The present disclosure relates to a method and apparatus for radio antenna frequency tuning and in particular determining tuning states in a communication device.
Existing multi-frequency wireless devices (e.g., radios) use an antenna structure that attempts to radiate at optimum efficiency over the entire frequency range of operation, but can really only do so over a subset of the frequencies. Due to size constraints, and aesthetic design reasons, the antenna designer is forced to compromise the performance in some of the frequency bands. An example of such a wireless device could be a mobile telephone that operates over a range of different frequencies, such as 800 MHz to 2200 MHz. The antenna will not radiate efficiently at all frequencies due to the nature of the design, and the power transfer between the antenna, the power amplifier, and the receiver in the radio will vary significantly.
Additionally, an antenna's performance is impacted by its operating environment. For example, multiple use cases exist for radio handsets, which include such conditions as the placement of the handset's antenna next to a user's head, or in the user's pocket or the covering of an antenna with a hand, all of which can significantly impair the wireless device antenna's radiated efficiency.
Further, many existing radios use a simple circuit composed of fixed value components that are aimed at improving the power transfer from power amplifier to antenna, or from the antenna to the receiver, but since the components used are fixed in value there is always a compromise when attempting to cover multiple frequency bands and multiple use cases.
The present disclosure provides a method and apparatus for radio antenna frequency tuning. One or more exemplary embodiments can employ an open loop mechanism to solve the fundamental problems associated with antenna performance over a range of frequencies and use cases.
One or more exemplary embodiments can address applying tuning to changing antenna environments without the need for, or use of, a direct feedback loop from the antenna. However, other embodiments can utilized a combination of open loop and closed loop feedback.
One embodiment of the present disclosure entails a method to select a tuning state of a tunable matching network operable in a communication device, where the tunable matching network has a tunable reactance that affects one or more performance parameters of the communication device. The method can include performing the selection of the tuning state based on radio frequency and incomplete information about the antenna environment without direct feedback on the performance from the antenna, and identifying the tuning state resulting in the most desirable performance of the communications device.
In one embodiment, a method is provided that includes obtaining a usage condition associated with operation of a wireless communication device where the usage condition is obtained by a processor of the wireless communication device, selecting a subset of use cases from a group of use cases based on the usage condition, obtaining an operational parameter associated with a transceiver of the wireless communication device where the operational parameter is measured during the operation of the wireless communication device, and selecting a target use case from among the subset of use cases based on the operational parameter.
In another embodiment, a non-transitory computer-readable storage medium is provided that includes computer instructions to determine a subset of use cases from a group of use cases stored in a memory of a communication device and to determine a target use case from among the subset of use cases based on an operational parameter associated with a transceiver of the communication device.
In another embodiment, a matching network for a communication device can include an impedance matching circuit connectable with an antenna of the communication device, where the impedance matching circuit comprises one or more variable components. The matching network can also include a controller connectable with the impedance matching circuit. The controller can be configured to select a subset of use cases from a group of use cases based on a usage condition of the communication device, obtain an operational parameter associated with a transceiver of the communication device where the operational parameter is obtained during the operation of the communication device, select a target use case from among the subset of use cases based on the operational parameter, and adjust the one or more variable components based on the determined target use case to tune the impedance matching circuit.
In one embodiment, a look-up table can be utilized that maps possible use case positions to tuning states for the tunable matching network. Each of the possible use cases can be accommodated by a tuning state which attempts to provide a match for whatever performance attributes were selected by the product designer. In some instances, a particular use case can be completely identified by a set of detectable or otherwise known conditions that can be used to point to the correct or desired tuning state in the look up table. In other instances, the conditions (e.g., slider position, speaker activity, and so forth) can only narrow the possible number of use cases down to a subset of possible use cases in the look-up table. In these instances, the method of the present disclosure can be used to identify which of the tuning states can tune the adjustable matching network to achieve the desired performance of the communication device.
In one embodiment, after the appropriate tuning state is identified, the adjustable matching network is tuned to that state until the processor detects changes in the conditions or inputs that may indicate that the use case or the network channel number (e.g., operating frequency) has changed. Those inputs which can indicate a possible change in use case include, but are not limited to, received signal strength indicator (RSSI) or other operational parameters failing to satisfy a threshold. In one embodiment, the inputs can include the handset transmit power being increased by a certain number of power steps or dBs. Both of these inputs or conditions can indicate a possible change in the use case, but other inputs within the handset can also be utilized by the exemplary embodiments to indicate a possible change.
In another embodiment, a receiver parametric measurement, such as the RSSI, can be used as an indicator of which tuning state creates a better matching condition for the current usage case. It should be understood by one of ordinary skill in the art that other measurements, including other receiver based measurements, can be used to make this determination, such as bit error rate. It should be further understood that a plurality of measurements can be utilized in selecting a use case from among the possible subset of use cases.
The UI 104 can include a depressible or touch-sensitive keypad 108 with a navigation mechanism such as a roller ball, joystick, mouse, or navigation disk for manipulating operations of the communication device 100. The keypad 108 can be an integral part of a housing assembly of the communication device 100 or an independent device operably coupled thereto by a tethered wireline interface (such as a flex cable) or a wireless interface supporting for example Bluetooth. The keypad 108 can represent a numeric dialing keypad commonly used by phones, and/or a Qwerty keypad with alphanumeric keys. The UI 104 can further include a display 110 such as monochrome or color LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diode) or other suitable display technology for conveying images to an end user of the communication device 100. In an embodiment where the display 110 is a touch-sensitive display, a portion or all of the keypad 108 can be presented by way of the display.
The power supply 114 can utilize common power management technologies (such as replaceable batteries, supply regulation technologies, and charging system technologies) for supplying energy to the components of the communication device 100 to facilitate portable applications. The controller 106 can utilize computing technologies such as a microprocessor and/or digital signal processor (DSP) with associated storage memory such a Flash, ROM, RAM, SRAM, DRAM or other like technologies.
