The present invention relates generally to switching power supplies, and, more particularly, to a control circuit for synchronous rectifiers.
Manufacturers of electronic components increasingly demand switching power converters that have a very low voltage loss and a high output current. One type of a switching power converter uses a synchronous rectification technique. Synchronous rectifiers typically are implemented as metal-oxide semiconductor field-effect transistors (MOSFETs), although other switches such as bipolar junction transistors (BJTs), insulated-gate field-effect transistors (IGBTs), or other switches may be used. Synchronous rectification improves the efficiency of a power converter by substituting a transistor for a rectifier diode. This type of switching power converter is generally formed by a switching circuit, a transformer, a rectifying circuit, and at least one control circuit.
The switching circuit typically includes a bridge circuit arranged in a push-pull configuration with a transformer. For example, four switching devices (switches) may define the bridge circuit. The first and second switches are connected in series. The third and a fourth switches are also connected in series, and the series pairs are connected in parallel across a direct current (DC) voltage source. The transformer, which has a primary winding and a secondary winding, connects to the first and the second switches at one end of the primary winding. The other end of the primary winding connects to the third and the fourth switches. A rectifying circuit including two synchronous rectifiers connects to the secondary side of the transformer. A primary control circuit connects to the switching circuit. The primary control circuit generates a drive signal for each of the switches.
A secondary control circuit drives the synchronous rectifiers in accordance with drive signals output by the primary control circuit. In one configuration, the secondary control circuit includes two logical OR gates. The drive signals used to control the first and fourth switches define inputs to the first logical OR gate. The first logical OR gate outputs a drive signal to one of the two synchronous rectifiers. The drive signals used to control the second and third switches define inputs to the second logical OR gate. The second logical OR gate outputs a drive signal to the other of the two synchronous rectifiers. An example of such a configuration may be seen with respect to U.S. Pat. No. 6,504,739 issued Jan. 7, 2003, and assigned to the assignee of the present invention, the disclosure of which is incorporated by reference in its entirety herein.
While the switching power converter described above has a low voltage loss and a high current output, it may not address all of the parasitic components that potentially exist in a synchronous rectifier circuit. For example, a zero phase shifted full bridge, zero voltage switching (ZVS) converter includes transformer leakage inductance. Transformer leakage inductance causes a delay in the actual voltage of the secondary winding relative to the voltage across the primary winding. It may also increase the time necessary for the drain current passing through the synchronous rectifier to deplete to zero with respect to the primary winding voltage. This voltage and current delay increases as the load current increases. When the synchronous rectifiers turn off, the drain current through the MOSFET transfers to the body diode of the MOSFET, thereby increasing the voltage drop across the MOSFET. These conduction losses are higher than if the drain current was able to pass through a drain-to-source on-resistance.
The present invention is directed to circuit including a secondary controller and a delay circuit coupled to the secondary controller. The delay circuit receives a first synchronous rectifier control signal from the secondary controller and a load current signal. The delay circuit applies a predetermined delay to the first synchronous rectifier control signal. A synchronous rectifier control circuit is coupled to the secondary controller and to the delay circuit. The synchronous rectifier control circuit receives the delayed first synchronous rectifier control signal and controls a synchronous rectifier in accordance with the first synchronous rectifier control signal. The delay applied to the first synchronous rectifier control signal varies in accordance with the load current signal.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. For purposes of clarity, similar reference numbers are used in the drawings to identify similar elements.
The present invention increases the efficiency of power converters by reducing the body diode conduction due to transformer leakage inductance. This is accomplished by optimizing control of the synchronous rectifier relative to the output load current. For example, turning a synchronous rectifier to an off state is delayed until the drain current is nearly zero in the synchronous rectifier. This reduces body diode conduction through the synchronous rectifier. Moreover, the cost to manufacture a switching power converter is reduced since lower performing components may replace more expensive components while still attaining power efficiency requirements.
