The embodiments described herein relate generally to medical devices for therapeutic electrical energy delivery, and more particularly to the surgical specialty of urology. Specifically, systems and methods for delivering electrical energy in the context of ablating tissue rapidly and selectively in minimally invasive transurethral clinical therapies by the application of suitably timed pulsed voltages that generate irreversible electroporation of cell membranes. Such irreversible electroporation can possibly be generated in conjunction with the application of disclosed means of enhancing electroporation efficacy.
Transurethral resection of the prostate (TURP) remains the gold standard for treating benign prostatic hypertrophy (BPH). Alternatives to surgical resection are ablation of tissues using thermal-based destruction of tissue using multiple forms of energy (laser, microwave, radiofrequency ablation etc.). The most common postoperative complication with known transurethral procedures is urethral stricture, occurring in approximately 4.4% of patients overall. Furthermore known transurethral procedures indiscriminately resect or ablate urethral epithelium in the process of de-bulking the prostate tissues. The urethral injury contributes to the recovery time and morbidity of the acute procedure.
In the past decade or two the technique of electroporation has advanced from the laboratory to clinical applications, while the effects of brief pulses of high voltages and large electric fields on tissue has been investigated for the past forty years or more. It has been known that the application of brief high DC voltages to tissue, thereby generating locally high electric fields typically in the range of hundreds of Volts/centimeter can disrupt cell membranes by generating pores in the cell membrane. While the precise mechanism of this electrically-driven pore generation or electroporation is not well understood, it is thought that the application of relatively large electric fields generates instabilities in the lipid bilayers in cell membranes, causing the occurrence of a distribution of local gaps or pores in the membrane. If the applied electric field at the membrane is larger than a threshold value, the electroporation is irreversible and the pores remain open, permitting exchange of material across the membrane and leading to apoptosis or cell death. Subsequently the tissue heals in a natural process.
Historically, known direct current ablation techniques were pioneered in cardiovascular catheter-based ablation. More recently these techniques have been applied for the treatment of solid tumors with a clinical tool that employed very short impulses. The application of known ablation techniques to solid tumors on other applications, however, has not included selectively targeting tissue for irreversible electroporation ablation. Specifically, tissue susceptibility to irreversible cell injury from strong brief pulses of electricity depends on a number of important variables. Factors include: cell size, geometry, and orientation within the electric field, the constitution of the cell membrane and organelles, and local temperature. While pulsed DC voltages are known to drive electroporation under the right circumstances, the examples of electroporation applications in medicine and delivery methods described in the prior art do not discuss specificity and rapidity of action.
Thus, there is a need for selective energy delivery for electroporation and its modulation in various tissue types as well as pulses that permit rapid action and completion of therapy delivery. There is also a need for more effective generation of voltage pulses and control methods, as well as appropriate devices or tools addressing a variety of specific clinical applications, particularly in minimally invasive applications. Such more selective and effective electroporation delivery methods can broaden the areas of clinical application of electroporation including therapeutic treatment of a variety of cardiac arrhythmias, tissue ablation, and transurethral applications.
The embodiments described herein address the need for tools and methods for rapid and selective application of irreversible electroporation therapy as well as pulse generation and methods in the context of transurethral applications such as in the minimally invasive treatment of benign prostate hyperplasia. In some embodiments [FILL IN]
Systems and methods for electroporation to ablate enlarged prostate tissue in a selective fashion are described herein. The embodiments described herein result in well-controlled and specific delivery of electroporation in an efficacious manner. Specifically, the systems and methods described herein produced the desired results while ensuring at the same time that delicate epithelial tissue in and around the urethral wall is not damaged.
The embodiments described herein account for the differences in irreversible ablation threshold by creating a local temperature gradient that protects urethral epithelium (cooling it to raise the threshold electric field for ablation) and heating the target prostate tissue (warming it to make it more susceptible to ablation). In this manner, the targeted prostate tissue can be selectively ablated while leaving the urethra intact and unaffected. As described above, strong exogenous electrical fields can ablate tissue without significantly disrupting the extracellular matrix. The inflammatory response is relatively modest when compared to ablation from thermal injury. The proposed prostate ablation system exploits the tissue-specific susceptibility differences between the transitional epithelial cells of the urethra and the prostate tissue
In some embodiments, an apparatus includes an electrode controller configured to be operably coupled to a voltage pulse generator and a catheter. The voltage pulse generator is configured to produce a pulsed voltage waveform. The catheter includes a plurality of electrodes. The electrode controller is implemented in at least one of a memory or a processor, and includes a feedback module, a thermal control module and a pulse delivery module. The feedback module is configured to determine a temperature of a target tissue. The thermal control module is configured to produce a signal to control a cooling fluid to the catheter based on the temperature of the target tissue. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the plurality of electrodes, and is further configured to shunt an excess current associated with the pulsed voltage waveform
In some embodiments, an apparatus includes an electrode controller configured to be operably coupled to a voltage pulse generator, a catheter and a heater. The voltage pulse generator is configured to produce a pulsed voltage waveform. The catheter includes a plurality of electrodes. The electrode controller is implemented in at least one of a memory or a processor, and includes a thermal control module and a pulse delivery module. The thermal control module is configured to produce a first signal to control a cooling fluid to the catheter. The thermal control module is configured to produce a second signal to control a temperature of a heater. The pulse delivery module configured to deliver an output signal associated with the pulsed voltage waveform to the plurality of electrodes. The pulse delivery module is further configured to shunt an excess current associated with the pulsed voltage waveform.
In some embodiments, a method includes receiving, at a feedback module of an electrode controller, a temperature signal associated with a temperature of a urethral wall against which a medical a catheter is disposed. The catheter includes a plurality of electrodes. A control signal based on the temperature signal is delivered to a cooling unit to produce a flow of cooling fluid to the catheter. An output signal associated with a pulsed voltage waveform is delivered to the plurality of electrodes.
In some embodiments, a non-transitory processor readable medium storing code representing instructions to be executed by a processor includes code to cause the processor to receive a temperature signal associated with a temperature of a urethral wall against which a medical a catheter is disposed. The medical catheter including a plurality of electrodes. The code further includes code to produce a control signal to a cooling unit to produce a flow of cooling fluid to the catheter. The control signal based on the temperature signal. The code further includes code to deliver an output signal associated with the pulsed voltage waveform to the plurality of electrodes when the target tissue is at the target temperature.
In some embodiments, a system includes a pulse generator unit, a controller unit, a flexible medical device and a fluid pump. The pulse generator unit is configured to produce a pulsed voltage waveform. The controller unit is connected to the pulse generator unit, and is configured to modulate pulses from the generator unit. The controller unit includes shunt circuitry configured to shunt excess current. The controller unit includes a thermal control module. The flexible medical device includes a plurality of electrodes and defines a series of ports through which a cooling fluid can flow. The flexible medical device is configured to be connected to the controller unit such that a voltage signal associated with the pulsed voltage waveform can be conveyed to the plurality of electrodes. The fluid pump is configured to produce the cooling flow in response to a cooling signal produced by the thermal control module of the controller unit. In some embodiments, the system optionally includes a trans-rectal probe including a probe head having a heater. The heater is configured to heat a portion of a prostate tissue in response to a cooling signal produced by the thermal control module of the controller unit.
In some embodiments, a system or method includes the use of temperature to selectively ablate tissue as the threshold of irreversible electroporation is temperature-dependent, for example with the use of pulses of cold fluid irrigation in the form of saline fluid. In this manner, epithelial tissue in the region of the urethral wall can be left intact, while at the same time the ablation is effectively applied only to deeper tissue structures adjacent to the urethral wall. The delivery of cold fluid can be suitably pulsed in order to ensure that only epithelial tissue is cooled while deeper tissue is not substantively cooled. Surprisingly, in some embodiments, the pulses of fluid flow can involve periodical infusions of warm fluid in time intervals between voltage pulses. In one embodiment, the control of fluid pulse and temperature parameters is also programmable.
In some embodiments, the temperature of the transurethral probe can be modulated by other suitable methods such as a closed-loop coolant, thermoelectric transduction, and/or resistive heating coils. A trans-rectal probe could be added to the apparatus to accentuate the delivery of thermal energy (radiant heat, infrared, microwave, ultrasound etc.). Using a two-probe technique the rectal probe could be arranged as a dedicated heating probe and the intra-urethral device as a dedicated cooling source.
The timing and intensity of thermal delivery are delivered in a manner to optimize the local tissue thermal environment. The goal is to maximally cool the tissues of the urethra and bladder that would be exposed to the ablation impulse while warming the targeted tissues of the prostate. The most direct way to achieve this is to start the cycle with warm irrigation or radiant energy to allow heat transfer into the surrounding prostate tissues followed by a short phase of cooling. The longer first phase would produce a relative steady state increase in the prostate tissue above the normal body temperature but not high enough to cause thermal tissue injury. The second, shorter phase delivers cooling to the local urethra and bladder in such a way as to quickly drop the local tissue temperature below normal body temperature. The ablation impulse would be delivered into tissue with a thermal gradient favoring preservation of the epithelial urethra while increasing susceptibility of the prostate tissues.