The tunable capacitors 504, 506, 508 can each utilize technology that enables tunability of the capacitance of said component. One embodiment of the tunable capacitors 504, 506, 508 can utilize voltage or current tunable dielectric materials such as a composition of barium strontium titanate (BST). An illustration of a BST composition is the Parascan® Tunable Capacitor. In another embodiment, the tunable reactive element 310 can utilize semiconductor varactors. Other present or next generation methods or material compositions that can support a means for a voltage or current tunable reactive element are contemplated by the present disclosure.
The DC-to-DC converter 304 can receive a power signal such as 3 Volts from the power supply 114 of the communication device 100 in
In another embodiment, the tunable matching network 202 can comprise a control circuit 402 in the form of a decoder and a tunable reactive element 404 comprising switchable reactive elements such as shown in
The tunability of the tunable matching networks 202, 204 provides the controller 106 a means to optimize performance parameters of the transceiver 102 such as, for example, but not limited to, transmitter power, transmitter efficiency, receiver sensitivity, power consumption of the communication device, a specific absorption rate (SAR) of energy by a human body, frequency band performance parameters, and so forth. To achieve one or more desirable performance characteristics which can be defined, the communication device 100 can utilize a tuning state selection method, such as depicted in
In addition to the algorithm described with respect to
In another embodiment, the tuning algorithm can maintain the return loss while minimizing the current drain to determine desired tuning values. The tuning algorithm can utilize various parameters for tuning the device, including output power of the transmitter, return loss, received power, current drain and/or transmitter linearity.
In one embodiment, the tuning state candidates can be obtained from one or more look-up tables 900, such as shown in
Method 800 can employ a threshold to remove the most unlikely tuning state candidates from consideration. When more than one tuning state candidate has been found at 806, method 800 can resolve which candidate provides the desirable or best match at 808 by examining parameters such as those that are readily available in the wireless device. As an example, but not being limited thereto, method 800 can utilize RSSI, Received Signal Code Power (RSCP), Received Signal Quality (RXQUAL), Received Bit Error Rate, current drain, transmit power control level, and so forth as parameters to select a tuning state from among the subset of tuning states that were identified at 804. One of these or other parameters can be utilized alone in selecting from among the subset of identified tuning states or a combination of parameters can be utilized by method 800 for performing the tuning state selection. In addition, feedback from the cellular base station can be utilized. For instance, if the handset is directed to transmit at a lower power step with one tuning state than another, that information could be utilized to determine which tuning state provides a better match for the handset transmitter. Other parameters can also be utilized for performing the tuning state selection from among the subset of tuning states, including parameters identified in various communication device standards. In another embodiment, the directional coupler of
Method 800 can set the tuning state and sample the parameter(s) resulting from that tuning state change. In one embodiment, at least one sample for each tuning state setting can be utilized. More samples may also be utilized in which case the sample order can be interleaved as shown in step 808 where the n different possible tuning states can be set and RSSI or other parameter(s) measured for each, with each of the n states repeated m times. The resultant m measurements for each state can be then be averaged or otherwise processed in order to determine which tuning state will be chosen as the preferred state. When samples have been collected they are evaluated at 810 and the use case from among the identified subset of use cases that best matches the desired performance goal is selected, such as, for example, but not limited to, the best RSSI measurement. As described above, use of RSSI is an example and one or more other parameters can be used in place of, or in combination with, the RSSI parameter.
If the number of tuning state candidates or use cases selected at 804 is only one then at 812 the method 800 can select and use that one use case. The method 800 then applies the selected tuning state to the tunable element 814.
Method 800 can enter a loop at 815 which monitors RSSI or the one or more other parameters utilized, and compares measurements (or averaged measurements) to a preset threshold associated with the parameter(s). If the monitored level drops below, or otherwise no longer satisfies the threshold, then the method 800 can return to 804 to determine the tuning state candidate(s). If the threshold is satisfied, then the method 800 can maintain the previous tuning state at 816 and returns to 815. In another embodiment, method 800 can monitor other parameters at 815 which are different from the parameter(s) used at 808, 810 to select the best or desirable use case among the subset of identified use cases. For example, the parameter(s) used to select among the identified use cases can be different from the parameter(s) used to determine whether method 800 needs to again determine tuning state candidates back at 804.
The machine may comprise a server computer, a client user computer, a personal computer (PC), a tablet PC, a laptop computer, a desktop computer, a control system, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. It will be understood that a device of the present disclosure includes broadly any electronic device that provides voice, video or data communication. Further, while a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
The computer system 1000 may include a processor 1002 (e.g., a central processing unit (CPU), a graphics processing unit (GPU, or both), a main memory 1004 and a static memory 1006, which communicate with each other via a bus 1008. The computer system 1000 may further include a video display unit 1010 (e.g., a liquid crystal display (LCD), a flat panel, a solid state display, or a cathode ray tube (CRT)). The computer system 1000 may include an input device 1012 (e.g., a keyboard), a cursor control device 1014 (e.g., a mouse), a disk drive unit 1016, a signal generation device 1018 (e.g., a speaker or remote control) and a network interface device 1020.
The disk drive unit 1016 may include a machine-readable medium 1022 on which is stored one or more sets of instructions (e.g., software 1024) embodying any one or more of the methodologies or functions described herein, including those methods illustrated above. The instructions 1024 may also reside, completely or at least partially, within the main memory 1004, the static memory 1006, and/or within the processor 1002 during execution thereof by the computer system 1000. The main memory 1004 and the processor 1002 also may constitute machine-readable media.
