The present invention relates to atomizers used in electrostatic coating systems and particularly, to atomizers having rotating bell cups and feed tubes that deliver liquid coating material to the bell cups. More particularly, the present invention relates to methods and apparatus for reducing coating buildup on feed tubes of rotary atomizers.
Electrostatic coating systems having bell cups that rotate at high speeds to atomize liquid coating material are known. In some electrostatic coating systems, liquid coating material is fed onto an inner surface of the rotating bell cup through a feed tube that extends along the axis of rotation of the bell cup. Forces created by the rotating bell cup act on the liquid coating material causing a film of coating material to be formed over the inner surface of the bell cup. The film of coating material flows along the inner surface of the bell cup toward a forward, discharge edge of the bell cup and a voltage source electrostatically charges the flowing film of coating material. At the discharge edge of the rotating bell cup, the film of coating material is discharged as an electrostatically charged mist which is directed toward an oppositely-charged object to be coated.
It is desirable for electrostatic coating systems to apply an even coating of material to the objects being coated. However, in some conventional electrostatic coating systems, clumps of partially dried coating material build up on the end of the feed tube adjacent the rotating bell cup. From time to time, the built up paint drops from the end of the feed tube onto the rotating bell cup and is flung onto an object being coated and creating a defect in the coating which needs to be buffed, or otherwise removed from, the object during rework operations performed subsequent to the coating process. It is therefore, desirable to reduce paint buildup on the ends of feed tubes of rotary atomizers.
According to one aspect of the invention, a rotary atomizer includes a shaft rotatable about an axis and a bell cup coupled to the shaft. The shaft has a passageway extending longitudinally along it. The bell cup has an interior defined by an axially rearward metal back region, an axially forward metal discharge edge, and a metal side region extending from the back region toward the discharge edge and terminating at the discharge edge. The back region includes a port having a forward end. The back region includes an intermediate portion between the forward end and the side region. The intermediate portion is oriented axially further away from the discharge edge than the forward end is axially from the discharge edge. A feed tube is oriented in the passageway and has a discharge end through which liquid coating material is discharged.
Illustratively according to this aspect of the invention, the back region, discharge edge and side region are all constructed from the same metal.
Illustratively according to this aspect of the invention, the metal back region, metal discharge edge and metal side region are all aluminum.
Alternatively illustratively according to this aspect of the invention, the metal back region, metal discharge edge and metal side region are all titanium.
Illustratively according to this aspect of the invention, the discharge end is oriented axially forward of the intermediate portion.
Alternatively illustratively according to this aspect of the invention, the discharge end is substantially coplanar with the forward end.
Illustratively according to this aspect of the invention, the port includes a somewhat frustoconical surface having a base oriented adjacent the intermediate portion.
Further illustratively according to this aspect of the invention, the apparatus includes a high-magnitude potential supply coupled to the rotary atomizer for providing electrical charge to coating material discharged from the discharge edge.
According to another aspect of the invention, a bell cup is provided for attachment to the shaft of a rotator to be rotated by the rotator to atomize coating material supplied to an interior of the bell cup. The bell cup includes an interior defined by an axially rearward metal back region, an axially forward metal discharge edge, and a metal side region extending from the back region toward the discharge edge and terminating at the discharge edge. The back region includes a port having a forward end through which coating material to be atomized is supplied to the interior. The back region includes an intermediate portion between the forward end and the side region. The intermediate portion is oriented axially further away from the discharge edge than the forward end is axially from the discharge edge.
Illustratively according to this aspect of the invention, the back region, discharge edge and side region are all constructed from the same metal.
Illustratively according to this aspect of the invention, the metal back region, metal discharge edge and metal side region are all aluminum.
Alternatively illustratively according to this aspect of the invention, the metal back region, metal discharge edge and metal side region are titanium.
Further illustratively according to this aspect of the invention, a feed tube is provided for supplying coating material to the interior. The feed tube has a discharge end substantially coplanar with the forward end. Liquid coating material is discharged through the discharge end.
