This application relates to the following patent applications as were filed on even date herewith (wherein the contents of such patent applications are incorporated herein by this reference):
Method and apparatus to facilitate communications using surrogate and care-of internet protocol addresses PCT/US06/23726;
Address resolution protocol-based wireless access point method and apparatus PCT/US06/23727;
Method and apparatus to facilitate mobile station communications using internet protocol-based communications PCT/US06/23732;
Method, apparatus, and system for establishing a direct route between agents of a sender node and a receiver node PCT/US06/23731;
System and method for providing a distributed virtual mobility agent PCT/US06/23729; and
System and method for paging and location update in a network PCT/US06/23728.
This invention relates generally to communication systems and more particularly to communication systems that support wireless mobility and changes with respect to corresponding wireless connectivity.
One-way and two-way wireless communications are a relatively well-understood area of endeavor. In many cases, various network elements comprise an infrastructure that support the communications needs of one or more mobile stations. These communications needs can comprise voice calls, data communications, and so forth. In many cases, modern communications networks comprise a large number of geographically differentiated wireless access points that essentially define the network's edge. Such geographic differentiation, in turn, facilitates significant reuse of various network resources such as radio frequency bearer channels, control channels, time slots, spreading codes, and so forth. Aggressive reuse of such resources then facilitates viably supporting a relatively large user population.
Such communication networks often serve to support the communication needs of mobile users as those mobile users move with respect to the communication system infrastructure. This, however, gives rise to a need to support various mobility management functions such as, but not limited to:
There are various problems and concerns that arise when supporting such mobility management capabilities. For example, latency in various forms presents numerous concerns. To illustrate, data can be lost or delayed due to the time required to fully effect a handover from one wireless access point to another. This, in turn, can necessitate resending data and/or simply accepting a loss of some data under such circumstances.
The above needs are at least partially met through provision of the method and apparatus for reducing latency during wireless connectivity changes described in the following detailed description, particularly when studied in conjunction with the drawings, wherein:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and/or relative positioning of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention. It will further be appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. It will also be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein.
Generally speaking, pursuant to these various embodiments, upon detecting indicia of a change in wireless connectivity as corresponds to a given mobile station with respect to a first wireless access point and a second wireless access point, one automatically effects at least one communication between the first and second wireless access points regarding this change in wireless connectivity and/or automatically establishes a temporary data tunnel as between the first and second wireless access points. In a preferred approach, one also then automatically establishes a data flow path for the mobile station as between the second wireless access point and a network element that is hierarchically differentiated from the second wireless access point. The latter approach preferably comprises, at least in part, automatically sending a registration request from the second wireless access point to the network element other than in response to a specific request from the mobile station to send such a registration request.
So configured, a variety of system architectural capabilities and/or limitations are readily accommodated while generally tending to minimize or avoid latency-related delays or loss of data packets as may otherwise occur as a result of a change in wireless connectivity. Furthermore, as will be made more clear below, this approach can readily accommodate various operational scenarios. These teachings are generally applicable without requiring change to existing mobile stations and can be employed with mobile stations that are Internet Protocol incapable as well as Internet Protocol capable platforms.
These and other benefits may become clearer upon making a thorough review and study of the following detailed description. Referring now to the drawings, and in particular to
Those skilled in the art will understand and recognize that a typical communication system will comprise a considerably larger number of wireless access points as well as other network elements. A typical communication system will also typically exhibit greater hierarchical depth. As these teachings are not particularly sensitive to such attributes (and in fact are readily scalable to accommodate such factors when present), such additional context is not presented here for the sake of clarity.
So configured, the mobile station 101 can source and/or receive data packets of various kinds (including packets in support of both real time and non-real time services) via a wireless access point to which it has become attached. With reference to
For example, when the point of wireless connectivity comprises a handover (for example, from this wireless access point 200 to another), the indicia can comprise corresponding handover information as may be received via a mobile station interface 202 (such as a base station as is known in the art) that communicates directly with the mobile station and/or another source 203 (such as information obtained via a peer-to-peer exchange with another wireless access point via the local subnet). Depending also on the needs of a given application setting and/or a particular operational goal or desire, this wireless connectivity detector 201 can detect such a change in wireless connectivity prior to completion of the change in wireless connectivity and/or subsequent to completion of the change in wireless connectivity. Both approaches have potential use and benefit as will be demonstrated below in more detail.
In a preferred approach the change in wireless connectivity detector 201 also operably couples to a data flow path establishment unit 204. The latter is preferably configured and arranged to be responsive to a change in wireless connectivity by automatically establishing a data flow path for the mobile station as between the wireless access point and the aforementioned other wireless access point (via, for example, the inter-network interconnecting them). As will be shown below, this data flow path can be used to reduce or even eliminate at least some latency delays with respect to data packet forwarding.
