The present invention relates to the field of identification bar codes, readers, and scanners, and more particularly, is directed to a method and apparatus for reading bar code symbols.
With the widespread adoption and use of bar codes in recent years, the need for a method and apparatus for reliably reading such symbols has increased as well. This is especially so where such symbols are used in harsh environments and/or where the bar code has been applied under less than ideal circumstances.
The development of modern bar codes began in the 1940s in response to the food industry's need for a reliable and economical system for inventory control and for automatically reading product information at grocery store checkouts. The first patent to issue on such a system is believed to be U.S. Pat. No. 2,612,994 entitled Classifying Apparatus and Method and which issued on Oct. 7, 1952.
Although the coding system used in the '994 patent relied on a series of concentric circles to encode the identification information, the original coding approach developed by the inventors was a series of narrow and wide vertical lines much like present day bar code systems. Early implementations of the concentric circle approach proved unreliable however, as the circles were difficult to print without smearing. Smeared circles introduced reading errors when scanned and thus were unacceptable. The use of vertical bars eliminated the smearing problem and associated scanning errors.
Since the adoption of the Universal Product Code (UPC) in 1973, bar codes have proliferated to virtually all areas of article and product identification. Bar codes are now widely recognized as an economical and reliable identification system.
Over the years, a number of different versions of the UPC bar code have been developed. Version A is one of the most popular and is illustrated in
As shown in
Each of the human readable digits is encoded into the code using a two-part binary coding system as indicated in the table below:
Each A1″ in the key code is represented by a black bar 7 as illustrated in
As a testament to the popularity of bar code use, the UPC bar code is scheduled to be phased out by the year 2005 because its 12-digit length will no longer be sufficient to handle the demand for bar codes. In its place, the United States is expected to adopt a version of the European Article Numbering (EAN) system. The EAN bar code system has thirteen digits and can thus accommodate substantially more product identifications than the UPC.
The traditional printed bar code system continues to serve its original purpose of grocery store inventory control and check out very well. Bar codes formed of conventional two-dimensional printed bars work well where the article to be labeled is not subject to a harsh environment and the bar code label is not likely to be rubbed off or smeared over so that it cannot be read.
The food industry serves as an ideal environment for conventional bar codes. Bar codes used for food labeling are unlikely to be subjected to harsh environments due to the inherent need to prevent adulteration and damage to the food package. Thus, the bar code label is not likely to become damaged or unreadable.
The bar code system has in some respects however, become the victim of its own success. Today, attempts are being made to use bar codes in many environments in which a conventional printed two-dimensional bar code, such as the one used for food products, cannot be used. One such environment is the tire manufacturing industry.
U.S. Pat. No. 5,160,383 assigned to Goodyear Tire & Rubber discloses one example of the use of a bar code labeling technique in the tire industry. According to the patent, it is important that a tire label be highly durable so that it may still be read after many years of tire service and multiple retreadings. The patent also notes that serial numbers can be molded into tire sidewalls but that doing so is labor intensive and costly. Thus, Goodyear sought to improve upon conventional tire labeling systems by attaching an identification label to the rubber inter lining of an uncured tire. The label is made of two materials which are co-curable with the rubber of the tire. The tire is then cured using a conventional curing process which results in the label becoming permanently affixed to the inside of the tire.
Goodyear also is the assignee of U.S. Pat. No. 4,625,101 which discloses a method of molding a bar code configuration onto the sidewall of a tire. The bar code configuration has a plurality of sloped reflective surfaces which allow more flexibility in locating the bar code scanner without adversely effecting the accuracy of the scan. A bar code plate mold insert is used to mold the bar code configuration into the sidewall of the tire during the vulcanization process.
Another technique for labeling a tire is disclosed in U.S. Pat. No. 4,941,522 assigned to the Yokohama Rubber Company. The Yokohama approach involves an improved bar code plate mold insert which is also used to mold a bar code into a side wall of the tire during the vulcanization process. The improved plate is said to solve the problem of deterioration of the tire's resistance to weather in the area of the molded bar code.
Ideally, an identification bar code will be embedded into the article during the manufacturing process. Doing so, avoids the possibility of misidentification, i.e., the wrong bar code being applied, in a subsequent labeling step.
In order to improve the durability and readability of bar codes in harsh environments such as casting, a three-dimensional bar code construction was developed. An end view of a portion of such a bar code is illustrated in
Three dimensional bar codes have proved to be a much better choice in some situations as they will not easily rub off, smear, peel, or vanish because bonding strengths, in essence, equate to a direct part marking system, or in case of molding processes, are, in fact, simply contours in the part itself.
Three-dimensional bar codes can be painted over or the article on which they are placed can be subjected to various treatment processes without the readability of the bar code being adversely affected. Three-dimensional bar codes are also useful where a traditional printed bar code label will not adhere to the surface of the article to be labeled.