In some embodiments, an irreversible electroporation system is disclosed that includes a DC voltage/signal generator and a controller. Further, the controller is capable of applying control inputs with possibly programmable voltage pulse parameters as well as programmable selection of electrodes as cathodes or anodes. The generator can output waveforms that can be selected to generate a sequence of voltage pulses in either monophasic or biphasic forms and with either constant or progressively changing amplitudes. Methods of control and DC voltage application from a generator capable of selective excitation of sets of electrodes are disclosed.
In some embodiments, a method includes the treatment of benign prostatic hyperplasia. In one embodiment, a standard defibrillator can be utilized together with a switch to selectively apply a portion of the voltage pulse generated by the defibrillator unit, while excessive current is shunted away with a suitable shunt circuit.
The cooling irrigation fluid for any of the devices, systems and methods described herein can be any biocompatible fluid. In some embodiments, the current transfer properties of the fluid are of significant importance, and thus the irrigation fluid is formulated to facilitate the methods described herein. The irrigation used in the cooling phase can have a high electrolyte content (normal saline for example) with the possible inclusion of other biocompatible compounds to facilitate ablation and reduce local injury.
In some embodiments, the irreversible electroporation system described herein includes a DC voltage/signal generator and a controller unit for applying voltage pulses to electrodes. In one embodiment, the signal generator is capable of being configured to apply voltages to a selected multiplicity or a subset of electrodes on a transurethral minimally invasive catheter device. The controller is additionally capable of being programmable for voltage pulse parameters. In one embodiment where the device through which voltage pulses are applied also carries cooled fluid, the controller unit can also control fluid flow or pulse rate and fluid temperature.
The DC voltage is applied in brief pulses sufficient to cause irreversible electroporation and can be in the range of 0.5 kV to 10 kV and more preferably in the range 1 kV to 2.5 kV, so that a threshold electric field value in the range of 200-1000 Volts/cm is effectively achieved in the prostate tissue to be ablated. In one embodiment, the DC voltage value is selected directly by a user from a suitable dial, slider, touch screen, or any other user interface. The DC voltage pulse also results in a current flowing between the anode and cathode electrodes in the distal region of the catheter device that is inserted into the patient urethra, with the current entering the prostate tissue from the anode(s) and returning back through the cathode electrodes. The forward and return current paths (leads) are both inside the catheter. Areas of prostate tissue where the electric field is sufficiently large for irreversible electroporation are ablated during the DC voltage pulse application.
As used in this specification, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a member” is intended to mean a single member or a combination of members, “a material” is intended to mean one or more materials, “a processor” is intended to mean a single processor or multiple processors; and “memory” is intended to mean one or more memories, or a combination thereof.
As used herein, the terms “about” and “approximately” generally mean plus or minus 10% of the value stated. For example, about 0.5 would include 0.45 and 0.55, about 10 would include 9 to 11, about 1000 would include 900 to 1100.
A schematic diagram of the electroporation system according to an embodiment in one embodiment is shown in
Some leads from the controller 21 could also carry control signals to drive pulsatile fluid flow through the device and/or for fluid temperature control (not shown). The catheter device can also possibly send back information such as temperature data from other sensors back to the controller 21 as indicated by the data stream 25, possibly on separate leads. While the DC voltage generator 23 sends a DC voltage to the controller 21 through leads 27, the voltage generator is driven by control and timing inputs 28 from the controller unit 21. Multiple DC voltage pulses can be applied in a pulse train to ensure that sufficient tissue ablation has occurred. Further, the user can repeat the delivery of irreversible electroporation over several distinct pulse trains for further confidence.
In some embodiments, the electrode controller can include one or more modules and can automatically control the flow of fluid through a catheter (e.g., to produce a pulsed flow or the like), control heating of a particular portion of target tissue (e.g., the prostate), adjust a characteristic of the voltage waveform, or the like. For example,
Moreover, in some embodiments, the electrode controller 900 is optionally configured to be operably coupled to a medical device 935 that is distinct from the medical device 930. For example, the electrode controller 900 can optionally be coupled to a trans-rectal probe that includes a mechanism for delivering heat to a portion of the target tissue (e.g., the prostate).
The controller 900 can include a memory 911, a processor 910, and an input/output module (or interface) 901. The controller 900 can also include a temperature control module 902, a feedback module 905, and a pulse delivery module 908. The electrode controller 900 is coupled to a computer 920 or other input/output device via the input/output module (or interface) 901.
The processor 910 can be any processor configured to, for example, write data into and read data from the memory 911, and execute the instructions and/or methods stored within the memory 911. Furthermore, the processor 910 can be configured to control operation of the other modules within the controller (e.g., the temperature control module 902, the feedback module 905, and the pulse delivery module 908). Specifically, the processor 910 can receive a signal including user input, temperature data, distance measurements or the like and determine a set of electrodes to which voltage pulses should be applied, the desired timing and sequence of the voltage pulses and the like. In other embodiments, the processor 910 can be, for example, an application-specific integrated circuit (ASIC) or a combination of ASICs, which are designed to perform one or more specific functions. In yet other embodiments, the microprocessor can be an analog or digital circuit, or a combination of multiple circuits.
The memory device 911 can be any suitable device such as, for example, a read only memory (ROM) component, a random access memory (RAM) component, electronically programmable read only memory (EPROM), erasable electronically programmable read only memory (EEPROM), registers, cache memory, and/or flash memory. Any of the modules (the temperature control module 902, the feedback module 905, and the pulse delivery module 908) can be implemented by the processor 910 and/or stored within the memory 911.
As shown, the electrode controller 900 operably coupled to the signal generator 925. In some embodiments, the signal generator can be a cardiac defibrillator. The signal generator includes circuitry, components and/or code to produce a series of DC voltage pulses for delivery to electrodes included within the medical device 930. For example, in some embodiments, the signal generator 925 can be configured to produce a biphasic waveform having a pre-polarizing pulse followed by a polarizing pulse. The signal generator 925 can be any suitable signal generator of the types shown and described herein.
The pulse delivery module 908 of the electrode controller 900 includes circuitry, components and/or code to deliver an output signal associated with the pulsed voltage waveform produced by the signal generator 925. This signal (shown as signal 909) can be any signal of the types shown and described herein, and can be of a type and/or have characteristics to be therapeutically effective. In some embodiments, the pulse delivery module 908 receives input from other portions of the system, and can therefore send the signal 909 to the appropriate subset of electrodes, as described herein.
The electrode controller 900 includes the temperature control module 902. The temperature control module 902 includes circuitry, components and/or code to produce a control signal (identified as signal 903) that can be delivered to the device 935 and/or a control signal (identified as signal 903′) that can be delivered to either a coolant supply (not shown) or to the medical device 930. In this manner, the temperature control module 902 can facilitate heating of a first portion of the tissue (e.g., via the device 935) and/or cooling of a second portion of the tissue T (e.g., the urethral walls).
In some embodiment, the ablation controller and signal generator can be mounted on a rolling trolley, and the user can control the device using a touchscreen interface that is in the sterile field. The touchscreen can be for example an LCD touchscreen in a plastic housing mountable to a standard medical rail or post and can be used to select the electrodes for ablation and to ready the device to fire. The interface can for example be covered with a clear sterile plastic drape. In one embodiment, the operator can select the electrodes involved in the voltage pulse delivery. For example, in one embodiment the operator can select electrodes from the touchscreen with appropriate graphical buttons. In one embodiment, the ablation pulse train can be initiated by holding down a hand-held trigger button that is in the sterile field, possibly with the pulse train parameters (such as for example individual pulse parameters, number of pulses in the pulse train) having been programmed. The hand-held trigger button can be illuminated red to indicate that the device is “armed” and ready to ablate. The trigger button can be compatible for use in a sterile field and when attached to the controller can be illuminated a different color, for example white. When the device is firing, the trigger button flashes in sequence with the pulse delivery in a specific color such as red. The waveform of each delivered pulse is displayed on the touchscreen interface. While a touchscreen interface is one embodiment, other user interfaces can be used by a user to control the system such as for example a graphical display on a laptop or monitor display controlled by a standard computer mouse or joystick.
In some embodiments, the system (generator and controller) according to an embodiment can deliver rectangular-wave pulses with a peak maximum voltage of about 5 kV into a load with an impedance in the range of 30 Ohm to 3000 Ohm for a maximum duration of 200 μs, with a 100 μs maximum duration being still more preferred. Pulses can be delivered in a multiplexed and synchronized manner to a multi-electrode catheter inside the body with a duty cycle of up to 50% (for short bursts). The pulses can generally be delivered in bursts, such as for example a sequence of between 2 and 10 pulses interrupted by pauses of between 1 ms and 1000 ms. The multiplexer controller is capable of running an automated sequence to deliver the impulses/impulse trains (from the DC voltage signal/impulse generator) to the tissue target within the body. The controller system is capable of switching between subsets/nodes of electrodes located on the single use catheter.
The controllers and generators described herein can output waveforms that can be selected to generate a sequence of voltage pulses in either monophasic or biphasic forms and with either constant or progressively changing amplitudes.