Dedicated hardware implementations including, but not limited to, application specific integrated circuits, programmable logic arrays and other hardware devices can likewise be constructed to implement the methods described herein. Applications that may include the apparatus and systems of various embodiments broadly include a variety of electronic and computer systems. Some embodiments implement functions in two or more specific interconnected hardware modules or devices with related control and data signals communicated between and through the modules, or as portions of an application-specific integrated circuit. Thus, the example system is applicable to software, firmware, and hardware implementations.
In accordance with various embodiments of the present disclosure, the methods described herein are intended for operation as software programs running on a computer processor. Furthermore, software implementations can include, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.
The present disclosure contemplates a machine readable medium containing instructions 1024, or that which receives and executes instructions 1024 from a propagated signal so that a device connected to a network environment 1026 can send or receive voice, video or data, and to communicate over the network 1026 using the instructions 1024. The instructions 1024 may further be transmitted or received over a network 1026 via the network interface device 1020.
While the machine-readable medium 1022 is shown in an example embodiment to be a single medium, the term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure.
The term “machine-readable medium” shall accordingly be taken to include, but not be limited to: solid-state memories such as a memory card or other package that houses one or more read-only (non-volatile) memories, random access memories, or other re-writable (volatile) memories; magneto-optical or optical medium such as a disk or tape; and/or a digital file attachment to e-mail or other self-contained information archive or set of archives is considered a distribution medium equivalent to a tangible storage medium. Accordingly, the disclosure is considered to include any one or more of a machine-readable medium or a distribution medium, as listed herein and including art-recognized equivalents and successor media, in which the software implementations herein are stored.
Although the present specification describes components and functions implemented in the embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. Each of the standards for Internet and other packet switched network transmission (e.g., TCP/IP, UDP/IP, HTML, HTTP) represent examples of the state of the art. Such standards are periodically superseded by faster or more efficient equivalents having essentially the same functions. Accordingly, replacement standards and protocols having the same functions are considered equivalents.
The illustrations of embodiments described herein are intended to provide a general understanding of the structure of various embodiments, and they are not intended to serve as a complete description of all the elements and features of apparatus and systems that might make use of the structures described herein. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Figures are also merely representational and may not be drawn to scale. Certain proportions thereof may be exaggerated, while others may be minimized. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
The Abstract of the Disclosure is provided with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
This application is a continuation of U.S. patent application Ser. No. 13/030,177, filed Feb. 18, 2011, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2745067 | True | May 1956 | A |
3117279 | Ludvigson | Jan 1964 | A |
3160832 | Beitman | Dec 1964 | A |
3390337 | Beitman | Jun 1968 | A |
3443231 | Roza | May 1969 | A |
3509500 | McNair | Apr 1970 | A |
3571716 | Hill | Mar 1971 | A |
3590385 | Sabo | Jun 1971 | A |
3601717 | Kuecken | Aug 1971 | A |
3742279 | Kupsky | Jun 1973 | A |
3749491 | Maxfield et al. | Jul 1973 | A |
3794941 | Templin | Feb 1974 | A |
3919644 | Smolka | Nov 1975 | A |
3990024 | Hou | Nov 1976 | A |
3995237 | Brunner | Nov 1976 | A |
4186359 | Kaegebein | Jan 1980 | A |
