The present disclosure relates generally to a satellite signal receiving outdoor unit, and more particularly, to an outdoor unit having multiple feeds for receiving various frequency bands.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Satellite data and television systems use an outdoor unit that includes a reflector that directs satellite signals to a feed. The reflector is typically aligned at a particular satellite so that the signals from the satellite are concentrated at the feed. This allows the feed to receive a strong signal. Satellites typically generate one frequency and the feed is tuned for that particular frequency.
Some satellite systems include satellites that are capable of transmitting more than one frequency. That is, a satellite may be provided with more than one transponder that is capable of generating signals at another frequency than another transponder on the same satellite. The second frequency signals are thus not utilized.
Satellite television providers try to increase the amount of services they provide. Additional satellites are expensive and, thus, maximizing the amount of services from existing satellites is an important goal.
Therefore, it is desirable to utilize signals at a different frequency than a primary frequency in a satellite system.
In one aspect of the disclosure, a system includes a first satellite at a first orbital slot having a first transponder generating a first downlink signal at a first frequency and a second downlink signal at a second frequency. The system also includes an outdoor unit directed at the first satellite that includes a support structure, a reflector coupled to the support structure and reflecting the first downlink signal and the second downlink signal, a first feed coupled to the support structure receiving the first downlink signal and a second feed coupled to the support structure receiving the second downlink signal. A second reflector reflects the second downlink signal to the second feed.
In a further aspect of the disclosure, an outdoor unit includes a support structure, a reflector coupled to the support structure reflecting a first downlink signal from a first satellite and a second downlink signal from a second satellite and a first feed coupled to the support structure receiving the first downlink signal. A second feed is coupled to the support structure and receives the second downlink signal that is reflected from a secondary reflector.
In a further aspect of the disclosure an outdoor unit includes a support structure, a first reflector coupled to the support structure and reflecting a first downlink signal from a first satellite along an axis. The first reflector reflects the second downlink signal from the first satellite along the axis. A first feed is coupled to the support structure along the axis and receives the first downlink signal. A second reflector is coupled to the support structure not along the axis and reflects spillover from the second downlink signal. A second feed is coupled to the support structure and receives spillover from the second downlink signal.
In yet another aspect of the disclosure, a method of connecting an outdoor unit having a support structure, first reflector coupled to the support structure reflecting a first downlink signal to a first feed includes coupling a second feed to the support structure, coupling a second reflector to a support structure to reflect spillover from the second satellite signal feed to the second feed.
One advantage of the disclosure is that the system may be implemented in a bolt-on configuration. That is, existing outdoor units having a feed support structure and primary reflector may be retrofitted with a secondary reflector and a secondary feed to receive signals from the secondary reflector. The system may also be implemented in a factory-ready implementation already including the secondary reflector and the secondary feed.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. The present disclosure is described with respect to a satellite television system. However, the present disclosure may be used for various uses including satellite transmission and data transmission and reception for home or business uses.
Referring now to
The satellites 12, 14 and 16 may be positioned at various orbital spots A, B and C. In one configuration, orbital spots A, B and C comprise orbital spots 99° West, 101° West and 103° West, respectively. The orbital spacings are consecutive geosynchronous orbital spacings. However, the orbital spacings need not be consecutive. It should be noted that the government requires a two degree spacing between orbital slots in the geosynchronous plane. The present satellites 12, 14 and 16 are geosynchronous satellites.
An outdoor unit 50 coupled to a building 52 such as a home, multi-dwelling unit or business, receives the satellite downlink signals 44 and provides the signals to a processing circuit such as an integrated receiver decoder 54. Data signals may be used by the computer 56 and television signals may be used by the television 58. The outdoor unit 50 includes a receiving antenna structure 60.
Referring now to
It should be noted that various embodiments of the second reflector will be described below.
Referring now to
The reflector 64 and the feed 66B are coupled to support structure 80. Support structure 80 may be configured in various ways to support the reflector and the feeds. In this embodiment, the support structure 80 includes a reflector support 82, an extension portion 84 and a feed support 86. The reflector support 82 may be coupled to an elevation adjustment mechanism 88 and an azimuth adjustment mechanism 90 to allow for pointing of the reflector 64 and locking the reflector 64 in a desired position or orientation.