Yet another example of a waveform or pulse shape that can be generated by the system is illustrated in
The time duration of each irreversible electroporation rectangular voltage pulse could lie in the range from 1 nanosecond to 10 milliseconds, with the range 10 microseconds to 1 millisecond being more preferable and the range 50 microseconds to 300 microseconds being still more preferable. The time interval between successive pulses of a pulse train could be in the range of 10 microseconds to 1 millisecond, with the range 50 microseconds to 300 microseconds being more preferable. The number of pulses applied in a single pulse train (with delays between individual pulses lying in the ranges just mentioned) can range from 1 to 100, with the range 1 to 10 being more preferable. As described in the foregoing, a pulse train can be driven by a user-controlled switch or button, in one embodiment preferably mounted on a hand-held joystick-like device. In one mode of operation a pulse train can be generated for every push of such a control button, while in an alternate mode of operation pulse trains can be generated with a pre-determined delay between successive pulse trains, for as long as the user-controlled switch or button is engaged by the user.
A catheter device for distal ablation with the electroporation system according to an embodiment is shown schematically in
In some embodiments, the time for which a cold temperature is maintained at the patient contacting catheter surface is monitored and varied, so that the cooling control is applied in time in a pulse-like format. This is done in order to maintain a surface layer of tissue at a suitably low or cold temperature, while ensuring that deeper regions of tissue undergo no more than marginal cooling. For example, the thermal diffusivity D of skin tissue is known to be in the range of 0.11 mm2/s. From standard heat diffusion theory, in a time T the depth x to which a temperature change applied at the surface is propagated is given (in two dimensions) by x˜√{square root over (2DT)}. Thus, in 20 seconds of cooling, the depth x would be approximately 2 mm, which is about the thickness of skin tissue. In one mode of operation of the system according to an embodiment, the cooling of the electrodes is performed in discrete time intervals in the range of 10 seconds to 40 seconds, followed by a pulse train application, the entire duration of the pulse train being in the range of less than about 8 seconds. Thus, the application of cooling could also be performed in pulses.
The urethral wall tissue in the region between dashed lines 153 and 154 in
Isomagnitude contours for electric field lines corresponding to the catheter described in the previous paragraph and depicted in
As shown in
The geometry of the catheter disposed in the urethra is illustrated schematically in cross section in
In some embodiments, the prostate ablation system can further include a trans-rectal probe inserted into the rectum and placed in apposition to the prostate, with the trans-rectal probe incorporating a means of thermal energy delivery for example in the form of focused ultrasound, radiant heat source, infrared source, thermoelectric heating source, or microwave source or other such means of thermal energy delivery that are known in the art. As shown in
The rectal probe 508 heats the prostate tissue by a relatively modest amount to stay within a safe range, generating a temperature increase preferably in the range of 3 to 10 degrees Fahrenheit. This thermal energy delivery could itself be pulsed, for example in pulses lasting between approximately 10 seconds and 60 seconds, depending on the mode of thermal energy delivery and the associated specific details of heat transfer to tissue. For example, in the case where the thermal energy is delivered by focused ultrasound by means of incorporating one or more ultrasound transducers and possibly ultrasound reflectors as well thereby generating a focal spot or focal zone for ultrasound within the prostate tissue, the local tissue temperature in the focal zone can be increased quite rapidly. The local tissue heating has the effect of decreasing the irreversible electroporation threshold electric field, thus making it possible to successfully ablate prostate tissue with generated electric fields that are not too large. In this case electric field values in the range of a few hundred Volts/cm would suffice to drive irreversible electroporation in the desired treatment zone in prostate tissue, while at the same time the cooled urethral wall (cooled with cooling fluid circulated through the ablation catheter) is left intact without being ablated.
Several variations of ablation catheter design or embodiment can be constructed as may be convenient from a manufacturing standpoint or for procedural ease of use. In one variation illustrated in
In another alternate embodiment of the ablation catheter according to an embodiment, as shown in
In yet another alternate embodiment, the ablation catheter can have, as illustrated in
In still another alternate embodiment of ablation catheter shown in
In the embodiments with a distal electrode, while the distal electrode can generally be either an anode or a cathode, in some embodiments it is a cathode, since this can reduce the likelihood of flash arcing. The various embodiments of ablation catheters described above can be used in Trans-Urethral Rectoscopy Procedures (TURP), where the tissue resection is performed by irreversible electroporation ablation. In such an application, as shown in
As shown in
In an alternate embodiment, instead of a defibrillator unit, the signal generator box 409 could comprise a programmable pulse generator of the types previously described herein. In a further alternate embodiment, such programmability (for example, of electrode selection) can be made from the switch unit 407, possibly through connection to a computer or other user interface. Further, in one embodiment sensed temperature data from the distal portion of the medical device (from a thermistor or thermocouple, for example) can be used to adjust the temperature of the saline fluid flow.
While various specific examples and embodiments of systems and tools for selective tissue ablation with irreversible electroporation were described in the foregoing for illustrative and exemplary purposes, it should be clear that a wide variety of variations and alternate embodiments could be conceived or constructed by those skilled in the art based on the teachings according to an embodiment. While specific methods of control and DC voltage application from a generator capable of selective excitation of sets of electrodes were disclosed, persons skilled in the art would recognize that any of a wide variety of other control or user input methods and methods of electrode subset selection etc. can be implemented without departing from the scope according to an embodiment. Likewise, while the foregoing described a range of specific tools or devices for more effective and selective DC voltage application for irreversible electroporation through fluid irrigation and catheter devices, other device constructions or variations could be implemented by one skilled in the art by employing the principles and teachings disclosed herein without departing from the scope according to an embodiment in a variety of medical applications.