According to another aspect of the invention, a method of atomizing coating material includes providing a bell cup having an interior defined by an axially rearward metal back region, an axially forward metal discharge edge, and a metal side region extending from the back region toward the discharge edge and terminating at the discharge edge. The back region includes a port having a forward end. The back region includes an intermediate portion between the forward end and the side region. The intermediate portion is oriented axially further away from the discharge edge than the forward end is axially from the discharge edge. The method further includes rotating the bell cup about a rotational axis and feeding liquid coating material to the port.
Illustratively according to this aspect of the invention, providing a bell cup having an interior defined by an axially rearward metal back region, an axially forward metal discharge edge, and a metal side region includes providing a bell cup having an interior defined by an axially rearward back region, an axially forward discharge edge, and a side region, all of the same metal.
Illustratively according to this aspect of the invention, providing a bell cup having an interior defined by an axially rearward metal back region, an axially forward metal discharge edge, and a metal side region includes providing a bell cup having an interior defined by an axially rearward aluminum back region, an axially forward aluminum discharge edge, and an aluminum side region.
Alternatively illustratively according to this aspect of the invention, providing a bell cup having an interior defined by an axially rearward metal back region, an axially forward metal discharge edge, and a metal side region includes providing a bell cup having an interior defined by an axially rearward titaninum back region, an axially forward titaninum discharge edge, and a titaninum side region.
Illustratively according to this aspect of the invention, feeding liquid coating material to the port includes feeding liquid coating material to the forward end.
Illustratively according to this aspect of the invention, providing a back region including a port having a forward end includes providing a bell cup having a somewhat frustoconical surface having a base oriented adjacent the intermediate portion.
Further illustratively according to this aspect of the invention, the method includes providing electrical charge to coating material discharged from the discharge edge.
According to another aspect of the invention, a method of atomizing coating material includes providing a rotator having an output shaft rotatable about an axis, providing a passageway extending longitudinally along the shaft and coupling a bell cup to the shaft. An interior is defined in the bell cup. The interior has an axially rearward metal back region including a port having a forward end, an axially forward metal discharge edge, and a metal side region extending from the back region toward the discharge edge and terminating at the discharge edge. A metal intermediate portion is provided on the back region between the forward end and the side region. The metal intermediate portion is oriented axially further away from the discharge edge than the forward end is axially from the discharge edge. A feed tube is provided in the passageway. The feed tube terminates at a discharge end substantially coplanar with the forward end. Liquid coating material is discharged through the discharge end.
Illustratively according to this aspect of the invention, defining in the bell cup an interior having a metal back region, a metal discharge edge, and a metal side region, and providing on the back region a metal intermediate portion includes defining in the bell cup an interior having a back region, a discharge edge, and a side region, and providing on the back region an intermediate portion, all of the same metal.
Illustratively according to this aspect of the invention, defining in the bell cup an interior having a metal back region, a metal discharge edge, and a metal side region, and providing on the back region a metal intermediate portion between the forward end and the side region includes defining in the bell cup an interior having an aluminum back region, an aluminum discharge edge, and an aluminum side region, and providing on the back region an aluminum intermediate portion.
Alternatively illustratively according to this aspect of the invention, defining in the bell cup an interior having a metal back region, a metal discharge edge, and a metal side region, and providing on the back region a metal intermediate portion between the forward end and the side region includes defining in the bell cup an interior having a titaninum back region, a titaninum discharge edge, and a titaninum side region, and providing on the back region a titaninum intermediate portion.
Illustratively according to this aspect of the invention, defining in the bell cup an interior having an axially rearward back region including a port having a forward end and an intermediate portion between the forward end and the side region and oriented axially further away from the discharge edge than the forward end includes providing a somewhat frustoconical surface having a base oriented adjacent the intermediate portion.
Further illustratively according to this aspect of the invention, the method includes providing electrical charge to coating material discharged from the discharge edge.
According to another aspect of the invention, a method of dispensing coating material includes providing a bell cup having an axis of rotation, rotating the bell cup about its axis, and feeding coating material to the forward end. The bell cup has an interior including an axially rearward metal back region, an axially forward metal discharge edge, and a metal side region extending from the back region toward the discharge edge and terminating at the discharge edge. The back region includes a port having a forward end through which coating material to be atomized is supplied to the interior. The back region includes a metal intermediate portion between the forward end and the side region and oriented axially further away from the discharge edge than the forward end is axially from the discharge edge.
