5828666 | Focsaneanu et al. | Oct 1998 | A |
5838682 | Dekelbaum et al. | Nov 1998 | A |
5841840 | Smith et al. | Nov 1998 | A |
5848150 | Bingel | Dec 1998 | A |
5862134 | Deng | Jan 1999 | A |
5864747 | Clark et al. | Jan 1999 | A |
5878120 | O'Mahony | Mar 1999 | A |
5881142 | Frankel et al. | Mar 1999 | A |
5883941 | Akers | Mar 1999 | A |
5889773 | Stevenson, III | Mar 1999 | A |
5889774 | Mirashrafi et al. | Mar 1999 | A |
5889856 | O'Toole et al. | Mar 1999 | A |
5896377 | Boot et al. | Apr 1999 | A |
5898761 | McHale et al. | Apr 1999 | A |
5901205 | Smith et al. | May 1999 | A |
5905781 | McHale et al. | May 1999 | A |
5907548 | Bernstein | May 1999 | A |
5917814 | Balatoni | Jun 1999 | A |
5936952 | Lecomte | Aug 1999 | A |
5940479 | Guy et al. | Aug 1999 | A |
5943404 | Sansom et al. | Aug 1999 | A |
5949763 | Lund | Sep 1999 | A |
5974043 | Solomon | Oct 1999 | A |
5978390 | Balatoni | Nov 1999 | A |
5982767 | McIntosh | Nov 1999 | A |
5991292 | Focsaneanu et al. | Nov 1999 | A |
5999565 | Locklear, Jr. et al. | Dec 1999 | A |
5999598 | Henrick et al. | Dec 1999 | A |
6034953 | Smith | Mar 2000 | A |
6075784 | Frankel et al. | Jun 2000 | A |
6075796 | Katseff et al. | Jun 2000 | A |
6078580 | Mandalia et al. | Jun 2000 | A |
6081517 | Liu et al. | Jun 2000 | A |
6101182 | Sistanizadeh et al. | Aug 2000 | A |
6104711 | Voit | Aug 2000 | A |
6112084 | Sicher et al. | Aug 2000 | A |
6118780 | Dunn et al. | Sep 2000 | A |
6125113 | Farris et al. | Sep 2000 | A |
6125127 | Smith | Sep 2000 | A |
6130879 | Liu | Oct 2000 | A |
6130883 | Spear et al. | Oct 2000 | A |
6134235 | Goldman et al. | Oct 2000 | A |
6141339 | Kaplan et al. | Oct 2000 | A |
6144667 | Doshi et al. | Nov 2000 | A |
6144670 | Sponaugle et al. | Nov 2000 | A |
6154445 | Farris et al. | Nov 2000 | A |
6157637 | Galand et al. | Dec 2000 | A |
6167042 | Garland et al. | Dec 2000 | A |
6175562 | Cave | Jan 2001 | B1 |
6175854 | Bretscher | Jan 2001 | B1 |
6181694 | Pickett | Jan 2001 | B1 |
6181715 | Phillips et al. | Jan 2001 | B1 |
6192044 | Mack | Feb 2001 | B1 |
6195423 | Smock et al. | Feb 2001 | B1 |
6201806 | Moffett | Mar 2001 | B1 |
6205139 | Voit | Mar 2001 | B1 |
6208639 | Murai | Mar 2001 | B1 |
6215790 | Voit et al. | Apr 2001 | B1 |
6215796 | Smith | Apr 2001 | B1 |
6222829 | Karlsson et al. | Apr 2001 | B1 |
6229810 | Gerszberg et al. | May 2001 | B1 |
6236653 | Dalton et al. | May 2001 | B1 |
6240084 | Oran et al. | May 2001 | B1 |
6240085 | Iwami et al. | May 2001 | B1 |
6243377 | Phillips et al. | Jun 2001 | B1 |
6243398 | Kahane et al. | Jun 2001 | B1 |
6259708 | Cheng et al. | Jul 2001 | B1 |
6262979 | Anderson et al. | Jul 2001 | B1 |
6335936 | Bossemeyer et al. | Jan 2002 | B1 |
6404746 | Cave et al. | Jun 2002 | B1 |
6411704 | Pelletier et al. | Jun 2002 | B1 |
6438218 | Farris et al. | Aug 2002 | B1 |
6522352 | Strandwitz et al. | Feb 2003 | B1 |
6526046 | Carew | Feb 2003 | B1 |
6542497 | Curry et al. | Apr 2003 | B1 |
6546003 | Farris | Apr 2003 | B1 |
6546016 | Gerszberg et al. | Apr 2003 | B1 |
6560222 | Pounds et al. | May 2003 | B1 |
6563829 | Lyles et al. | May 2003 | B1 |
6678253 | Heath, Jr. et al. | Jan 2004 | B1 |
6819664 | Jeong | Nov 2004 | B1 |
6839342 | Parham et al. | Jan 2005 | B1 |
7184427 | Carew et al. | Feb 2007 | B1 |
7385963 | Carew et al. | Jun 2008 | B1 |
20020057701 | Mills | May 2002 | A1 |
20020064139 | Bist et al. | May 2002 | A1 |
Number | Date | Country |
---|---|---|
0 789 470 | Aug 1997 | EP |
0 841 831 | May 1998 | EP |
2313979 | Dec 1997 | GB |
WO9723078 | Jun 1997 | WO |
WO 9737458 | Oct 1997 | WO |
WO 9842104 | Sep 1998 | WO |
WO 9949608 | Sep 1999 | WO |
WO 0056050 | Sep 2000 | WO |
WO 0069131 | Nov 2000 | WO |
WO 0105130 | Jan 2001 | WO |
WO 0106720 | Jan 2001 | WO |
WO 0113593 | Feb 2001 | WO |
WO 0113618 | Feb 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060285546 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09491299 | Jan 2000 | US |
Child | 11467357 | US | |
Parent | 09356250 | Jul 1999 | US |
Child | 09491299 | US |