Furthermore, while the present disclosure describes specific embodiments and tools involving irrigation with saline fluids and the use of temperature to selectively ablate tissue by taking advantage of the temperature-dependence of the threshold of irreversible electroporation, it should be clear to one skilled in the art that a variety of methods and devices for steady or pulsed fluid delivery, or for tissue or electrode cooling, or thermal energy delivery via a trans-rectal probe, could be implemented utilizing the methods and principles taught herein without departing from the scope according to an embodiment.
Accordingly, while many variations of methods and tools disclosed here can be constructed, the scope according to an embodiment is limited only by the appended claims.
This application is a continuation application of U.S. patent application Ser. No. 16/595,224, filed Oct. 7, 2019, and now U.S. Pat. No. 11,241,282, which is a divisional application of U.S. patent application Ser. No. 15/354,507, filed Nov. 17, 2016 and now U.S. Pat. No. 10,433,906, issued Oct. 8, 2019, which is an application claiming priority to PCT Application No. PCT/US2015/035592 titled “METHOD AND APPARATUS FOR RAPID AND SELECTIVE TRANSURETHRAL TISSUE ABLATION”, filed Jun. 12, 2015, which claims the benefit of priority to U.S. Provisional Application Ser. No. 61/997,868, entitled “Methods and Apparatus for Rapid and Selective Transurethral Tissue Ablation,” filed Jun. 12, 2014, the entire disclosures of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4200104 | Harris | Apr 1980 | A |
4470407 | Hussein | Sep 1984 | A |
4739759 | Rexroth et al. | Apr 1988 | A |
5234004 | Hascoet | Aug 1993 | A |
5242441 | Avitall | Sep 1993 | A |
5257635 | Langberg | Nov 1993 | A |
5281213 | Milder et al. | Jan 1994 | A |
5304214 | Deford et al. | Apr 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5341807 | Nardella | Aug 1994 | A |
5342301 | Saab | Aug 1994 | A |
5398683 | Edwards et al. | Mar 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5454370 | Avitall | Oct 1995 | A |
5515848 | Corbett et al. | May 1996 | A |
5531685 | Hemmer et al. | Jul 1996 | A |
5545161 | Imran | Aug 1996 | A |
5578040 | Smith | Nov 1996 | A |
5617854 | Munsif | Apr 1997 | A |
5624430 | Eton et al. | Apr 1997 | A |
5667491 | Pliquett et al. | Sep 1997 | A |
5672170 | Cho et al. | Sep 1997 | A |
5700243 | Narciso, Jr. | Dec 1997 | A |
5702438 | Avitall | Dec 1997 | A |
5706823 | Wodlinger | Jan 1998 | A |
5722400 | Ockuly et al. | Mar 1998 | A |
5722402 | Swanson et al. | Mar 1998 | A |
5749914 | Janssen | May 1998 | A |
5779699 | Lipson | Jul 1998 | A |
5788692 | Campbell et al. | Aug 1998 | A |
5810762 | Hofmann | Sep 1998 | A |
5833710 | Jacobson | Nov 1998 | A |
5836874 | Swanson et al. | Nov 1998 | A |
5836942 | Netherly et al. | Nov 1998 | A |
5836947 | Fleischman et al. | Nov 1998 | A |
5843154 | Osypka | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5860974 | Abele | Jan 1999 | A |
5863291 | Schaer | Jan 1999 | A |
5868736 | Swanson et al. | Feb 1999 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5876336 | Swanson et al. | Mar 1999 | A |
5885278 | Fleischman | Mar 1999 | A |
5895404 | Ruiz | Apr 1999 | A |
5899917 | Edwards et al. | May 1999 | A |
5904709 | Arndt et al. | May 1999 | A |
5916158 | Webster, Jr. | Jun 1999 | A |
5916213 | Haissaguerre et al. | Jun 1999 | A |
5921924 | Avitall | Jul 1999 | A |
5928269 | Alt | Jul 1999 | A |
5928270 | Ramsey, III | Jul 1999 | A |
5938660 | Swartz et al. | Aug 1999 | A |
6002955 | Willems et al. | Dec 1999 | A |
6006131 | Cooper et al. | Dec 1999 | A |
6009351 | Flachman | Dec 1999 | A |
6014579 | Pomeranz et al. | Jan 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6033403 | Tu et al. | Mar 2000 | A |
6035238 | Ingle et al. | Mar 2000 | A |
6045550 | Simpson et al. | Apr 2000 | A |
6068653 | LaFontaine | May 2000 | A |
6071274 | Thompson et al. | Jun 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6076012 | Swanson et al. | Jun 2000 | A |
6090104 | Webster, Jr. | Jul 2000 | A |
6096036 | Bowe et al. | Aug 2000 | A |
6113595 | Muntermann | Sep 2000 | A |
6119041 | Pomeranz et al. | Sep 2000 | A |
6120500 | Bednarek et al. | Sep 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6146381 | Bowe et al. | Nov 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6167291 | Barajas et al. | Dec 2000 | A |
6171305 | Sherman | Jan 2001 | B1 |
6216034 | Hofmann et al. | Apr 2001 | B1 |
6219582 | Hofstad et al. | Apr 2001 | B1 |
6223085 | Dann et al. | Apr 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6251107 | Schaer | Jun 2001 | B1 |
6251109 | Hassett et al. | Jun 2001 | B1 |
6251128 | Knopp et al. | Jun 2001 | B1 |
6270476 | Santoianni et al. | Aug 2001 | B1 |
6272384 | Simon et al. | Aug 2001 | B1 |
6287306 | Kroll et al. | Sep 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6350263 | Wetzig et al. | Feb 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6370412 | Armoundas et al. | Apr 2002 | B1 |
6391024 | Sun et al. | May 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6447505 | McGovern et al. | Sep 2002 | B2 |
6464699 | Swanson | Oct 2002 | B1 |
6470211 | Ideker et al. | Oct 2002 | B1 |
6502576 | Lesh | Jan 2003 | B1 |
6503247 | Swartz et al. | Jan 2003 | B2 |
6517534 | McGovern et al. | Feb 2003 | B1 |
6527724 | Fenici | Mar 2003 | B1 |
6527767 | Wang et al. | Mar 2003 | B2 |
6592581 | Bowe | Jul 2003 | B2 |
6595991 | Toellner et al. | Jul 2003 | B2 |
6607520 | Keane | Aug 2003 | B2 |
6613046 | Jenkins et al. | Sep 2003 | B1 |
6623480 | Kuo et al. | Sep 2003 | B1 |
6638278 | Falwell et al. | Oct 2003 | B2 |
6666863 | Wentzel et al. | Dec 2003 | B2 |
6669693 | Friedman | Dec 2003 | B2 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6719756 | Muntermann | Apr 2004 | B1 |
6723092 | Brown et al. | Apr 2004 | B2 |
6728563 | Rashidi | Apr 2004 | B2 |
6743225 | Sanchez et al. | Jun 2004 | B2 |
6743226 | Cosman et al. | Jun 2004 | B2 |
6743239 | Kuehn et al. | Jun 2004 | B1 |
6764486 | Natale | Jul 2004 | B2 |
6780181 | Kroll et al. | Aug 2004 | B2 |
6805128 | Pless et al. | Oct 2004 | B1 |
6807447 | Griffin, III | Oct 2004 | B2 |
6892091 | Ben-Haim et al. | May 2005 | B1 |
6893438 | Hall et al. | May 2005 | B2 |
6926714 | Sra | Aug 2005 | B1 |
6955173 | Lesh | Oct 2005 | B2 |
6960206 | Keane | Nov 2005 | B2 |
6960207 | Vanney et al. | Nov 2005 | B2 |
6972016 | Hill et al. | Dec 2005 | B2 |
6973339 | Govari | Dec 2005 | B2 |
6979331 | Hintringer et al. | Dec 2005 | B2 |
6984232 | Vanney et al. | Jan 2006 | B2 |
6985776 | Kane et al. | Jan 2006 | B2 |
6994706 | Chornenky | Feb 2006 | B2 |
7001383 | Keidar | Feb 2006 | B2 |
7041095 | Wang et al. | May 2006 | B2 |
7113831 | Hooven | Sep 2006 | B2 |
7171263 | Darvish et al. | Jan 2007 | B2 |
7182725 | Bonan et al. | Feb 2007 | B2 |
7195628 | Falkenberg | Mar 2007 | B2 |
7207988 | Leckrone et al. | Apr 2007 | B2 |
7207989 | Pike et al. | Apr 2007 | B2 |
7229402 | Diaz et al. | Jun 2007 | B2 |
7229437 | Johnson et al. | Jun 2007 | B2 |
7250049 | Roop et al. | Jul 2007 | B2 |
7285116 | De et al. | Oct 2007 | B2 |