4201960 | Skutta | May 1980 | A |
4227256 | O'Keefe | Oct 1980 | A |
4383441 | Willis | May 1983 | A |
4476578 | Gaudin | Oct 1984 | A |
4493112 | Bruene | Jan 1985 | A |
4509019 | Banu et al. | Apr 1985 | A |
4777490 | Sharma | Oct 1988 | A |
4799066 | Deacon | Jan 1989 | A |
4965607 | Wilkins | Oct 1990 | A |
4980656 | Duffalo | Dec 1990 | A |
5032805 | Elmer | Jul 1991 | A |
5136478 | Bruder | Aug 1992 | A |
5142255 | Chang | Aug 1992 | A |
5177670 | Shinohara | Jan 1993 | A |
5195045 | Keane | Mar 1993 | A |
5200826 | Seong | Apr 1993 | A |
5212463 | Babbitt | May 1993 | A |
5243358 | Sanford | Sep 1993 | A |
5258728 | Taniyoshi | Nov 1993 | A |
5276912 | Siwiak | Jan 1994 | A |
5301358 | Gaskill | Apr 1994 | A |
5307033 | Koscica | Apr 1994 | A |
5310358 | Johnson | May 1994 | A |
5312790 | Sengupta | May 1994 | A |
5334958 | Babbitt | Aug 1994 | A |
5361403 | Dent | Nov 1994 | A |
5371473 | Trinh | Dec 1994 | A |
5409889 | Das | Apr 1995 | A |
5427988 | Sengupta | Jun 1995 | A |
5430417 | Martin | Jul 1995 | A |
5446447 | Carney | Aug 1995 | A |
5448252 | Ali | Sep 1995 | A |
5451567 | Das | Sep 1995 | A |
5451914 | Stengel | Sep 1995 | A |
5457394 | McEwan | Oct 1995 | A |
5472935 | Yandrofski | Dec 1995 | A |
5479139 | Koscica | Dec 1995 | A |
5486491 | Sengupta | Jan 1996 | A |
5496795 | Das | Mar 1996 | A |
5502372 | Quan | Mar 1996 | A |
5524281 | Bradley | Jun 1996 | A |
5548837 | Hess et al. | Aug 1996 | A |
5561407 | Koscica | Oct 1996 | A |
5564086 | Cygan | Oct 1996 | A |
5589844 | Belcher et al. | Dec 1996 | A |
5593495 | Masuda | Jan 1997 | A |
5635433 | Sengupta | Jun 1997 | A |
5635434 | Sengupta | Jun 1997 | A |
5640042 | Koscica | Jun 1997 | A |
5679624 | Das | Oct 1997 | A |
5689219 | Piirainen | Nov 1997 | A |
5693429 | Sengupta | Dec 1997 | A |
5694134 | Barnes | Dec 1997 | A |
5699071 | Urakami | Dec 1997 | A |
5721194 | Yandrofski | Feb 1998 | A |
5766697 | Sengupta | Jun 1998 | A |
5777581 | Lilly | Jul 1998 | A |
5778308 | Sroka | Jul 1998 | A |
5786727 | Sigmon | Jul 1998 | A |
5812572 | King | Sep 1998 | A |
5812943 | Suzuki | Sep 1998 | A |
5830591 | Sengupta | Nov 1998 | A |
5846893 | Sengupta | Dec 1998 | A |
5874926 | Tsuru | Feb 1999 | A |
5880635 | Satoh | Mar 1999 | A |
5886867 | Chivukula | Mar 1999 | A |
5892482 | Coleman et al. | Apr 1999 | A |
5929717 | Richardson | Jul 1999 | A |
5940030 | Hampel et al. | Aug 1999 | A |
5963871 | Zhinong | Oct 1999 | A |
5969582 | Boesch | Oct 1999 | A |
5982099 | Barnes et al. | Nov 1999 | A |
5990766 | Zhang | Nov 1999 | A |
6009124 | Smith | Dec 1999 | A |
6020787 | Kim | Feb 2000 | A |
6020795 | Kim | Feb 2000 | A |
6029075 | Das | Feb 2000 | A |
6045932 | Jia | Apr 2000 | A |
6061025 | Jackson | May 2000 | A |
6064865 | Kuo et al. | May 2000 | A |
6074971 | Chiu | Jun 2000 | A |
6096127 | Dimos | Aug 2000 | A |
6100733 | Dortu | Aug 2000 | A |
6101102 | Brand | Aug 2000 | A |
6115585 | Matero | Sep 2000 | A |
6125266 | Matero et al. | Sep 2000 | A |
6133883 | Munson | Oct 2000 | A |
6172385 | Duncombe | Jan 2001 | B1 |
6215644 | Dhuler | Apr 2001 | B1 |
6242989 | Barber | Jun 2001 | B1 |
6281748 | Klomsdorf et al. | Aug 2001 | B1 |
6281847 | Lee | Aug 2001 | B1 |
6309895 | Jaing | Oct 2001 | B1 |
6343208 | Ying | Jan 2002 | B1 |
6377142 | Chiu | Apr 2002 | B1 |
6377217 | Zhu | Apr 2002 | B1 |
6377440 | Zhu | Apr 2002 | B1 |
6384785 | Kamogawa | May 2002 | B1 |
6404614 | Zhu | Jun 2002 | B1 |
6408190 | Ying | Jun 2002 | B1 |
6414562 | Bouisse | Jul 2002 | B1 |
6415562 | Donaghue | Jul 2002 | B1 |
6452776 | Chakravorty | Sep 2002 | B1 |
6461930 | Akram | Oct 2002 | B2 |
6466774 | Okabe | Oct 2002 | B1 |
6492883 | Liang | Dec 2002 | B2 |
6514895 | Chiu | Feb 2003 | B1 |
6525630 | Zhu | Feb 2003 | B1 |
6531936 | Chiu | Mar 2003 | B1 |
6535076 | Partridge | Mar 2003 | B2 |
6535722 | Rosen | Mar 2003 | B1 |
6538603 | Chen | Mar 2003 | B1 |
6556102 | Sengupta | Apr 2003 | B1 |
6556814 | Klomsdorf | Apr 2003 | B1 |
6570462 | Edmonson | May 2003 | B2 |
6590468 | du Toit | Jul 2003 | B2 |
6590541 | Schultze | Jul 2003 | B1 |
6597265 | Liang | Jul 2003 | B2 |
6608603 | Alexopoulos | Aug 2003 | B2 |
6624786 | Boyle | Sep 2003 | B2 |
6640085 | Chatzipetros | Oct 2003 | B1 |
6657595 | Phillips | Dec 2003 | B1 |
6661638 | Jackson | Dec 2003 | B2 |