As was mentioned above, the arrow 44B, 44C represents the downlink signals from the satellite 14. Because the signals originate from the same orbital spot and the same satellite, they share a primary axis 94. The primary axis 94 is aligned toward the feed 66B. That is, both signals having both frequencies are aligned at feed 66B. When the signals reflect from the reflector 64, both signals do not focus completely. The signal 44C is shown having spillover area 96 that is not captured by the feed. The secondary reflector 72A is positioned to receive some spillover signal and reflects the spillover signal to feed 70A. In the drawings, the secondary reflector 72A is illustrated as a concave reflector positioned between the primary feed 66B and the support structure 80. The secondary reflector 72A may be coupled to the feed support 86 or the extension portion 84. The shape may be parabolic so that the signal is directed and concentrated to the additional feed 70A. The additional feed 70A may also be coupled to the support structure 80 and, more specifically, to the extension portion 84 of the support structure 80. The shape may also be various shapes including hyperbolic and irregular shapes so long as energy from the downlink signal 44 is directed to the feed 70A.
As will be described further below, the additional feed 70A and secondary reflector 72A may be added in the field and bolted on by service technicians so that customers desiring the content on this second frequency from the same satellite may obtain those signals without having to install a new outdoor unit.
Referring now to
The additional feed 70B may be coupled to the extension portion 84. The secondary reflector 72B may be coupled to the extension portion 84, the feed support 86 or directly to the feed 66.
Referring now to
Referring now to
In step 122, a secondary reflector is coupled to the support structure. In step 124, an add-on feed is also coupled to the support structure. In step 126, the secondary reflector and the add-on feed are aligned so that a maximum signal strength may be obtained.
As can be seen by the above, the present system may be used in addition to presently deployed outdoor units. The present disclosure allows the presently deployed systems to receive a second frequency band from the same satellite as one in which another frequency band is broadcast. The present system may be used for receiving various types of signals including television signals on both the primary and secondary frequency bands or television and data signals or merely data signals on both frequency bands.
Number | Name | Date | Kind |
---|---|---|---|
5797082 | Lusignan | Aug 1998 | A |
5812096 | Tilford | Sep 1998 | A |
5930680 | Lusignan | Jul 1999 | A |
6032041 | Wainfan et al. | Feb 2000 | A |
6087999 | Muhlhauser et al. | Jul 2000 | A |
6125261 | Anselmo et al. | Sep 2000 | A |
6272317 | Houston et al. | Aug 2001 | B1 |
6324381 | Anselmo et al. | Nov 2001 | B1 |
6336030 | Houston et al. | Jan 2002 | B2 |
6339707 | Wainfan et al. | Jan 2002 | B1 |
6441797 | Shah | Aug 2002 | B1 |
6445359 | Ho | Sep 2002 | B1 |
6492954 | Gau et al. | Dec 2002 | B2 |
6504514 | Toland et al. | Jan 2003 | B1 |
6512485 | Luly et al. | Jan 2003 | B2 |
6577283 | Wu et al. | Jun 2003 | B2 |
6633744 | Howell | Oct 2003 | B1 |
6694137 | Sharon | Feb 2004 | B2 |
6708029 | Wesel | Mar 2004 | B2 |
6747608 | Wu | Jun 2004 | B2 |
6947702 | Green, Sr. | Sep 2005 | B2 |
7020462 | Wesel | Mar 2006 | B1 |
7046959 | Ammar et al. | May 2006 | B2 |
7493078 | Perlman | Feb 2009 | B2 |
20010000123 | Benjauthrit | Apr 2001 | A1 |
20020008669 | Muhlhauser et al. | Jan 2002 | A1 |
20020140617 | Luly et al. | Oct 2002 | A1 |
20040110468 | Perlman | Jun 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20080120653 A1 | May 2008 | US |