7285119 | Stewart et al. | Oct 2007 | B2 |
7326208 | Vanney et al. | Feb 2008 | B2 |
7346379 | Eng et al. | Mar 2008 | B2 |
7367974 | Haemmerich et al. | May 2008 | B2 |
7374567 | Heuser | May 2008 | B2 |
7387629 | Vanney et al. | Jun 2008 | B2 |
7387630 | Mest | Jun 2008 | B2 |
7387636 | Cohn et al. | Jun 2008 | B2 |
7416552 | Paul et al. | Aug 2008 | B2 |
7419477 | Simpson et al. | Sep 2008 | B2 |
7419489 | Vanney et al. | Sep 2008 | B2 |
7422591 | Phan | Sep 2008 | B2 |
7429261 | Kunis et al. | Sep 2008 | B2 |
7435248 | Taimisto et al. | Oct 2008 | B2 |
7513896 | Orszulak | Apr 2009 | B2 |
7527625 | Knight et al. | May 2009 | B2 |
7578816 | Boveja et al. | Aug 2009 | B2 |
7588567 | Boveja et al. | Sep 2009 | B2 |
7623899 | Worley et al. | Nov 2009 | B2 |
7678108 | Chrisitian et al. | Mar 2010 | B2 |
7681579 | Schwartz | Mar 2010 | B2 |
7771421 | Stewart et al. | Aug 2010 | B2 |
7805182 | Weese et al. | Sep 2010 | B2 |
7842031 | Abboud et al. | Nov 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
7857808 | Oral et al. | Dec 2010 | B2 |
7857809 | Drysen | Dec 2010 | B2 |
7869865 | Govari et al. | Jan 2011 | B2 |
7896873 | Hiller et al. | Mar 2011 | B2 |
7917211 | Zacouto | Mar 2011 | B2 |
7918819 | Karmarkar et al. | Apr 2011 | B2 |
7918850 | Govari et al. | Apr 2011 | B2 |
7922714 | Stevens-Wright | Apr 2011 | B2 |
7955827 | Rubinsky et al. | Jun 2011 | B2 |
8048067 | Davalos et al. | Nov 2011 | B2 |
8048072 | Verin et al. | Nov 2011 | B2 |
8100895 | Panos et al. | Jan 2012 | B2 |
8100900 | Prinz et al. | Jan 2012 | B2 |
8108069 | Stahler et al. | Jan 2012 | B2 |
8133220 | Lee et al. | Mar 2012 | B2 |
8137342 | Crossman | Mar 2012 | B2 |
8145289 | Calabro′ et al. | Mar 2012 | B2 |
8147486 | Honour et al. | Apr 2012 | B2 |
8160690 | Wilfley et al. | Apr 2012 | B2 |
8175680 | Panescu | May 2012 | B2 |
8182477 | Orszulak et al. | May 2012 | B2 |
8206384 | Falwell et al. | Jun 2012 | B2 |
8206385 | Stangenes et al. | Jun 2012 | B2 |
8216221 | Ibrahim et al. | Jul 2012 | B2 |
8221411 | Francischelli et al. | Jul 2012 | B2 |
8226648 | Paul et al. | Jul 2012 | B2 |
8228065 | Wirtz et al. | Jul 2012 | B2 |
8235986 | Kulesa et al. | Aug 2012 | B2 |
8235988 | Davis et al. | Aug 2012 | B2 |
8251986 | Chornenky et al. | Aug 2012 | B2 |
8282631 | Davalos et al. | Oct 2012 | B2 |
8287532 | Carroll et al. | Oct 2012 | B2 |
8414508 | Thapliyal et al. | Apr 2013 | B2 |
8430875 | Ibrahim et al. | Apr 2013 | B2 |
8433394 | Harlev et al. | Apr 2013 | B2 |
8449535 | Deno et al. | May 2013 | B2 |
8454594 | Demarais et al. | Jun 2013 | B2 |
8463368 | Harlev et al. | Jun 2013 | B2 |
8475450 | Govari et al. | Jul 2013 | B2 |
8486063 | Werneth et al. | Jul 2013 | B2 |
8500733 | Watson | Aug 2013 | B2 |
8535304 | Sklar et al. | Sep 2013 | B2 |
8538501 | Venkatachalam et al. | Sep 2013 | B2 |
8562588 | Hobbs et al. | Oct 2013 | B2 |
8568406 | Harlev et al. | Oct 2013 | B2 |
8568410 | Vakharia et al. | Oct 2013 | B2 |
8571635 | McGee | Oct 2013 | B2 |
8571647 | Harlev et al. | Oct 2013 | B2 |
8579897 | Vakharia et al. | Nov 2013 | B2 |
8585695 | Shih | Nov 2013 | B2 |
8588885 | Hall et al. | Nov 2013 | B2 |
8597288 | Christian | Dec 2013 | B2 |
8608735 | Govari et al. | Dec 2013 | B2 |
8628522 | Ibrahim et al. | Jan 2014 | B2 |
8632534 | Pearson et al. | Jan 2014 | B2 |
8647338 | Chornenky et al. | Feb 2014 | B2 |
8708952 | Cohen et al. | Apr 2014 | B2 |
8734442 | Cao et al. | May 2014 | B2 |
8771267 | Kunis et al. | Jul 2014 | B2 |
8795310 | Fung et al. | Aug 2014 | B2 |
8808273 | Caples et al. | Aug 2014 | B2 |
8808281 | Emmons et al. | Aug 2014 | B2 |
8834461 | Werneth et al. | Sep 2014 | B2 |
8834464 | Stewart et al. | Sep 2014 | B2 |
8868169 | Narayan et al. | Oct 2014 | B2 |
8876817 | Avitall et al. | Nov 2014 | B2 |
8880195 | Azure | Nov 2014 | B2 |
8886309 | Luther et al. | Nov 2014 | B2 |
8903488 | Callas et al. | Dec 2014 | B2 |
8920411 | Gelbart et al. | Dec 2014 | B2 |
8926589 | Govari | Jan 2015 | B2 |
8932287 | Gelbart et al. | Jan 2015 | B2 |
8945117 | Bencini | Feb 2015 | B2 |
8979841 | Kunis et al. | Mar 2015 | B2 |
8986278 | Fung et al. | Mar 2015 | B2 |
8996091 | De et al. | Mar 2015 | B2 |
9002442 | Harley et al. | Apr 2015 | B2 |
9005189 | Davalos et al. | Apr 2015 | B2 |
9005194 | Oral et al. | Apr 2015 | B2 |
9011425 | Fischer et al. | Apr 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9055959 | Vaska et al. | Jun 2015 | B2 |
9072518 | Swanson | Jul 2015 | B2 |
9078667 | Besser et al. | Jul 2015 | B2 |
9101374 | Hoch et al. | Aug 2015 | B1 |
9113911 | Sherman | Aug 2015 | B2 |
9119533 | Ghaffari | Sep 2015 | B2 |
9119634 | Gelbart et al. | Sep 2015 | B2 |
9131897 | Harada et al. | Sep 2015 | B2 |
9155590 | Mathur | Oct 2015 | B2 |
9162037 | Belson et al. | Oct 2015 | B2 |
9179972 | Olson | Nov 2015 | B2 |
9186481 | Avitall et al. | Nov 2015 | B2 |
9192769 | Donofrio et al. | Nov 2015 | B2 |
9204916 | Lalonde | Dec 2015 | B2 |
9211405 | Mahapatra et al. | Dec 2015 | B2 |
9216055 | Spence et al. | Dec 2015 | B2 |
9233248 | Luther et al. | Jan 2016 | B2 |
9237926 | Nollert et al. | Jan 2016 | B2 |
9262252 | Kirkpatrick et al. | Feb 2016 | B2 |
9277957 | Long et al. | Mar 2016 | B2 |
9282910 | Narayan et al. | Mar 2016 | B2 |
9289258 | Cohen | Mar 2016 | B2 |
9289606 | Paul et al. | Mar 2016 | B2 |
9295516 | Pearson et al. | Mar 2016 | B2 |
9301801 | Scheib | Apr 2016 | B2 |
9351789 | Novichenok et al. | May 2016 | B2 |
9375268 | Long | Jun 2016 | B2 |
9387031 | Stewart et al. | Jul 2016 | B2 |
9414881 | Callas et al. | Aug 2016 | B2 |
9468495 | Kunis et al. | Oct 2016 | B2 |
9474486 | Eliason et al. | Oct 2016 | B2 |
9474574 | Brahim et al. | Oct 2016 | B2 |
9480525 | Lopes et al. | Nov 2016 | B2 |
9486272 | Bonyak et al. | Nov 2016 | B2 |
9486273 | Lopes et al. | Nov 2016 | B2 |
9492227 | Lopes et al. | Nov 2016 | B2 |
9492228 | Lopes et al. | Nov 2016 | B2 |
9510888 | Jean-Pierre | Dec 2016 | B2 |
9517103 | Panescu et al. | Dec 2016 | B2 |
9526573 | Lopes et al. | Dec 2016 | B2 |
9532831 | Reinders et al. | Jan 2017 | B2 |
9539010 | Gagner et al. | Jan 2017 | B2 |
9554848 | Stewart et al. | Jan 2017 | B2 |
9554851 | Sklar et al. | Jan 2017 | B2 |
9700368 | Callas et al. | Jul 2017 | B2 |
9724170 | Mickelsen | Aug 2017 | B2 |
9757193 | Zarins et al. | Sep 2017 | B2 |
9782099 | Williams et al. | Oct 2017 | B2 |
9795442 | Salahieh et al. | Oct 2017 | B2 |
9801681 | Laske et al. | Oct 2017 | B2 |
9808304 | Lalonde | Nov 2017 | B2 |
9861802 | Mickelsen | Jan 2018 | B2 |
9913685 | Clark et al. | Mar 2018 | B2 |
9931487 | Quinn et al. | Apr 2018 | B2 |
9987081 | Bowers et al. | Jun 2018 | B1 |
9999465 | Long et al. | Jun 2018 | B2 |
10010368 | Laske et al. | Jul 2018 | B2 |
10016232 | Bowers et al. | Jul 2018 | B1 |
10130423 | Viswanathan et al. | Nov 2018 | B1 |
10172673 | Viswanathan et al. | Jan 2019 | B2 |
10194818 | Williams et al. | Feb 2019 | B2 |
10285755 | Stewart et al. | May 2019 | B2 |
10322286 | Viswanathan et al. | Jun 2019 | B2 |
10433906 | Mickelsen | Oct 2019 | B2 |
10433908 | Viswanathan et al. | Oct 2019 | B2 |
10512505 | Raju | Dec 2019 | B2 |
10512779 | Viswanathan et al. | Dec 2019 | B2 |
10517672 | Long | Dec 2019 | B2 |
10617467 | Viswanathan et al. | Apr 2020 | B2 |
10660702 | Viswanathan et al. | May 2020 | B2 |