6670256 | Yang | Dec 2003 | B2 |
6710651 | Forrester | Mar 2004 | B2 |
6724611 | Mosley | Apr 2004 | B1 |
6724890 | Bareis | Apr 2004 | B1 |
6737179 | Sengupta | May 2004 | B2 |
6747522 | Pietruszynski et al. | Jun 2004 | B2 |
6759918 | Du Toit | Jul 2004 | B2 |
6765540 | Toncich | Jul 2004 | B2 |
6768472 | Alexopoulos | Jul 2004 | B2 |
6774077 | Sengupta | Aug 2004 | B2 |
6795712 | Vakilian | Sep 2004 | B1 |
6825818 | Toncich | Nov 2004 | B2 |
6839028 | Lee | Jan 2005 | B2 |
6845126 | Dent | Jan 2005 | B2 |
6859104 | Toncich | Feb 2005 | B2 |
6862432 | Kim | Mar 2005 | B1 |
6864757 | Du Toit | Mar 2005 | B2 |
6868260 | Jagielski | Mar 2005 | B2 |
6875655 | Lin | Apr 2005 | B2 |
6882245 | Utsunomiya | Apr 2005 | B2 |
6888714 | Shaw | May 2005 | B2 |
6905989 | Ellis | Jun 2005 | B2 |
6906653 | Uno | Jun 2005 | B2 |
6907234 | Karr | Jun 2005 | B2 |
6920315 | Wilcox et al. | Jul 2005 | B1 |
6922330 | Nielsen | Jul 2005 | B2 |
6943078 | Zheng | Sep 2005 | B1 |
6946847 | Nishimori | Sep 2005 | B2 |
6949442 | Barth | Sep 2005 | B2 |
6961368 | Dent | Nov 2005 | B2 |
6964296 | Memory | Nov 2005 | B2 |
6965837 | Vintola | Nov 2005 | B2 |
6987493 | Chen | Jan 2006 | B2 |
6993297 | Smith | Jan 2006 | B2 |
6999297 | Klee | Feb 2006 | B1 |
7009455 | Toncich | Mar 2006 | B2 |
7071776 | Forrester | Jul 2006 | B2 |
7106715 | Kelton | Sep 2006 | B1 |
7107033 | D du Toit | Sep 2006 | B2 |
7113614 | Rhoads | Sep 2006 | B2 |
7151411 | Martin | Dec 2006 | B2 |
7176634 | Kitamura | Feb 2007 | B2 |
7176845 | Fabrega-Sanchez | Feb 2007 | B2 |
7180467 | Fabrega-Sanchez | Feb 2007 | B2 |
7221327 | Toncich | May 2007 | B2 |
7298329 | Diament | Nov 2007 | B2 |
7299018 | Van Rumpt | Nov 2007 | B2 |
7312118 | Kiyotoshi | Dec 2007 | B2 |
7332980 | Zhu | Feb 2008 | B2 |
7332981 | Matsuno | Feb 2008 | B2 |
7339527 | Sager | Mar 2008 | B2 |
7369828 | Shamsaifar | May 2008 | B2 |
7426373 | Clingman | Sep 2008 | B2 |
7427949 | Channabasappa et al. | Sep 2008 | B2 |
7453405 | Nishikido et al. | Nov 2008 | B2 |
7468638 | Tsai | Dec 2008 | B1 |
7469129 | Blaker et al. | Dec 2008 | B2 |
7531011 | Yamasaki | May 2009 | B2 |
7535080 | Zeng et al. | May 2009 | B2 |
7535312 | McKinzie | May 2009 | B2 |
7539527 | Jang | May 2009 | B2 |
7557507 | Wu | Jul 2009 | B2 |
7596357 | Nakamata | Sep 2009 | B2 |
7633355 | Matsuo | Dec 2009 | B2 |
7642879 | Matsuno | Jan 2010 | B2 |
7655530 | Hosking | Feb 2010 | B2 |
7667663 | Hsiao | Feb 2010 | B2 |
7671693 | Brobston et al. | Mar 2010 | B2 |
7705692 | Fukamachi et al. | Apr 2010 | B2 |
7711337 | McKinzie | May 2010 | B2 |
7714676 | McKinzie | May 2010 | B2 |
7714678 | du Toit et al. | May 2010 | B2 |
7728693 | du Toit et al. | Jun 2010 | B2 |
7760699 | Malik | Jul 2010 | B1 |
7768400 | Lawrence et al. | Aug 2010 | B2 |
7786819 | Ella | Aug 2010 | B2 |
7795990 | du Toit | Sep 2010 | B2 |
7852170 | McKinzie | Dec 2010 | B2 |
7856228 | Lekutai et al. | Dec 2010 | B2 |
7865154 | Mendolia | Jan 2011 | B2 |
7907094 | Kakitsu et al. | Mar 2011 | B2 |
7917104 | Manssen et al. | Mar 2011 | B2 |
7949309 | Rofougaran | May 2011 | B2 |
7969257 | du Toit | Jun 2011 | B2 |
7983615 | Bryce et al. | Jul 2011 | B2 |
7991363 | Greene | Aug 2011 | B2 |
8008982 | McKinzie | Aug 2011 | B2 |
8072285 | Spears | Dec 2011 | B2 |
8112043 | Knudsen et al. | Feb 2012 | B2 |
8170510 | Knudsen et al. | May 2012 | B2 |
8190109 | Ali et al. | May 2012 | B2 |
8204446 | Scheer | Jun 2012 | B2 |
8217731 | McKinzie et al. | Jul 2012 | B2 |
8217732 | McKinzie | Jul 2012 | B2 |
8299867 | McKinzie, III | Oct 2012 | B2 |
8320850 | Khlat | Nov 2012 | B1 |
8325097 | McKinzie, III et al. | Dec 2012 | B2 |
8405563 | McKinzie et al. | Mar 2013 | B2 |
8421548 | Spears et al. | Apr 2013 | B2 |
8432234 | Manssen et al. | Apr 2013 | B2 |
8442457 | Harel et al. | May 2013 | B2 |
8457569 | Blin | Jun 2013 | B2 |
8472888 | Manssen et al. | Jun 2013 | B2 |
8558633 | McKinzie, III | Oct 2013 | B2 |
8564381 | McKinzie | Oct 2013 | B2 |
8594584 | Greene et al. | Nov 2013 | B2 |
8620236 | Manssen et al. | Dec 2013 | B2 |
8620246 | McKinzie et al. | Dec 2013 | B2 |
8620247 | McKinzie et al. | Dec 2013 | B2 |
8655286 | Mendolia | Feb 2014 | B2 |
8674783 | Spears et al. | Mar 2014 | B2 |
8680934 | McKinzie et al. | Mar 2014 | B2 |
8693963 | du Toit et al. | Apr 2014 | B2 |