The use of bar codes during manufacture for work-in-process tracking, inventory control, work piece routing, etc., has become a valuable tool. Embedding, or molding, the bar code into the article during its manufacture is the most expedient and cost effective identification system. However, due to the harsh environments in which many manufacturing processes occur embedding or molding a bar code into a manufactured article can present many challenges. These challenges involve overcoming the ill effects caused by the very high temperatures, abrasive and corrosive treatments and processes, and pressures that are present in, e.g., cast and molding processes, forging, machining, and other manufacturing or remanufacturing processes. In addition to OEM manufacturing there are millions and millions of parts, often safety critical, that are currently in use which need traceability, and in some instances, require traceability by reason of governmental regulation.
Applicant's U.S. Pat. Nos. 6,666,255 and 6,666,257, both entitled “Bar Code Stencil And Method Of Use” describe a bar code stencil and method of using the stencil to easily and quickly mark vertically any article with a three dimensional bar code. While the teachings of these patents represent a major advancement in the art with respect to the formation of a bar code on an article to be tracked, the art remains deficient with respect subsequent reading of the bar code, especially in under harsh conditions.
Thus, there is a need in the art for a method and apparatus for reliably reading a formed bar code under a variety of reading conditions and bar code integrity.
Accordingly, it is an objective of the present invention to obviate the above-noted shortcomings and disadvantages of prior art methods and apparatus for reading a bar code marking.
It is a further objective of the present invention to provide an improved method and apparatus for bar code reading that is more reliable and cost effective than conventional methods.
It is a still further objective of the present invention to provide an improved method and apparatus for bar code reading that is economical to implement and simple in operation.
It is a still further objective of the present invention to provide an improved method and apparatus for bar code reading that can be used in harsh environments.
The method and apparatus of the present invention relates to permanent machine-readable bar code data symbols applied to or embedded into a part surface for traceability and tracking purposes. These direct-part marks are most desirable when they are non-intrusive to the part and remain readable throughout the products normal life cycle. The marking processes does not detrimentally effect the functional performance, reliability, or durability of the product.
Readability is also of primary importance and is readily achievable with the method and apparatus of the present invention. Most prior art barcode scanners requires some level of contrast to decode the mark. The contrast required is typically generated through the method used to make the mark or data symbol, such as black and white printing. In the case of no contrast, it can be created through the use of directional lighting to create shadows that camera or scanner based decoders can see. Camera based decoders can also decode no contrast barcodes through reading reflected laser light.
There are several types of thermal spray methods known in the prior art that can provide a machine readable data symbol of sufficient contrast and durability. Most are applicable to retrofit marking of, e.g., steel aircraft components, as the part will typically need to remain below 250 degrees F. However, methods such as spray & fusion, are applicable to retrofit marking but would yield the most durable and chemical resistant mark. These methods are not applicable because they require the mark area to be elevated to a 1,800 degree F. fusion temperature after spraying or pasting through a stencil to fuse the applied material to the part. The part would thereafter typically require a heat treat after the fusion process for strain relief.
The novel features of the present invention are set out with particularity in the appended claims, but the invention will be understood more fully and clearly from the following detailed description of the invention as set forth in the accompanying drawings in which:
A preferred embodiment of the present invention will now be described with further reference to accompanying drawings.
In accordance with the present invention, hand held current induction heating technology is employed to fuse spray and fusion marks to the substrate with no metallurgical impact. Test have shown that when fusing a mark with an induction heater, the parent material fusion temperature of 1,800 degrees only penetrates 0.040 inches or less into the parent material alleviating any metallurgical concerns.
The apparatus of the present invention is illustrated in
The induction heating apparatus of the present invention can easily be reduced to a hand held device for portability and mobile applications.
The resulting symbols or marks after fusion have a data cell hardness of 59 to 60 C scale of the Rockwell Hardness and data cell to substrate bond strengths near 30,000 PSI and can be accomplished in less than a minute. This strength far exceeds the bond strengths of other marking methods and most thermal sprayed adhesive values.
The hand held current inducing heating apparatus of the present invention may also be used to provide a method to read a data symbol or bar code positioned under several layers of paint or bonded to the back side of a non conductive material or article. Studies have shown that iron loaded sheet polyurethane material formed into a data symbol provides enough temperature change when placed in the magnetic flux of a induction heating coil to be allowed a thermal imaging camera to retrieve an image of sufficient contrasting and quality to be decoded.
Applicant has also found that a lacer can be used as an effective way to read a data symbol or bar code. The lacer relies on shadows cast by the three dimensional symbol or bar code. These shadows are then used to decode the symbol.
It should be obvious from the above-discussed apparatus embodiment that numerous other variations and modifications of the apparatus of this invention are possible, and such will readily occur to those skilled in the art. Accordingly, the scope of this invention is not to be limited to the embodiment disclosed, but is to include any such embodiments as may be encompassed within the scope of the claims appended hereto.