Although the following description generally relates to a full bridge converter, it is readily understood that the broader aspects of the present invention are applicable to other types of converter topologies (e.g. push-pull topologies, half bridge topologies, etc.) that use synchronous rectification. In particular, the present invention may be applied to soft switched full bridge, full bridge, forward half bridge, and flyback converters that use synchronous rectification.
Primary side drive signals enter synchronous rectifier controller 12 from a primary control circuit (not shown). Synchronous rectifier controller 12 controls the application of the primary side drive signals to synchronous rectifier delay control circuit 18 and to delay selector circuit 16. A load current signal (ISEN), which depends upon the magnitude of a load current ILOAD, is input to delay selector circuit 16. Based upon ILOAD, delay selector circuit 16 determines the desired delay. A delay signal is then output from delay selector circuit 16 to synchronous rectifier delay control circuit 18. Synchronous rectifier delay control circuit 18 then generates a control signal to turn off a selected synchronous rectifier.
Switching circuit 134 includes a first switching device (switch) QA connected in series to a second switch QB to form a first switching leg. Switching circuit 134 also includes a third switch QC connected in series to a fourth switch QD to form a second switching leg. The switching legs are connected in parallel across input voltage source 132. In one embodiment, one or more of the primary switches are metal-oxide semiconductor field-effect transistors (MOSFETs) switches, although one skilled in the art will recognize that bipolar junction transistor (BJTs), insulated-gate field-effect transistors (IGBTs) or other suitable switches may also be used. Switching circuit 134 connects to transformer 136, which includes a primary side having primary winding 112 and a secondary side including secondary winding 114. One end of primary winding 112 connects to first node 116, and the other end of the primary winding 112 connects to second node 118.
Primary control circuit 140 generates drive signals for each of the switches QA, QB, QC, and QD of switching circuit 134. In one configuration, primary control circuit 140 generates drive signals of various phases to the QA/QD pair of switches and drive signals of various phases to the QC/QB pair of switches. The control signals to switch pair QA/QD are generally complementary to control signals to switch pair QC/QB. This allows diagonal switches (i.e., QA/QDand QC/QB) to conduct alternately to effect a push-pull configuration across primary winding 112. Thus, primary control circuit 140 provides ZVS, phase shifted control over switching circuit 134.
Rectifying circuit 138 includes two synchronous rectifiers connected to a center-tapped secondary winding 114 of transformer 136. A first rectifying switch FETQ1 (also referred to as first synchronous rectifier) connects to a first end of secondary winding 114, and a second rectifying switch FETQ2 (also referred to as second synchronous rectifier) connects to the other end of secondary winding 114. An inductor L connects between a center tap of secondary winding 114 and an output terminal providing an output voltage V0 to a load 126 in parallel with capacitor 156.
Secondary control circuit 142 connects to switches FETQ1 and FETQ2 of the rectifying circuit 138. Control signals QA, QB, QC, QD from primary control circuit 140 provide input signals to secondary control circuit 142 to activate and to deactivate synchronous rectifiers FETQ1, FETQ2. In a conventional drive configuration, when a first pair of diagonal switches on the primary side of transformer 136 are both conducting, one of the two synchronous rectifiers FETQ1, FETQ2 is typically in an on state. After both of the first pair of diagonal switches is driven to an off state by primary control circuit 140, secondary control circuit 142 drives the one of the two synchronous rectifiers FETQ1, FETQ2 to an off state. In an embodiment of the present invention, secondary control circuit 142 delays turn off of the control signal for the second switch of a diagonal pair to correspondingly delay turn off of the associated synchronous rectifier. More specifically, the synchronous rectifier control signal that controls the later switch to be turned off of the switch pairs QA/QD and QC/QBis delayed by secondary control circuit 142. As described herein, active refers to active high.