8712340 | Hoirup et al. | Apr 2014 | B2 |
8787845 | Manssen et al. | Jul 2014 | B2 |
20020008672 | Gothard | Jan 2002 | A1 |
20020030566 | Bozler | Mar 2002 | A1 |
20020079982 | Lafleur et al. | Jun 2002 | A1 |
20020109642 | Gee et al. | Aug 2002 | A1 |
20020118075 | Ohwada | Aug 2002 | A1 |
20020145483 | Bouisse | Oct 2002 | A1 |
20020167963 | Joa-Ng | Nov 2002 | A1 |
20020183013 | Auckland et al. | Dec 2002 | A1 |
20020187780 | Souissi | Dec 2002 | A1 |
20020191703 | Ling | Dec 2002 | A1 |
20020193088 | Jung | Dec 2002 | A1 |
20030060227 | Sekine | Mar 2003 | A1 |
20030071300 | Yashima | Apr 2003 | A1 |
20030114124 | Higuchi | Jun 2003 | A1 |
20030142022 | Ollikainen | Jul 2003 | A1 |
20030193997 | Dent | Oct 2003 | A1 |
20030199286 | D du Toit | Oct 2003 | A1 |
20030210206 | Phillips | Nov 2003 | A1 |
20030216150 | Ueda | Nov 2003 | A1 |
20030232607 | Le Bars | Dec 2003 | A1 |
20040009754 | Smith | Jan 2004 | A1 |
20040090372 | Nallo | May 2004 | A1 |
20040100341 | Luetzelschwab | May 2004 | A1 |
20040127178 | Kuffner | Jul 2004 | A1 |
20040137950 | Bolin | Jul 2004 | A1 |
20040202399 | Kochergin | Oct 2004 | A1 |
20040227176 | York | Nov 2004 | A1 |
20040232982 | Ichitsubo et al. | Nov 2004 | A1 |
20040257293 | Friedrich | Dec 2004 | A1 |
20040263411 | Fabrega-Sanchez et al. | Dec 2004 | A1 |
20050007291 | Fabrega-Sanchez | Jan 2005 | A1 |
20050032488 | Pehlke | Feb 2005 | A1 |
20050032541 | Wang | Feb 2005 | A1 |
20050042994 | Otaka | Feb 2005 | A1 |
20050059362 | Kalajo | Mar 2005 | A1 |
20050082636 | Yashima | Apr 2005 | A1 |
20050085204 | Poilasne et al. | Apr 2005 | A1 |
20050093624 | Forrester et al. | May 2005 | A1 |
20050130608 | Forse | Jun 2005 | A1 |
20050130699 | Kim | Jun 2005 | A1 |
20050208960 | Hassan | Sep 2005 | A1 |
20050215204 | Wallace | Sep 2005 | A1 |
20050227633 | Dunko | Oct 2005 | A1 |
20050259011 | Vance | Nov 2005 | A1 |
20050264455 | Talvitie | Dec 2005 | A1 |
20050282503 | Onno | Dec 2005 | A1 |
20060003537 | Sinha | Jan 2006 | A1 |
20060009165 | Alles | Jan 2006 | A1 |
20060077082 | Shanks et al. | Apr 2006 | A1 |
20060099915 | Laroia et al. | May 2006 | A1 |
20060119511 | Collinson | Jun 2006 | A1 |
20060148415 | Hamalainen et al. | Jul 2006 | A1 |
20060160501 | Mendolia | Jul 2006 | A1 |
20060183431 | Chang et al. | Aug 2006 | A1 |
20060183433 | Mori et al. | Aug 2006 | A1 |
20060183442 | Chang et al. | Aug 2006 | A1 |
20060195161 | Li et al. | Aug 2006 | A1 |
20060205368 | Bustamante | Sep 2006 | A1 |
20060281423 | Caimi | Dec 2006 | A1 |
20070013483 | Stewart | Jan 2007 | A1 |
20070035458 | Ohba | Feb 2007 | A1 |
20070042725 | Poilasne | Feb 2007 | A1 |
20070042734 | Ryu | Feb 2007 | A1 |
20070063788 | Zhu | Mar 2007 | A1 |
20070080888 | Mohamadi | Apr 2007 | A1 |
20070082611 | Terranova et al. | Apr 2007 | A1 |
20070085609 | Itkin | Apr 2007 | A1 |
20070091006 | Thober et al. | Apr 2007 | A1 |
20070111681 | Alberth et al. | May 2007 | A1 |
20070142011 | Shatara | Jun 2007 | A1 |
20070142014 | Wilcox | Jun 2007 | A1 |
20070149146 | Hwang | Jun 2007 | A1 |
20070171879 | Bourque | Jul 2007 | A1 |
20070182636 | Carlson | Aug 2007 | A1 |
20070184825 | Lim et al. | Aug 2007 | A1 |
20070194859 | Brobston | Aug 2007 | A1 |
20070197180 | McKinzie et al. | Aug 2007 | A1 |
20070200766 | McKinzie | Aug 2007 | A1 |
20070200773 | Dou et al. | Aug 2007 | A1 |
20070248238 | Abreu et al. | Oct 2007 | A1 |
20070285326 | McKinzie | Dec 2007 | A1 |
20070293176 | Yu | Dec 2007 | A1 |
20080007478 | Jung | Jan 2008 | A1 |
20080018541 | Pang | Jan 2008 | A1 |
20080055016 | Morris | Mar 2008 | A1 |
20080081670 | Rofougaran | Apr 2008 | A1 |
20080090539 | Thompson | Apr 2008 | A1 |
20080094149 | Brobston | Apr 2008 | A1 |
20080106350 | McKinzie | May 2008 | A1 |
20080122553 | McKinzie | May 2008 | A1 |
20080122723 | Rofougaran | May 2008 | A1 |
20080129612 | Wang | Jun 2008 | A1 |
20080158076 | Walley | Jul 2008 | A1 |
20080261544 | Blin | Oct 2008 | A1 |
20080274706 | Blin | Nov 2008 | A1 |
20080280570 | Blin | Nov 2008 | A1 |
20080285729 | Glasgow et al. | Nov 2008 | A1 |
20080294718 | Okano | Nov 2008 | A1 |
20080300027 | Dou | Dec 2008 | A1 |
20080305749 | Ben-Bassat | Dec 2008 | A1 |
20080305750 | Alon et al. | Dec 2008 | A1 |
20080309617 | Kong et al. | Dec 2008 | A1 |
20090002077 | Rohani et al. | Jan 2009 | A1 |