Illustratively according to this aspect of the invention, defining in the bell cup a metal back region, a metal discharge edge and a metal side region, and including in the back region a metal intermediate portion includes defining in the bell cup a back region, a discharge edge, and a side region and including in the back region an intermediate portion, all of the same metal.
Illustratively according to this aspect of the invention, defining in the bell cup a metal back region, a metal discharge edge and a metal side region, and including in the back region a metal intermediate portion includes defining in the bell cup an aluminum back region, an aluminum discharge edge and an aluminum side region, and including in the back region an aluminum intermediate portion.
Alternatively illustratively according to this aspect of the invention, defining in the bell cup a metal back region, a metal discharge edge and a metal side region, and including in the back region a metal intermediate portion includes defining in the bell cup a titaninum back region, a titaninum discharge edge and a titaninum side region, and including in the back region a titaninum intermediate portion.
Illustratively according to this aspect of the invention, feeding coating material to the forward end includes feeding coating material through a feed tube having a discharge end substantially coplanar with the forward end, and discharging the liquid coating material through the discharge end.
Further illustratively according to this aspect of the invention, the method includes providing electrical charge to coating material discharged from the discharge edge.
According to another aspect of the invention, apparatus for atomizing coating material includes bell cup means, means for rotating the bell cup means about a rotational axis and means for feeding liquid coating material to the port. The bell cup means define an interior including an axially rearward metal back region, an axially forward metal discharge edge, and a metal side region extending from the back region toward the discharge edge and terminating at the discharge edge. The back region includes a port having a forward end. The back region includes a metal intermediate portion between the forward end and the side region. The intermediate portion is oriented axially further away from the discharge edge than the forward end is axially from the discharge edge.
According to another aspect of the invention, apparatus for atomizing coating material includes bell cup means, means for rotating the bell cup means about its axis and means for coupling the bell cup means to the means for rotating the bell cup means. The bell cup means defines an interior having an axially rearward metal back region including a port having a forward end, an axially forward metal discharge edge, a metal side region extending from the back region toward the discharge edge and terminating at the discharge edge, and a metal intermediate portion between the forward end and the side region and oriented axially further away from the discharge edge than the forward end is axially from the discharge edge. The means for rotating the bell cup means has an output shaft rotatable about an axis. The means for coupling the bell cup means to the means for rotating the bell cup means includes the output shaft. The output shaft has a passageway extending longitudinally along the output shaft. Means are provided in the passageway for supplying coating material to the interior. The means for supplying coating material terminates at a discharge end substantially coplanar with the forward end.
According to another aspect of the invention, apparatus for dispensing coating material includes bell cup means, means for rotating the bell cup about its axis, and means for feeding coating material to the forward end. The bell cup means defines an axis of rotation and an interior including an axially rearward metal back region, an axially forward metal discharge edge, and a metal side region extending from the back region toward the discharge edge and terminating at the discharge edge. The back region includes port means having a forward end through which coating material to be atomized is supplied to the interior. The back region further includes an intermediate portion between the forward end and the side region and oriented axially further away from the discharge edge than the forward end is axially from the discharge edge.
The detailed description particularly refers to the accompanying figures in which:
Referring to
Referring particularly to
According to this invention, certain features of the shape and materials from which the inner surface 28 of bell cup is fabricated, and the orientation of feed tube 22 cooperate to reduce the buildup of coating material around the discharge opening 32 of feed tube 22. Inner surface 28 is metal, illustratively a single metal, and illustratively titanium or aluminum. As best illustrated in
Discharge end 32 of feed tube 22 is substantially coplanar with a forwardly projecting end 50 of first region 34 as best illustrated in
The portion of illustrative surface 28 associated with third region 38 includes a substantially frustoconical surface 54, a stepped region 56 axially forward of, and radially outward from, surface 54, and a somewhat frustoconical surface 58 axially forward of region 56 as illustrated in
Portion 42 has a generally planar back surface 66. Passageway 24 is generally right circular cylindrical in configuration, as illustrated at 68, and extends through portion 42 between back surface 66 and front end 50. Intermediate portion 44 has a back surface 70 that, in the illustrative embodiment, is coplanar with surface 66 of portion 42. Feed tube 22 has a first outer, right circular cylindrical surface 72, a second outer, right circular cylindrical surface 74, and a generally radially extending shoulder surface 76 joining surfaces 72, 74 as best illustrated in FIG. 3. Feed tube 22 further has an inner, right circular cylindrical bore 78 defining a passageway 80 through feed tube 22. Shaft 16 has an inner, right circular cylindrical surface 82 defining passageway 18. An annular space is defined between surfaces 68, 72. Similarly, an annular space is defined between surfaces 74, 82. Surfaces 68, 72, 74, 78, 82 are coaxial with axis 20. Feed tube 22 is stationary, while shaft 16 and bell cup 12 rotate during coating operations.