20010000791 | Suorsa et al. | May 2001 | A1 |
20010007070 | Stewart et al. | Jul 2001 | A1 |
20010044624 | Seraj et al. | Nov 2001 | A1 |
20020052602 | Wang et al. | May 2002 | A1 |
20020058933 | Christopherson et al. | May 2002 | A1 |
20020077627 | Johnson et al. | Jun 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020091384 | Hooven et al. | Jul 2002 | A1 |
20020095176 | Prestel | Jul 2002 | A1 |
20020111618 | Stewart et al. | Aug 2002 | A1 |
20020156526 | Hlavka et al. | Oct 2002 | A1 |
20020161323 | Miller et al. | Oct 2002 | A1 |
20020169445 | Jain et al. | Nov 2002 | A1 |
20020177765 | Bowe et al. | Nov 2002 | A1 |
20020183638 | Swanson | Dec 2002 | A1 |
20030014098 | Quijano et al. | Jan 2003 | A1 |
20030018374 | Paulos | Jan 2003 | A1 |
20030023287 | Edwards et al. | Jan 2003 | A1 |
20030028189 | Woloszko et al. | Feb 2003 | A1 |
20030050637 | Maguire et al. | Mar 2003 | A1 |
20030060856 | Chornenky et al. | Mar 2003 | A1 |
20030114849 | Ryan | Jun 2003 | A1 |
20030125729 | Hooven et al. | Jul 2003 | A1 |
20030130598 | Manning et al. | Jul 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030204161 | Ferek-Petric | Oct 2003 | A1 |
20030229379 | Maynard | Dec 2003 | A1 |
20040039382 | Kroll et al. | Feb 2004 | A1 |
20040049181 | Stewart et al. | Mar 2004 | A1 |
20040049182 | Koblish et al. | Mar 2004 | A1 |
20040082859 | Schaer | Apr 2004 | A1 |
20040082948 | Stewart et al. | Apr 2004 | A1 |
20040087939 | Eggers et al. | May 2004 | A1 |
20040111087 | Stern et al. | Jun 2004 | A1 |
20040199157 | Palanker et al. | Oct 2004 | A1 |
20040231683 | Eng et al. | Nov 2004 | A1 |
20040236360 | Cohn et al. | Nov 2004 | A1 |
20040254607 | Wittenberger et al. | Dec 2004 | A1 |
20040267337 | Hayzelden | Dec 2004 | A1 |
20050033282 | Hooven | Feb 2005 | A1 |
20050187545 | Hooven et al. | Aug 2005 | A1 |
20050222632 | Obino | Oct 2005 | A1 |
20050251130 | Boveja et al. | Nov 2005 | A1 |
20050261672 | Deem et al. | Nov 2005 | A1 |
20060009755 | Sra | Jan 2006 | A1 |
20060009759 | Chrisitian et al. | Jan 2006 | A1 |
20060015095 | Desinger et al. | Jan 2006 | A1 |
20060015165 | Bertolero et al. | Jan 2006 | A1 |
20060024359 | Walker et al. | Feb 2006 | A1 |
20060058781 | Long | Mar 2006 | A1 |
20060111702 | Oral et al. | May 2006 | A1 |
20060142801 | Demarais et al. | Jun 2006 | A1 |
20060167448 | Kozel | Jul 2006 | A1 |
20060217703 | Chornenky et al. | Sep 2006 | A1 |
20060241734 | Marshall et al. | Oct 2006 | A1 |
20060264752 | Rubinsky et al. | Nov 2006 | A1 |
20060270900 | Chin et al. | Nov 2006 | A1 |
20060287648 | Schwartz | Dec 2006 | A1 |
20060293730 | Rubinsky et al. | Dec 2006 | A1 |
20060293731 | Rubinsky et al. | Dec 2006 | A1 |
20070005053 | Dando | Jan 2007 | A1 |
20070021744 | Creighton | Jan 2007 | A1 |
20070060989 | Deem et al. | Mar 2007 | A1 |
20070066972 | Ormsby et al. | Mar 2007 | A1 |
20070129721 | Phan et al. | Jun 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070156135 | Rubinsky et al. | Jul 2007 | A1 |
20070167740 | Grunewald et al. | Jul 2007 | A1 |
20070167940 | Stevens-Wright | Jul 2007 | A1 |
20070173878 | Heuser | Jul 2007 | A1 |
20070208329 | Ward et al. | Sep 2007 | A1 |
20070225589 | Viswanathan | Sep 2007 | A1 |
20070249923 | Keenan | Oct 2007 | A1 |
20070260223 | Scheibe et al. | Nov 2007 | A1 |
20070270792 | Hennemann et al. | Nov 2007 | A1 |
20080009855 | Hamou | Jan 2008 | A1 |
20080033426 | Machell | Feb 2008 | A1 |
20080065061 | Viswanathan | Mar 2008 | A1 |
20080086120 | Mirza et al. | Apr 2008 | A1 |
20080091195 | Sliwa et al. | Apr 2008 | A1 |
20080103545 | Bolea et al. | May 2008 | A1 |
20080132885 | Rubinsky et al. | Jun 2008 | A1 |
20080161789 | Thao et al. | Jul 2008 | A1 |
20080172048 | Martin et al. | Jul 2008 | A1 |
20080200913 | Viswanathan | Aug 2008 | A1 |
20080208118 | Goldman | Aug 2008 | A1 |
20080243214 | Koblish | Oct 2008 | A1 |
20080281322 | Sherman et al. | Nov 2008 | A1 |
20080300574 | Belson et al. | Dec 2008 | A1 |
20080300588 | Groth et al. | Dec 2008 | A1 |
20090024084 | Khosla et al. | Jan 2009 | A1 |
20090048591 | Ibrahim et al. | Feb 2009 | A1 |
20090062788 | Long et al. | Mar 2009 | A1 |
20090076496 | Azure | Mar 2009 | A1 |
20090076500 | Azure | Mar 2009 | A1 |
20090105654 | Kurth et al. | Apr 2009 | A1 |
20090138009 | Viswanathan et al. | May 2009 | A1 |
20090149917 | Whitehurst et al. | Jun 2009 | A1 |
20090163905 | Winkler et al. | Jun 2009 | A1 |
20090228003 | Sinelnikov | Sep 2009 | A1 |
20090240248 | Deford et al. | Sep 2009 | A1 |
20090275827 | Aiken et al. | Nov 2009 | A1 |
20090281477 | Mikus et al. | Nov 2009 | A1 |
20090306651 | Schneider | Dec 2009 | A1 |
20100004623 | Hamilton et al. | Jan 2010 | A1 |
20100023004 | Francischelli et al. | Jan 2010 | A1 |
20100137861 | Soroff et al. | Jun 2010 | A1 |
20100185140 | Kassab et al. | Jul 2010 | A1 |
20100185186 | Longoria | Jul 2010 | A1 |
20100191112 | Demarais et al. | Jul 2010 | A1 |
20100191232 | Boveda | Jul 2010 | A1 |
20100241185 | Mahapatra et al. | Sep 2010 | A1 |
20100261994 | Davalos et al. | Oct 2010 | A1 |
20100274238 | Klimovitch | Oct 2010 | A1 |
20100280513 | Juergen et al. | Nov 2010 | A1 |
20100280539 | Miyoshi et al. | Nov 2010 | A1 |
20100292687 | Kauphusman et al. | Nov 2010 | A1 |
20100312096 | Guttman et al. | Dec 2010 | A1 |
20100312300 | Ryu et al. | Dec 2010 | A1 |
20110028962 | Werneth et al. | Feb 2011 | A1 |
20110028964 | Edwards | Feb 2011 | A1 |
20110040199 | Hopenfeld | Feb 2011 | A1 |
20110098694 | Long | Apr 2011 | A1 |
20110106221 | Neal et al. | May 2011 | A1 |
20110130708 | Perry et al. | Jun 2011 | A1 |
20110144524 | Fish et al. | Jun 2011 | A1 |
20110144633 | Govari | Jun 2011 | A1 |
20110160785 | Mori et al. | Jun 2011 | A1 |
20110190659 | Long et al. | Aug 2011 | A1 |
20110190727 | Edmunds et al. | Aug 2011 | A1 |
20110213231 | Hall et al. | Sep 2011 | A1 |
20110276047 | Sklar et al. | Nov 2011 | A1 |
20110276075 | Fung et al. | Nov 2011 | A1 |
20110288544 | Verin et al. | Nov 2011 | A1 |
20110288547 | Morgan et al. | Nov 2011 | A1 |
20110313417 | De et al. | Dec 2011 | A1 |
20120029512 | Willard et al. | Feb 2012 | A1 |
20120046570 | Villegas et al. | Feb 2012 | A1 |
20120053581 | Wittkampf et al. | Mar 2012 | A1 |
20120059255 | Paul et al. | Mar 2012 | A1 |
20120071872 | Rubinsky et al. | Mar 2012 | A1 |
20120078320 | Schotzko et al. | Mar 2012 | A1 |
20120078343 | Fish | Mar 2012 | A1 |
20120089089 | Swain et al. | Apr 2012 | A1 |
20120095459 | Callas et al. | Apr 2012 | A1 |
20120101413 | Beetel et al. | Apr 2012 | A1 |
20120158021 | Morrill | Jun 2012 | A1 |
20120165667 | Altmann et al. | Jun 2012 | A1 |
20120172859 | Condie et al. | Jul 2012 | A1 |
20120172867 | Ryu et al. | Jul 2012 | A1 |
20120197100 | Razavi et al. | Aug 2012 | A1 |
20120209260 | Lambert et al. | Aug 2012 | A1 |
20120220998 | Long et al. | Aug 2012 | A1 |
20120265198 | Crow et al. | Oct 2012 | A1 |
20120283582 | Mahapatra et al. | Nov 2012 | A1 |
20120303019 | Zhao et al. | Nov 2012 | A1 |
20120310052 | Mahapatra et al. | Dec 2012 | A1 |
20120310230 | Willis | Dec 2012 | A1 |
20120310237 | Swanson | Dec 2012 | A1 |
20120316557 | Sartor et al. | Dec 2012 | A1 |
20130030430 | Stewart et al. | Jan 2013 | A1 |
20130060247 | Sklar et al. | Mar 2013 | A1 |
20130060248 | Sklar et al. | Mar 2013 | A1 |