20090027286 | Ohishi | Jan 2009 | A1 |
20090039976 | McKinzie, III | Feb 2009 | A1 |
20090082017 | Chang et al. | Mar 2009 | A1 |
20090109880 | Kim et al. | Apr 2009 | A1 |
20090121963 | Greene | May 2009 | A1 |
20090149136 | Rofougaran | Jun 2009 | A1 |
20090180403 | Tudosoiu | Jul 2009 | A1 |
20090184879 | Derneryd | Jul 2009 | A1 |
20090215446 | Hapsari et al. | Aug 2009 | A1 |
20090231220 | Zhang et al. | Sep 2009 | A1 |
20090253385 | Dent et al. | Oct 2009 | A1 |
20090264065 | Song | Oct 2009 | A1 |
20090278685 | Potyrailo | Nov 2009 | A1 |
20090295651 | Dou et al. | Dec 2009 | A1 |
20090323572 | Shi et al. | Dec 2009 | A1 |
20090323582 | Proctor et al. | Dec 2009 | A1 |
20100041348 | Wilcox et al. | Feb 2010 | A1 |
20100053009 | Rofougaran | Mar 2010 | A1 |
20100060531 | Rappaport | Mar 2010 | A1 |
20100073103 | Spears et al. | Mar 2010 | A1 |
20100085260 | McKinzie | Apr 2010 | A1 |
20100085884 | Srinivasan et al. | Apr 2010 | A1 |
20100105425 | Asokan | Apr 2010 | A1 |
20100156552 | McKinzie | Jun 2010 | A1 |
20100164640 | McKinzie | Jul 2010 | A1 |
20100164641 | McKinzie | Jul 2010 | A1 |
20100232474 | Rofougaran et al. | Sep 2010 | A1 |
20100244576 | Hillan et al. | Sep 2010 | A1 |
20100285836 | Horihata et al. | Nov 2010 | A1 |
20100302106 | Knudsen et al. | Dec 2010 | A1 |
20100304688 | Knudsen | Dec 2010 | A1 |
20110002080 | Ranta | Jan 2011 | A1 |
20110012790 | Badaruzzaman | Jan 2011 | A1 |
20110014879 | Alberth et al. | Jan 2011 | A1 |
20110014886 | Manssen | Jan 2011 | A1 |
20110043298 | McKinzie | Feb 2011 | A1 |
20110043328 | Bassali | Feb 2011 | A1 |
20110053524 | Manssen | Mar 2011 | A1 |
20110063042 | Mendolia | Mar 2011 | A1 |
20110086600 | Muhammad | Apr 2011 | A1 |
20110086630 | Manssen | Apr 2011 | A1 |
20110102290 | Milosavljevic | May 2011 | A1 |
20110105023 | Scheer et al. | May 2011 | A1 |
20110116423 | Rousu et al. | May 2011 | A1 |
20110117863 | Camp, Jr. et al. | May 2011 | A1 |
20110117973 | Asrani et al. | May 2011 | A1 |
20110121079 | Lawrence et al. | May 2011 | A1 |
20110133994 | Korva | Jun 2011 | A1 |
20110140982 | Ozden et al. | Jun 2011 | A1 |
20110183628 | Baker | Jul 2011 | A1 |
20110183633 | Ohba | Jul 2011 | A1 |
20110195679 | Lee et al. | Aug 2011 | A1 |
20110227666 | Manssen | Sep 2011 | A1 |
20110237207 | Bauder | Sep 2011 | A1 |
20110249760 | Chrisikos et al. | Oct 2011 | A1 |
20110250852 | Greene | Oct 2011 | A1 |
20110254637 | Manssen | Oct 2011 | A1 |
20110254638 | Manssen | Oct 2011 | A1 |
20110256857 | Chen et al. | Oct 2011 | A1 |
20110281532 | Shin et al. | Nov 2011 | A1 |
20110299438 | Mikhemar | Dec 2011 | A1 |
20110306310 | Bai | Dec 2011 | A1 |
20120051409 | Brobston et al. | Mar 2012 | A1 |
20120062431 | Tikka et al. | Mar 2012 | A1 |
20120075159 | Chang | Mar 2012 | A1 |
20120084537 | Indukuru et al. | Apr 2012 | A1 |
20120094708 | Park | Apr 2012 | A1 |
20120100802 | Mohebbi | Apr 2012 | A1 |
20120112851 | Manssen | May 2012 | A1 |
20120112852 | Manssen et al. | May 2012 | A1 |
20120119843 | du Toit et al. | May 2012 | A1 |
20120119844 | du Toit et al. | May 2012 | A1 |
20120154975 | Oakes | Jun 2012 | A1 |
20120214421 | Hoirup | Aug 2012 | A1 |
20120220243 | Mendolia | Aug 2012 | A1 |
20120243579 | Premakanthan et al. | Sep 2012 | A1 |
20120286586 | Balm | Nov 2012 | A1 |
20120293384 | Knudsen et al. | Nov 2012 | A1 |
20120295554 | Greene et al. | Nov 2012 | A1 |
20120295555 | Greene et al. | Nov 2012 | A1 |
20130005277 | Klomsdorf et al. | Jan 2013 | A1 |
20130052967 | Black et al. | Feb 2013 | A1 |
20130056841 | Hsieh et al. | Mar 2013 | A1 |
20130106332 | Williams et al. | May 2013 | A1 |
20130122829 | Hyvonen et al. | May 2013 | A1 |
20130137384 | Desclos et al. | May 2013 | A1 |
20130154897 | Sorensen et al. | Jun 2013 | A1 |
20130215846 | Yerrabommanahalli et al. | Aug 2013 | A1 |
20130315285 | Black et al. | Nov 2013 | A1 |
20140002323 | Ali et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
101640949 | Feb 2010 | CN |
19614655 | Oct 1997 | DE |
102008050743 | Apr 2010 | DE |
102009018648 | Oct 2010 | DE |
0685936 | Jun 1995 | EP |
0909024 | Apr 1999 | EP |
1079296 | Feb 2001 | EP |
1137192 | Sep 2001 | EP |
1298810 | Apr 2006 | EP |
2328233 | Jun 2011 | EP |
2388925 | Nov 2011 | EP |
2424119 | Feb 2012 | EP |
03276901 | Mar 1990 | JP |
02-077580 | Sep 1991 | JP |