To aid the data flow path establishment unit 204 establish such a data flow path between peer wireless access points, the data flow path establishment unit 204 will preferably have access to a registration request 205 module and a transmitter 206 (which may comprise a part of a transceiver in a preferred approach). This transmitter 206 is preferably configured and arranged to transmit a registration request to a network element (such as the previously mentioned mobility management agent described with reference to
The illustration provided will be understood to comprise a logical depiction. The elements portrayed can comprise physically separate elements if desired or can share a common enabling platform. The latter may be particularly desirable when the enabling platform comprises a partially or wholly programmable platform as versus a fixed-purpose apparatus.
So configured, a wireless access point is sufficiently well appointed to permit support and facilitation of the process 300 described in
This process 300 also preferably automatically establishes 303 a data flow path for the mobile station as between the second wireless access point and a network element that is hierarchically differentiated from the second access point. By one preferred approach, this comprises, at least in part, automatically sending a registration request from the second wireless access point to the network element other than in response to a specific request from the mobile station to send the registration request. For example, such a registration request can be sent in response to reception by the second wireless access point of a specific message as transmitted by the first wireless access point. As will be shown below, these teachings are compatible with various approaches in this regard and specifically accommodate sending such a registration request prior to completion of the change in wireless connectivity and further support establishing this data flow path prior to completion of the change in wireless connectivity.
Referring now to
In this scenario the first wireless access point detects 403 a particular wireless connectivity change of interest (such as, for example, the beginning of a handover of the mobile station from the first wireless access point to the second wireless access point). Upon detecting this indicia, the first wireless access point, via the common subnet, contacts the second wireless access point and provides a registration request 404. In a preferred approach this registration request includes information that identifies the mobile station though this may not always be useful and/or necessary when the indicia of wireless connectivity change itself comprises a notice from the second wireless access point based upon the mobile station having attached itself to the second wireless access point. This registration request can comprise any registration request as will suffice in a given setting and may comprise, for example, a Mobile Internet Protocol registration request.
The second wireless access point, upon receiving this registration request, reacts by automatically transmitting a registration request 405 to a mobility management agent such as a home agent for the mobile station. (This registration request can comprise, for example, a Mobile Internet Protocol registration request.) This registration request 405 will serve to permit the mobility management agent to properly route future data packets intended for the mobile station to the second wireless access point. In a preferred approach the mobility management agent responds with a registration reply 406.
Eventually, the wireless connectivity change is complete 407. The second wireless access point is now able to establish a data flow path 408 to the mobile station to permit the continued transmission of data packets to the mobile station from an external source (not shown) relatively sooner than might ordinarily be expected. This reduction in latency is owing primarily, in this scenario, to the early registration effected by the second wireless access point on behalf of the mobile station prior to the mobile station having completed its wireless connectivity event (in this example, the hand over to the second wireless access point).
Referring now to
In this scenario, if desired, the first wireless access point can optionally begin to buffer data 501 that the wireless access point now receives to forward to the mobile station. Various buffering techniques are well-understood in the art and require no further elaboration here. Regardless of whether the first wireless access point supports such buffering, the first wireless access point now transmits a tunnel setup request 502 to the second wireless access point via a peer-to-peer communication using the subnet to which these elements belong. Upon receiving this request, the second wireless access point responds with a tunnel setup response 503. (Of course, in some cases it may be that a tunnel or other data path already exists between the first and second wireless access points. When this occurs it would not be necessary to establish the described path and the existing path could be used instead if so desired.) (If desired, and prior to establishing this data flow path, a communication can be sent from the first wireless access point to the second wireless access point to inform the latter of the detection of wireless connectivity change indicia 403 and to facilitate a transfer of one or more kinds of context as may relate, for example, to the mobile station (such as the mobile station's Internet Protocol address and the like). Following this, the data forwarding path could then be set up.)
By one approach, and particularly so when the first wireless access point is not buffering any data via the optional actions noted above, the first wireless access point can begin to transmit a data flow 504 to the second wireless access point. This data flow 504 can comprise, for example, data packets that are intended for the mobile station. Since the mobile station has not yet completed its handover at this point in the scenario, the second wireless access point will preferably buffer 505 such data to render that data available for transmission to the mobile station when next possible.
As before, eventually the wireless connectivity change is complete and the second wireless access point detects 506 that status. In scenarios where the first wireless access point has not already begun to forward its buffered mobile station data to the second wireless access point, a buffered data flow 507 from the former to the latter can be established now.