20130079768 | De et al. | Mar 2013 | A1 |
20130090651 | Smith | Apr 2013 | A1 |
20130096655 | Moffitt et al. | Apr 2013 | A1 |
20130103027 | Sklar et al. | Apr 2013 | A1 |
20130103064 | Arenson et al. | Apr 2013 | A1 |
20130131662 | Wittkampf | May 2013 | A1 |
20130158538 | Govari | Jun 2013 | A1 |
20130158621 | Ding et al. | Jun 2013 | A1 |
20130172715 | Just et al. | Jul 2013 | A1 |
20130172864 | Brahim et al. | Jul 2013 | A1 |
20130172875 | Govari et al. | Jul 2013 | A1 |
20130184702 | Neal et al. | Jul 2013 | A1 |
20130218157 | Callas et al. | Aug 2013 | A1 |
20130226174 | Ibrahim et al. | Aug 2013 | A1 |
20130237984 | Sklar | Sep 2013 | A1 |
20130253415 | Sano et al. | Sep 2013 | A1 |
20130296679 | Condie et al. | Nov 2013 | A1 |
20130310829 | Cohen | Nov 2013 | A1 |
20130317385 | Sklar et al. | Nov 2013 | A1 |
20130331831 | Werneth et al. | Dec 2013 | A1 |
20130338467 | Grasse et al. | Dec 2013 | A1 |
20140005664 | Govari et al. | Jan 2014 | A1 |
20140024911 | Harlev et al. | Jan 2014 | A1 |
20140039288 | Hue-Teh | Feb 2014 | A1 |
20140051993 | McGee | Feb 2014 | A1 |
20140052118 | Laske et al. | Feb 2014 | A1 |
20140052126 | Long et al. | Feb 2014 | A1 |
20140052216 | Long et al. | Feb 2014 | A1 |
20140058377 | Deem et al. | Feb 2014 | A1 |
20140081113 | Cohen et al. | Mar 2014 | A1 |
20140100563 | Govari et al. | Apr 2014 | A1 |
20140107644 | Falwell et al. | Apr 2014 | A1 |
20140142408 | De et al. | May 2014 | A1 |
20140148804 | Ward et al. | May 2014 | A1 |
20140163480 | Govari et al. | Jun 2014 | A1 |
20140163546 | Govari et al. | Jun 2014 | A1 |
20140171942 | Werneth et al. | Jun 2014 | A1 |
20140180035 | Anderson | Jun 2014 | A1 |
20140187916 | Clark et al. | Jul 2014 | A1 |
20140194716 | Diep et al. | Jul 2014 | A1 |
20140194867 | Fish et al. | Jul 2014 | A1 |
20140200567 | Cox et al. | Jul 2014 | A1 |
20140235986 | Harlev et al. | Aug 2014 | A1 |
20140235988 | Ghosh | Aug 2014 | A1 |
20140235989 | Wodlinger et al. | Aug 2014 | A1 |
20140243851 | Cohen et al. | Aug 2014 | A1 |
20140276760 | Bonyak et al. | Sep 2014 | A1 |
20140276782 | Paskar | Sep 2014 | A1 |
20140276791 | Ku et al. | Sep 2014 | A1 |
20140288556 | Ibrahim et al. | Sep 2014 | A1 |
20140303721 | Fung et al. | Oct 2014 | A1 |
20140343549 | Spear et al. | Nov 2014 | A1 |
20140364845 | Rashidi | Dec 2014 | A1 |
20140371613 | Narayan et al. | Dec 2014 | A1 |
20150005767 | Werneth et al. | Jan 2015 | A1 |
20150011995 | Avitall et al. | Jan 2015 | A1 |
20150066108 | Shi et al. | Mar 2015 | A1 |
20150119674 | Fischell et al. | Apr 2015 | A1 |
20150126840 | Thakur et al. | May 2015 | A1 |
20150133914 | Koblish | May 2015 | A1 |
20150138977 | Dacosta | May 2015 | A1 |
20150141978 | Subramaniam et al. | May 2015 | A1 |
20150141982 | Lee | May 2015 | A1 |
20150142041 | Kendale et al. | May 2015 | A1 |
20150148796 | Bencini | May 2015 | A1 |
20150150472 | Harlev et al. | Jun 2015 | A1 |
20150157402 | Kunis et al. | Jun 2015 | A1 |
20150157412 | Wallace et al. | Jun 2015 | A1 |
20150164584 | Davalos et al. | Jun 2015 | A1 |
20150173824 | Davalos et al. | Jun 2015 | A1 |
20150173828 | Avitall | Jun 2015 | A1 |
20150174404 | Rousso et al. | Jun 2015 | A1 |
20150182740 | Mickelsen | Jul 2015 | A1 |
20150196217 | Harlev et al. | Jul 2015 | A1 |
20150223726 | Harlev et al. | Aug 2015 | A1 |
20150230699 | Berul et al. | Aug 2015 | A1 |
20150258344 | Tandri et al. | Sep 2015 | A1 |
20150265342 | Long et al. | Sep 2015 | A1 |
20150265344 | Aktas et al. | Sep 2015 | A1 |
20150272656 | Chen | Oct 2015 | A1 |
20150272664 | Cohen | Oct 2015 | A9 |
20150272667 | Govari et al. | Oct 2015 | A1 |
20150282729 | Harlev et al. | Oct 2015 | A1 |
20150289923 | Davalos et al. | Oct 2015 | A1 |
20150304879 | Dacosta | Oct 2015 | A1 |
20150320481 | Cosman et al. | Nov 2015 | A1 |
20150321021 | Tandri et al. | Nov 2015 | A1 |
20150342532 | Basu et al. | Dec 2015 | A1 |
20150343212 | Rousso et al. | Dec 2015 | A1 |
20150351836 | Prutchi | Dec 2015 | A1 |
20150359583 | Swanson | Dec 2015 | A1 |
20160000500 | Salahieh et al. | Jan 2016 | A1 |
20160008061 | Fung et al. | Jan 2016 | A1 |
20160008065 | Gliner et al. | Jan 2016 | A1 |
20160029960 | Toth et al. | Feb 2016 | A1 |
20160038772 | Thapliyal et al. | Feb 2016 | A1 |
20160051204 | Harlev et al. | Feb 2016 | A1 |
20160051324 | Stewart et al. | Feb 2016 | A1 |
20160058493 | Neal et al. | Mar 2016 | A1 |
20160058506 | Spence et al. | Mar 2016 | A1 |
20160066993 | Avitall et al. | Mar 2016 | A1 |
20160074679 | Thapliyal et al. | Mar 2016 | A1 |
20160095531 | Narayan et al. | Apr 2016 | A1 |
20160095642 | Deno et al. | Apr 2016 | A1 |
20160095653 | Lambert et al. | Apr 2016 | A1 |
20160100797 | Mahapatra et al. | Apr 2016 | A1 |
20160100884 | Fay et al. | Apr 2016 | A1 |
20160106498 | Highsmith et al. | Apr 2016 | A1 |
20160106500 | Olson | Apr 2016 | A1 |
20160113709 | Maor | Apr 2016 | A1 |
20160113712 | Cheung et al. | Apr 2016 | A1 |
20160120564 | Kirkpatrick et al. | May 2016 | A1 |
20160128770 | Afonso et al. | May 2016 | A1 |
20160166167 | Narayan et al. | Jun 2016 | A1 |
20160166310 | Stewart et al. | Jun 2016 | A1 |
20160166311 | Long et al. | Jun 2016 | A1 |
20160174865 | Stewart et al. | Jun 2016 | A1 |
20160183877 | Williams et al. | Jun 2016 | A1 |
20160184003 | Srimathveeravalli et al. | Jun 2016 | A1 |
20160184004 | Hull et al. | Jun 2016 | A1 |
20160213282 | Leo et al. | Jul 2016 | A1 |
20160220307 | Miller et al. | Aug 2016 | A1 |
20160235470 | Callas et al. | Aug 2016 | A1 |
20160249972 | Klink | Sep 2016 | A1 |
20160256682 | Paul et al. | Sep 2016 | A1 |
20160287314 | Arena et al. | Oct 2016 | A1 |
20160310211 | Long | Oct 2016 | A1 |
20160324564 | Gerlach et al. | Nov 2016 | A1 |
20160324573 | Mickelson et al. | Nov 2016 | A1 |
20160331441 | Konings | Nov 2016 | A1 |
20160331459 | Townley et al. | Nov 2016 | A1 |
20160338770 | Bar-Tal et al. | Nov 2016 | A1 |
20160354142 | Pearson et al. | Dec 2016 | A1 |
20160361109 | Weaver et al. | Dec 2016 | A1 |
20170001016 | De Ridder | Jan 2017 | A1 |
20170035499 | Stewart et al. | Feb 2017 | A1 |
20170042449 | Deno et al. | Feb 2017 | A1 |
20170042615 | Salahieh et al. | Feb 2017 | A1 |
20170056648 | Syed et al. | Mar 2017 | A1 |
20170065330 | Mickelsen et al. | Mar 2017 | A1 |
20170065339 | Mickelsen | Mar 2017 | A1 |
20170065340 | Long | Mar 2017 | A1 |
20170065343 | Mickelsen | Mar 2017 | A1 |
20170071543 | Basu et al. | Mar 2017 | A1 |
20170095291 | Harrington et al. | Apr 2017 | A1 |
20170105793 | Cao et al. | Apr 2017 | A1 |
20170120048 | He et al. | May 2017 | A1 |
20170146584 | Daw et al. | May 2017 | A1 |
20170151014 | Perfler | Jun 2017 | A1 |
20170151029 | Mickelsen | Jun 2017 | A1 |
20170172654 | Wittkampf et al. | Jun 2017 | A1 |
20170181795 | Debruyne | Jun 2017 | A1 |
20170189097 | Viswanathan et al. | Jul 2017 | A1 |
20170215953 | Long et al. | Aug 2017 | A1 |
20170245928 | Xiao et al. | Aug 2017 | A1 |
20170246455 | Athos et al. | Aug 2017 | A1 |
20170312024 | Harlev et al. | Nov 2017 | A1 |
20170312025 | Harlev et al. | Nov 2017 | A1 |
20170312027 | Harlev et al. | Nov 2017 | A1 |
20180001056 | Leeflang et al. | Jan 2018 | A1 |
20180028252 | Lalonde | Feb 2018 | A1 |
20180042674 | Mickelsen | Feb 2018 | A1 |
20180042675 | Long | Feb 2018 | A1 |