9321526 | Dec 1997 | JP |
10209722 | Aug 1998 | JP |
2000124066 | Apr 2000 | JP |
2005-130441 | May 2005 | JP |
100645526 | Nov 2006 | KR |
10-0740177 | Jul 2007 | KR |
0171846 | Sep 2001 | WO |
2006031170 | Mar 2006 | WO |
2008030165 | Mar 2008 | WO |
2009064968 | May 2009 | WO |
2009108391 | Sep 2009 | WO |
2009155966 | Dec 2009 | WO |
2010121914 | Oct 2010 | WO |
2011044592 | Apr 2011 | WO |
2011084716 | Jul 2011 | WO |
2011133657 | Oct 2011 | WO |
2011028453 | Oct 2011 | WO |
2012067622 | May 2012 | WO |
2012085932 | Jun 2012 | WO |
Entry |
---|
Payandehjoo, Kasra et al., “Investigation of Parasitic Elements for Coupling Reduction in MultiAntenna Hand-Set Devices”, Published online Jan. 22, 2013 in Wiley Online Library (wileyonlinelibrary.com). |
Bezooijen, A. et al., “A GSM/EDGE/WCDMA Adaptive Series-LC Matching Network Using RF-MEMS Switches”, IEEE Journal of Solid-State Circuits, vol. 43, No. 10, Oct. 2008, 2259-2268. |
Eiji, N., “High-Frequency Circuit and Its Manufacture”, Patent Abstracts of Japan, vol. 1998, No. 13, Nov. 30, 1998 & JP 10 209722 A (Seiko Epson Corp), Aug. 7, 1998. |
Huang, Libo et al., “Theoretical and experimental investigation of adaptive antenna impedance matching for multiband mobile phone applications”, IEEE, Sep. 7, 2005, 13-17. |
Hyun, S., “Effects of strain on the dielectric properties of tunable dielectric SrTiO3 thin films”, Applied Physics Letters, vol. 79, No. 2, Jul. 9, 2001. |
Ida, I. et al., “An Adaptive Impedence Matching System and Its Application to Mobile Antennas”, TENCON 2004, IEEE Region 10 Conference, See Abstract ad p. 544, Nov. 21-24, 2004, 543-547. |
Katsuya, K. , “Hybrid Integrated Circuit Device”, Patent Abstracts of Japan, Publication number: 03-276901, Date of publication of application: Sep. 12, 1991. |
Manssen, “Method and Apparatus for Managing Interference in a Communication Device”, U.S. Appl. No. 61/326,206, filed Apr. 20, 2010. |
Paratek Microwave, Inc., “Method and Appartus for Tuning Antennas in a Communication Device”, International Application No. PCT/US11/59620; Filed Nov. 7, 2011. |
Patent Cooperation Treaty, “International Search Report and Written Opinion”, International Application No. PCT/US2010/046241, Mar. 2, 2011. |
Patent Cooperation Treaty, “International Search Report and Written Opinion”, International Application No. PCT/US2010/056413, Jul. 27, 2011. |
Patent Cooperation Treaty, “International Search Report and Written Opinion”, Nov. 16, 2011, International Application No. PCT/US/2011/038543. |
Patent Cooperation Treaty, “International Search Report and Written Opinion”, PCT Application No. PCT/US08/005085, Jul. 2, 2008. |
Pervez, N.K. , “High Tunability barium strontium titanate thin films for RF circuit applications”, Applied Physics Letters, vol. 85, No. 19, Nov. 8, 2004. |
Petit, Laurent, “MEMS-Switched Parasitic-Antenna Array for Radiation Pattern Diversity”, IEEE Transactions on Antennas and Propagation, vol. 54, No. 9, Sep. 2009, 2624-2631. |
Qiao, et al., “Antenna Impedance Mismatch Measurement and Correction for Adaptive COMA Transceivers”, IEEE, Jan. 2005. |
Qiao, et al., “Measurement of Antenna Load Impedance for Power Amplifiers”, The Department of Electrical and Computer Engineering, University of California, San Diego, Sep. 13, 2004. |
Stemmer, Susanne, “Low-loss tunable capacitors fabricated directly on gold bottom electrodes”, Applied Physics Letters 88, 112905, Mar. 15, 2006. |
Taylor, T.R. , “Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films”, Applied Physics Letters, vol. 80, No. 11, Mar. 18, 2002. |
Tombak, Ali, “Tunable Barium Strontium Titanate Thin Film Capacitors For RF and Microwave Applications”, IEEE Microwave and Wireles Components Letters, vol. 12, Jan. 2002. |
Xu, Hongtao, “Tunable Microwave Integrated Circuits using BST Thin Film Capacitors with Device”, Integrated Ferroelectrics, Department of Electrical Engineering and Computer Engineering, University of California, 2005, Apr. 2005. |
Zuo, S., “Eigenmode Decoupling for Mimo Loop-Antenna Based on 180 Coupler”, Progress in Electromagnetics Research Letters, vol. 26, Aug. 2011, 11-20. |
Number | Date | Country | |
---|---|---|---|
20140187180 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13030177 | Feb 2011 | US |
Child | 14200222 | US |