Coupling collar 48 of bell cup 12 has an outer, generally right circular cylindrical surface 86 that extends rearwardly from sidewall 46 to a rear end 84 as best illustrated in
Coupling collar 48 is formed to include a pair of generally diametrically opposed flats 98 adapted to be engaged by a tool, such as a wrench, during mounting of bell cup 12 on, and removal of bell cup 12 from, shaft 16. To mount bell cup 12 on shaft 16, shaft 16 is blocked from rotating about axis 20 while bell cup 12 is rotated relative to shaft 16 so that threaded bore 88 of coupling collar 48 threads onto front region 94 of shaft 16. Bell cup 12 has an annular ridge 100 just forward of threaded bore 88 that engages a front end 102 of shaft 16 to orient bell cup 12 properly on shaft 16 so that forward end 32 of portion 42 is substantially coplanar with discharge end 32 of feed tube 22. As bell cup 12 is threaded onto shaft 16, any debris on front region 94 and tapered surface 96 can be accommodated in grooves 92.
As mentioned above, liquid coating material 26 is fed from feed tube 22 onto inner surface 28 of rotating bell cup 12 and, owing to the rotation of bell cup 12, forms a film that flows across inner surface 28 to edge 30, from which electrostatically charged particles of coating material are discharged. The flow of coating material 26 as it exits discharge end 32 of feed tube 22 is illustrated diagrammatically in
As previously noted, tests of the rotary atomizer 10 having illustrative bell cup 12 and feed tube 22 demonstrated that coating material buildup on feed tube 22 is reduced as compared to prior art bell cup and feed tube configurations and arrangements.
During a first test, the bell cup 12 was rotated at about 40,000 revolutions per minute (r.p.m.) and coating material was fed through the feed tube 22 at about 260 cubic centimeters per minute (cc3/min). During a second test, the bell cup 12 was rotated at about 40,000 r.p.m. and the coating material was fed through the feed tube at a rate of about 500 cc3/min. The coating material 26 used during the tests was E. I. DuPont de Nemours 694-AE590 bright white GW7. In addition, the coating material 26 feed was triggered on for fifteen seconds, then off for five seconds, repeated throughout the tests, each of which lasted between about five and about ten minutes. Axis 20 was maintained horizontal in each test. Tests of several prior art bell cups and feed tubes under the same test conditions resulted in more coating material buildup on the ends of the respective feed tubes.
Although a certain illustrative embodiment has been described in detail above, variations and modifications exist within the scope and spirit of this disclosure as described and as defined in the following claims.
Priority is claimed under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 60/335,195 filed Oct. 31, 2001, the disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4943005 | Weinstein | Jul 1990 | A |
5433387 | Howe et al. | Jul 1995 | A |
5620750 | Minoura et al. | Apr 1997 | A |
5622563 | Howe et al. | Apr 1997 | A |
5662278 | Howe et al. | Sep 1997 | A |
6076751 | Austin et al. | Jun 2000 | A |
6230993 | Austin et al. | May 2001 | B1 |
6409104 | Fiala et al. | Jun 2002 | B1 |
Number | Date | Country |
---|---|---|
0 803 293 | Oct 1997 | EP |
0 818 243 | Jan 1998 | EP |
08 024721 | Jan 1996 | JP |
09 094488 | Apr 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20030080221 A1 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
60335195 | Oct 2001 | US |