20180043153 | Viswanathan et al. | Feb 2018 | A1 |
20180064488 | Long et al. | Mar 2018 | A1 |
20180085160 | Viswanathan et al. | Mar 2018 | A1 |
20180093088 | Mickelsen | Apr 2018 | A1 |
20180133460 | Townley et al. | May 2018 | A1 |
20180161093 | Basu et al. | Jun 2018 | A1 |
20180168511 | Hall et al. | Jun 2018 | A1 |
20180184982 | Basu et al. | Jul 2018 | A1 |
20180193090 | De et al. | Jul 2018 | A1 |
20180200497 | Mickelsen | Jul 2018 | A1 |
20180235496 | Wu et al. | Aug 2018 | A1 |
20180256109 | Wu et al. | Sep 2018 | A1 |
20180280080 | Govari et al. | Oct 2018 | A1 |
20180303488 | Hill | Oct 2018 | A1 |
20180303543 | Stewart et al. | Oct 2018 | A1 |
20180311497 | Viswanathan et al. | Nov 2018 | A1 |
20180344202 | Bar-Tal et al. | Dec 2018 | A1 |
20180344393 | Gruba et al. | Dec 2018 | A1 |
20180360531 | Holmes et al. | Dec 2018 | A1 |
20180360534 | Teplitsky et al. | Dec 2018 | A1 |
20190015007 | Rottmann et al. | Jan 2019 | A1 |
20190015638 | Gruba et al. | Jan 2019 | A1 |
20190030328 | Stewart et al. | Jan 2019 | A1 |
20190046791 | Ebbers et al. | Feb 2019 | A1 |
20190069950 | Viswanathan et al. | Mar 2019 | A1 |
20190076179 | Babkin et al. | Mar 2019 | A1 |
20190125439 | Rohl et al. | May 2019 | A1 |
20190125788 | Gruba et al. | May 2019 | A1 |
20190143106 | Dewitt et al. | May 2019 | A1 |
20190151015 | Viswanathan et al. | May 2019 | A1 |
20190175263 | Altmann et al. | Jun 2019 | A1 |
20190183378 | Mosesov et al. | Jun 2019 | A1 |
20190183567 | Govari et al. | Jun 2019 | A1 |
20190192223 | Rankin | Jun 2019 | A1 |
20190201089 | Waldstreicher et al. | Jul 2019 | A1 |
20190201688 | Olson | Jul 2019 | A1 |
20190209235 | Stewart et al. | Jul 2019 | A1 |
20190223948 | Stewart et al. | Jul 2019 | A1 |
20190231421 | Viswanathan et al. | Aug 2019 | A1 |
20190231425 | Waldstreicher et al. | Aug 2019 | A1 |
20190254735 | Stewart et al. | Aug 2019 | A1 |
20190269912 | Viswanathan et al. | Sep 2019 | A1 |
20190298442 | Ogata et al. | Oct 2019 | A1 |
20190307500 | Byrd et al. | Oct 2019 | A1 |
20190350647 | Ramberg et al. | Nov 2019 | A1 |
20190350649 | Sutermeister et al. | Nov 2019 | A1 |
20200008869 | Byrd | Jan 2020 | A1 |
20200008870 | Gruba et al. | Jan 2020 | A1 |
20200009378 | Stewart et al. | Jan 2020 | A1 |
20200038104 | Mickelsen | Feb 2020 | A1 |
20200046423 | Viswanathan et al. | Feb 2020 | A1 |
20200093539 | Long et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
1042990 | Oct 2000 | EP |
1125549 | Aug 2001 | EP |
0797956 | Jun 2003 | EP |
1340469 | Sep 2003 | EP |
1127552 | Jun 2006 | EP |
1803411 | Jul 2007 | EP |
1009303 | Jun 2009 | EP |
2213729 | Aug 2010 | EP |
2382935 | Nov 2011 | EP |
2425871 | Mar 2012 | EP |
2532320 | Dec 2012 | EP |
2587275 | May 2013 | EP |
2663227 | Nov 2013 | EP |
1909678 | Jan 2014 | EP |
2217165 | Mar 2014 | EP |
2376193 | Mar 2014 | EP |
2708181 | Mar 2014 | EP |
2777579 | Sep 2014 | EP |
2777585 | Sep 2014 | EP |
2934307 | Oct 2015 | EP |
3056242 | Aug 2016 | EP |
3111871 | Jan 2017 | EP |
3151773 | Apr 2018 | EP |
06-507797 | Sep 1994 | JP |
2000-508196 | Jul 2000 | JP |
2005-516666 | Jun 2005 | JP |
2006-506184 | Feb 2006 | JP |
2008-538997 | Nov 2008 | JP |
2009-500129 | Jan 2009 | JP |
2011-509158 | Mar 2011 | JP |
2012-050538 | Mar 2012 | JP |
9207622 | May 1992 | WO |
9221278 | Dec 1992 | WO |
9221285 | Dec 1992 | WO |
9407413 | Apr 1994 | WO |
9724073 | Jul 1997 | WO |
9725917 | Jul 1997 | WO |
9737719 | Oct 1997 | WO |
9904851 | Feb 1999 | WO |
9922659 | May 1999 | WO |
9956650 | Nov 1999 | WO |
9959486 | Nov 1999 | WO |
0256782 | Jul 2002 | WO |
0353289 | Jul 2003 | WO |
0365916 | Aug 2003 | WO |
2004045442 | Jun 2004 | WO |
2004086994 | Oct 2004 | WO |
2005046487 | May 2005 | WO |
2006115902 | Nov 2006 | WO |
2007006055 | Jan 2007 | WO |
2007079438 | Jul 2007 | WO |
2009082710 | Jul 2009 | WO |
2009089343 | Jul 2009 | WO |
2009137800 | Nov 2009 | WO |
2010014480 | Feb 2010 | WO |
2011028310 | Mar 2011 | WO |
2011154805 | Dec 2011 | WO |
2012051433 | Apr 2012 | WO |
2012097067 | Jul 2012 | WO |
2012153928 | Nov 2012 | WO |
2013019385 | Feb 2013 | WO |
2014025394 | Feb 2014 | WO |
2014031800 | Feb 2014 | WO |
2014036439 | Mar 2014 | WO |
2014100579 | Jun 2014 | WO |
2014160832 | Oct 2014 | WO |
2015066322 | May 2015 | WO |
2015099786 | Jul 2015 | WO |
2015103530 | Jul 2015 | WO |
2015103574 | Jul 2015 | WO |
2015130824 | Sep 2015 | WO |
2015140741 | Sep 2015 | WO |
2015143327 | Sep 2015 | WO |
2015171921 | Nov 2015 | WO |
2015175944 | Nov 2015 | WO |
2015192018 | Dec 2015 | WO |
2015192027 | Dec 2015 | WO |
2016059027 | Apr 2016 | WO |
2016060983 | Apr 2016 | WO |
2016081650 | May 2016 | WO |
2016090175 | Jun 2016 | WO |
2017093926 | Jun 2017 | WO |
2017119934 | Jul 2017 | WO |
2017120169 | Jul 2017 | WO |
2017192477 | Nov 2017 | WO |
2017192495 | Nov 2017 | WO |
2017201504 | Nov 2017 | WO |
2017218734 | Dec 2017 | WO |
2018005511 | Jan 2018 | WO |
2018106569 | Jun 2018 | WO |
2018200800 | Nov 2018 | WO |
2019023259 | Jan 2019 | WO |
2019023280 | Jan 2019 | WO |
2019035071 | Feb 2019 | WO |
2019133606 | Jul 2019 | WO |
2019133608 | Jul 2019 | WO |
2019136218 | Jul 2019 | WO |
2019181612 | Sep 2019 | WO |
2019234133 | Dec 2019 | WO |
Entry |
---|
Du Pre, B.C. et al., “Minimal coronary artery damage by myocardial electroporation ablation,” Europace, 15(1):144-149 (2013). |
Hobbs, E. P., “Investor Relations Update: Tissue Ablation via Irreversible Electroporation (IRE),” Powerpoint (2004), 16 pages. |
Lavee, J. et al., “A Novel Nonthermal Energy Source for Surgical Epicardial Atrial Ablation: Irreversible Electroporation,” The Heart Surgery Forum #2006-1202, 10(2), 2007 [Epub Mar. 2007]. |
Madhavan, M. et al., “Novel Percutaneous Epicardial Autonomic Modulation in the Canine for Atrial Fibrillation: Results of an Efficacy and Safety Study,” Pace, 00:1-11 (2016). |
Neven, K. et al., “Epicardial linear electroporation ablation and lesion size,” Heart Rhythm, 11:1465-1470 (2014). |
Neven, K. et al., “Myocardial Lesion Size After Epicardial Electroporation Catheter Ablation After Subxiphoid Puncture,” Circ Arrhythm Electrophysiol., 7(4):728-733 (2014). |
Neven, K. et al., “Safety and Feasibility of Closed Chest Epicardial Catheter Ablation Using Electroporation,” Circ Arrhythm Electrophysiol., 7:913-919 (2014). |
Van Driel, V.J.H.M. et al., “Low vulnerability of the right phrenic nerve to electroporation ablation,” Heart Rhythm, 12:1838-1844 (2015). |
Van Driel, V.J.H.M. et al., “Pulmonary Vein Stenosis After Catheter Ablation Electroporation Versus Radiofrequency,” Circ Arrhythm Electrophysiol., 7(4):734-738 (2014). |
Wittkampf, F.H. et al., “Feasibility of Electroporation for the Creation of Pulmonary Vein Ostial Lesions,” J Cardiovasc Electrophysiol, 22(3):302-309 (Mar. 2011). |
Wittkampf, F.H. et al., “Myocardial Lesion Depth With Circular Electroporation Ablation,” Circ. Arrhythm Electrophysiol., 5(3):581-586 (2012). |
Number | Date | Country | |
---|---|---|---|
20220133405 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
61997868 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15354507 | Nov 2016 | US |
Child | 16595224 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16595224 | Oct 2019 | US |
Child | 17575228 | US | |
Parent | PCT/US2015/035592 | Jun 2015 | WO |
Child | 15354507 | US |