Regardless of whether the data was earlier sent to the second wireless access point and buffered upon arrival, or is only now being provided to the second wireless access point following buffering at the first wireless access point (or some combination of both approaches), a data flow 508 can now be established between the second wireless access point and the mobile station. The second wireless access point can also transmit a registration request 405 to the mobility management agent (and receive a corresponding registration reply 406) prior to, following, or in the absence of an exchange of registration messages (or even earlier) as between the second wireless access point and the mobile station (as may depend upon the capabilities of the mobile station itself and/or relative timing of these events).
So configured, it will be appreciated that latency with respect to the delivery of data packets received shortly before, during, and/or shortly after the change in wireless connectively event will likely be reduced. It will also be seen that these teachings can aid minimize the need to retransmit packets that were otherwise lost during the transition window. And it will again be seen that these teachings permit an earlier establishment of a data flow path between the mobile station and the handed-over wireless access point than might be possible in the absence of these teachings.
Referring now to
Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the spirit and scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.
Number | Date | Country | Kind |
---|---|---|---|
533/KOL/2005 | Jun 2005 | IN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/023730 | 6/19/2006 | WO | 00 | 11/9/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/001952 | 1/4/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5506838 | Flanagan | Apr 1996 | A |
6195555 | Dent | Feb 2001 | B1 |
6230012 | Willkie et al. | May 2001 | B1 |
6285880 | Gagnon et al. | Sep 2001 | B1 |
6430698 | Khalil et al. | Aug 2002 | B1 |
6473413 | Chiou et al. | Oct 2002 | B1 |
6567664 | Bergenwall et al. | May 2003 | B1 |
6701361 | Meier | Mar 2004 | B1 |
6711408 | Raith | Mar 2004 | B1 |
6721565 | Ejzak et al. | Apr 2004 | B1 |
6795857 | Leung et al. | Sep 2004 | B1 |
6795891 | Lin | Sep 2004 | B2 |
6859653 | Ayoub et al. | Feb 2005 | B1 |
6977938 | Alriksson et al. | Dec 2005 | B2 |
7016682 | Won et al. | Mar 2006 | B2 |
7096273 | Meier | Aug 2006 | B1 |
7139833 | Heller | Nov 2006 | B2 |
7289463 | Ozugur | Oct 2007 | B2 |
7336670 | Calhoun et al. | Feb 2008 | B1 |
7349380 | Barker, Jr. et al. | Mar 2008 | B2 |
7450544 | Rue | Nov 2008 | B2 |
7512687 | Jung | Mar 2009 | B2 |
7649866 | Chari et al. | Jan 2010 | B2 |
7733829 | Lee et al. | Jun 2010 | B2 |
7860067 | Na et al. | Dec 2010 | B2 |
20010024443 | Alriksson et al. | Sep 2001 | A1 |
20020015396 | Jung | Feb 2002 | A1 |
20020034166 | Barany et al. | Mar 2002 | A1 |
20020057657 | La Porta et al. | May 2002 | A1 |
20020075844 | Hagen | Jun 2002 | A1 |
20020090940 | Chen et al. | Jul 2002 | A1 |
20020094813 | Koshimizu et al. | Jul 2002 | A1 |
20030016655 | Gwon | Jan 2003 | A1 |
20030018810 | Karagiannis et al. | Jan 2003 | A1 |
20030076837 | Whitehill et al. | Apr 2003 | A1 |
20030104813 | Julka et al. | Jun 2003 | A1 |
20030148777 | Watanabe et al. | Aug 2003 | A1 |
20030174709 | Shankar | Sep 2003 | A1 |
20030202505 | Ozugur | Oct 2003 | A1 |
20030235176 | Zhang et al. | Dec 2003 | A1 |
20040005884 | Nieminen et al. | Jan 2004 | A1 |
20040022212 | Chowdhury et al. | Feb 2004 | A1 |
20040023653 | O'Neill | Feb 2004 | A1 |
20040034705 | Focsaneanu | Feb 2004 | A1 |
20040043791 | Reddy | Mar 2004 | A1 |
20040063455 | Eran et al. | Apr 2004 | A1 |
20040066760 | Thubert et al. | Apr 2004 | A1 |
20040071109 | Herle et al. | Apr 2004 | A1 |
20040082330 | Marin | Apr 2004 | A1 |