Delay selection section 162 selects the delay element to operate in the delay element section 164 based on the magnitude of the load current flowing through the load 126 of
The VISEN voltage is applied to comparators U2 and U1 via respective resistors R103 and R107. Resistors R104 and R105 form a voltage divider for a reference voltage VREF to provide a reference voltage applied to the inverting input of comparator U2. The output signal CON2 is determined by comparing the voltage at the inverting input to the voltage at the non-inverting input of comparator U2. When the voltage at the non-inverting input exceeds the voltage at the inverting input, CON2 is high. If the voltage at the non-inverting input is less than the voltage at the inverting input, CON2 is low. A feedback resistor R102 provides hysteresis at the non-inverting input.
The output signal CON1 from comparator U1 is similarly determined. Resistors R108 and R109 form a voltage divider for a reference voltage VREF to provide a reference voltage applied to the inverting input of comparator U1. The output signal CON1 is determined by comparing the voltage at the inverting input to the voltage at the non-inverting input of comparator U2. If the voltage at the non-inverting input is less than the voltage at the inverting input, CON1 is low. If the voltage at the non-inverting input exceeds the voltage at the inverting input, CON1 is high. A feedback resistor R106 provides hysteresis at the non-inverting input of comparator U1. CON1 and CON2 are applied to the delay element section 164.
Delay element section 164 includes first and second delay circuits 170a, 170b. First delay circuit 170a will be described herein. One skilled in the art will recognize that second delay circuit 170b operates similarly. First delay circuit 170a connects to an input of a first OR gate 160a. Drive signal QAconnects to the input of first OR gate 160a through a parallel connection of resistor R1a and D1a of first delay circuit 170a. Drive signal QD connects to the other input of the first OR gate 160a. First OR gate 160a outputs a drive signal to the synchronous rectifier FETQ1. As will be described in greater detail herein, activating CON1 and/or CON2 correspondingly activates respective switches S1a and S2a to selectively introduce varying capacitances between the QA input of OR gate 160a and ground.
The CON1 output of comparator U1 connects to a voltage divider that includes resistors R4a, R3a, and R2a. One terminal of resistor R4aconnects to an 8 volt source and the other terminal of resistor R4a connects to resistor R3a. One node of the voltage divider connects to the gate of switch S1a. Switch S1a includes a capacitance Coss across its drain and source, which connects to ground. The capacitance Coss may be the small output capacitance of switch S1a, or it may be an external capacitance.
Similarly, CON2 connects to a voltage divider that includes resistors R7a, R6a, and R5a. One terminal of resistor R7a connects to an 8 volt source, and the other terminal of resistor R7a connects to resistor R6a. The drain of switch S2a connects to a node interconnecting capacitors C2a and C3a to provide a path from the interconnecting terminal of C3a, through switch S2a, to ground.
Delay element section 164 generates a delay that depends upon which, if any, of switches S1a, S2a are activated by respective signals CON1 and CON 2.
The arrow in
From the description of
From the embodiments described herein, it will be apparent that the turn-off delay of the synchronous rectifier control increases as the ILOADincreases. Similarly, the turn-off delay of the synchronous rectifier decreases when ILOAD decreases.
This process of delaying the signal to turn-off a synchronous rectifier reduces or eliminates the body diode conduction through the synchronous rectifier FETQ1, FETQ2, thereby increasing the efficiency of power converter 100. Referring to
One skilled in the art will recognize that numerous relationships between the load current and turn-off delay exist.
While the invention has been described in its presently preferred form, it will be understood that the invention is capable of modification without departing from the spirit of the invention as set forth in the appended claims.
This application is a continuation of U.S. patent application Ser. No. 11/002,426 filed on Dec. 2, 2004. The disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6490179 | Boylan et al. | Dec 2002 | B1 |
6504739 | Phadke | Jan 2003 | B2 |
6535400 | Bridge | Mar 2003 | B2 |
7158392 | Hosokawa et al. | Jan 2007 | B2 |
7262980 | Phadke et al. | Aug 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20080031027 A1 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11002426 | Dec 2004 | US |
Child | 11845294 | US |