20040114559 | Wang | Jun 2004 | A1 |
20040133684 | Chan et al. | Jul 2004 | A1 |
20040185852 | Son et al. | Sep 2004 | A1 |
20040213181 | Grech et al. | Oct 2004 | A1 |
20040213260 | Leung et al. | Oct 2004 | A1 |
20040242233 | Lutgen | Dec 2004 | A1 |
20050047399 | Lee et al. | Mar 2005 | A1 |
20050088994 | Maenpaa et al. | Apr 2005 | A1 |
20050113091 | Rodriguez et al. | May 2005 | A1 |
20050122946 | Won | Jun 2005 | A1 |
20050128975 | Kobayashi et al. | Jun 2005 | A1 |
20050135422 | Yeh | Jun 2005 | A1 |
20050148368 | Scheinert et al. | Jul 2005 | A1 |
20050163080 | Suh et al. | Jul 2005 | A1 |
20050180372 | Cho et al. | Aug 2005 | A1 |
20050185632 | Draves, Jr. et al. | Aug 2005 | A1 |
20050213546 | Reitter et al. | Sep 2005 | A1 |
20060104247 | Dommety et al. | May 2006 | A1 |
20060112183 | Corson et al. | May 2006 | A1 |
20060142034 | Wentink et al. | Jun 2006 | A1 |
20070115883 | Narayanan et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
0777396 | Jun 1997 | EP |
1404143 | Mar 2004 | EP |
1263182 | Dec 2008 | EP |
0045560 | Aug 2000 | WO |
03049377 | Jun 2003 | WO |
2004073324 | Aug 2004 | WO |
2004073325 | Aug 2004 | WO |
Entry |
---|
Chuah, M.C. et al.: Mobile Virtual Private Dial-up Services:, Bell Labs Technical Journal; Bell Laboratories; U.S., vol. 4, No. 3, Jul. 1999, pp. 51-72. |
Wikipedia Article from Internet: “Global System for Mobile Communications”, Apr. 17, 2005, http://web.archive.org/web/20050417021658/http://de.wikipedia.org/wiki/Global—System—for—Mobile—Communications, Mar. 27, 2008, pp. 1-13. |
Perkins, Charles et al: “IMHP: A Mobile Host Protocol for the Internet”, in Proceedings of INET'94/JENC5, (1994), all pages. |
Wu, Chun-Hsin et al.: “Bi-direction Route Optimization in Mobile IP over Wireless LAN”, Vehicular Technology Conference, 2002, Proceedings. VTC 2002-Fall, 2002 IEEE 56th, all pages. |
Perkins, C.: “IP Mobility Support for IPv4”, Network Working Group, Request for Comments: 3344, Nokia Research Center, Aug. 2002, all pages. |
R. Caceres and V.N. Padmanbhan: “Fast and Scalable Wireless Handoffs in Support of Mobile Internet Audio”, ACM J. Mobile Net. and Appl., v3, No. 4, Dec. 1998, all pages. |
Gustafsson Eva et al.: “Mobile IPv4 Regional Registration”, draft-ietf-mobileip-reg-tunnel-09.txt, Mobile IP Working Group Internet Draft, Jun. 25, 2004, all pages. |
Ericsson, “low Latency Handoffs in Mobile IPv4”, Network Working Group, Internet-Draft, Expires Dec. 2004, Jun. 2004, draft-ietf-mobileip-lowlatency-handoffs-v4-09.txt, all pages. |
Soliman, Hesham et al.: Hierarchical Mobile IPv6 Mobility management (HMIPv6), draft-ietf-mipshop-hmipv6-03.txt, Network Working Group, Expires: Apr. 2005, Oct. 2004, all pages. |
Kempf, James et al.: “Post-handover Mobile Initiated Tunneling for Fast Mobile IPv4 Handover”, draft-kempf-mobileip-postmit-handover-00.txt, Expires: Jun. 2002, all pages. |
Fathi, Hanane et al.: “Mobility Management for VoIP in 3G Systems: Evaluation of Low-Latency Handoff Schemes”, IEEE Wireless Communications, Apr. 2005, 1536-1284/05, pp. 96-104. |
Perkins, C: “IP Mobility Support”, Network Working Group, Request for Comments: 2002 IBM, Oct. 1996, all pages. |
Translation of the Official Communication from the German Patent and Trademark Office date Aug. 19, 2011, all pages. |
German Patent and Trademark Office, Summons before the German Patent and Trademark Office for German Patent Application No. 10 2006 001 710.1 (related to above-captioned patent application), mailed Jan. 28, 2016. |
Venken, Kristiaan et al., “Analysis of the evolution to an IP-based UMTS terrestrial radio access network,” Wireless Communications, IEEE, Oct. 2003, 10th issue, No. 5, p. 46-53. |
De Vriendt, J. et al., “Mobile network evolution: A revolution on the move,” IEEE Communications Magazine, Apr. 2002. |
Number | Date | Country | |
---|---|---|---|
20080167037 A1 | Jul 2008 | US |