Not Applicable
The present disclosure relates generally to transparent coverings for windows, eyewear, or display screens and, more particularly, transparent coverings for use in non-normal incidence applications such as vehicle windshields.
In various contexts, it is advantageous to affix transparent coverings to a substrate. Windows of buildings or vehicles may be covered with transparent window films for tinting (e.g. for privacy), for thermal insulation, to block ultraviolet (UV) radiation, or for decoration. Protective eyewear (e.g. goggles, glasses, and facemasks for off-road vehicle use, medical procedures, etc.) may be covered with a stack of transparent lenses for easy tear-away as the eyewear becomes dirty and obstructs the wearer's vision. Display screens of mobile phones, personal computers, ATMs and vending terminals, etc. may be covered with protective lenses to prevent damage to the underlying screen or block side viewing (e.g. for privacy and security in public places). While the majority of such applications transmit light to an observer at normal incidence, non-normal incidence applications exist as well. In the case of automobile windshields, for example, there has been a trend to increase the angle of incidence to 60-70 degrees from normal or even higher in an effort to reduce drag and improve fuel efficiency.
The co-inventors have discovered an increase in optical distortion when transparent coverings (e.g. glazing films) are applied at high angles of incidence (e.g. greater than 60 degrees from normal) as in the case of transparent coverings applied to vehicle windshields. The present disclosure contemplates various apparatuses and methods for manufacturing polymer films that overcome this difficulty, as well as polymer films made in accordance therewith. One aspect of the embodiments of the disclosure is a method of manufacturing a polymer film. The method may include melting a resin, extruding the melted resin through a die to produce a polymer film, shaping the polymer film, cooling the polymer film, capturing an image of a test pattern through the polymer film, calculating a modulation transfer function value from the image, and adjusting a process parameter of the melting, the extruding, the shaping, or the cooling based on the calculated modulation transfer function value.
The process parameter may be a temperature setting of a heater used in the melting.
The process parameter may be a rotation speed of an extrusion screw used in the extruding.
The process parameter may be a rotation speed of a roller used in the shaping or the cooling.
The method may include capturing an additional image of the test pattern through the polymer film with the polymer film at a different angle relative to the test pattern and calculating an additional modulation transfer function value from the additional image. The adjusting may be based on the calculated additional modulation transfer function value. During the capturing of the image, the polymer film may be at an angle relative to the test pattern of 55-65 degrees. During the capturing of the additional image of the test pattern through the polymer film, the polymer film may be at an angle relative to the test pattern of 65-75 degrees.
The capturing of the image may be performed by an imaging radiometer 10-30 meters from the test pattern. The capturing of the image may be performed with the test pattern 1-10 meters from the polymer film.
The test pattern may comprise line pairs.
The method may include capturing a baseline image of the test pattern that is not taken through the polymer film and calculating a baseline modulation transfer function value from the baseline image. The adjusting may be based on a difference between the calculated modulation transfer function value and the calculated baseline modulation transfer function value. During the capturing of the image, the polymer film may be at an angle relative to the test pattern of 55-65 degrees. The adjusting may be performed such that the difference between the calculated modulation transfer function value and the calculated baseline modulation transfer function value is kept below 0.12. The method may include capturing an additional image of the test pattern through the polymer film with the polymer film at an angle relative to the test pattern of 65-75 degrees and calculating an additional modulation transfer function value from the additional image. The adjusting may be performed such that the difference between the calculated additional modulation transfer function and the calculated baseline modulation transfer function is kept below 0.38. During the capturing of the image, the polymer film may be at an angle relative to the test pattern of 60 degrees. During the capturing of the additional image, the polymer film may be at an angle relative to the test pattern of 70 degrees.
The polymer film may be a biaxially-oriented polyethylene terephthalate film.
The process parameter may affect a density variation of the polymer film.
The process parameter may affect a refractive index variation in the polymer film. The process parameter may affect a frequency of refractive index changes on the order of 0.010 in the polymer film.
Another aspect of the embodiments of the disclosure is a polymer film. The polymer film may have a density variation such that a difference between i) a first modulation transfer function value calculated from an image of a test pattern captured through the polymer film with the polymer film at an angle of 60 degrees relative to the test pattern and ii) a baseline modulation transfer function calculated from an image of the test pattern that is not taken through the polymer film is less than 0.12. The density variation may be such that a difference between i) a second modulation transfer function value calculated from an image of a test pattern captured through the polymer film with the polymer film at an angle of 70 degrees relative to the test pattern and ii) the baseline modulation transfer function is less than 0.38.
Another aspect of the embodiments of the disclosure is an apparatus for manufacturing a polymer film. The apparatus may include an extruder assembly for melting a resin and extruding the melted resin through a die to produce a polymer film, a roller for shaping and/or cooling the polymer film, an image sensor for capturing an image of a test pattern through the polymer film, and a computer for calculating a modulation transfer function value from the image and adjusting a process parameter of the extruder assembly or the roller based on the calculated modulation transfer function value.
These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
The present disclosure encompasses various polymer films and polymer film manufacturing apparatuses and methods. The detailed description set forth below in connection with the appended drawings is intended as a description of several currently contemplated embodiments. It is not intended to represent the only form in which the disclosed subject matter may be developed or utilized. The description sets forth the functions and features in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions may be accomplished by different embodiments that are also intended to be encompassed within the scope of the present disclosure. It is further understood that the use of relational terms such as first and second and the like are used solely to distinguish one from another entity without necessarily requiring or implying any actual such relationship or order between such entities.
Referring back to
As noted above, it is believed that density variations across the polymer film as it is extruded and cooled cause changes in the index of refraction that result in the increased distortion found at higher angles of incidence. Therefore, it is contemplated that the apparatus 100 may be configured to adjust one or more process parameters that affect the density variation of the polymer film 200 and/or the refractive index variation in the polymer film 200. Relevant process parameters may include, for example, a temperature setting of the heater 133 used in melting the resin (e.g. absolute temperature or relative temperatures of a gradient or profile of a plurality of heated regions of the extruder assembly 130), a rotation speed of the extrusion screw 135 (which may determine melting time as well as degree of mixing of the resin), and/or a rotation speed of the one or more rollers 140 (which may determine cooling time and/or a degree of force acting on the polymer film 200 during or prior to cooling to stretch or otherwise shape the polymer film 200 in longitudinal and/or transverse directions while the polymer film 200 is still pliable). The computer 120 may be programmed to adjust one or more such process parameters or any other relevant process parameters of the melting, extruding, shaping, or cooling based on a calculated MTF value associated with the manufactured polymer film 200. In this way, the distortion of the polymer film 200 may be optimized for the intended angle of incidence at which the polymer film 200 will be used.
The MTF value calculated by the computer 120 may be, for example, a single value of a modulation transfer function corresponding to a specific spatial frequency (e.g. a contrast percentage when resolving a specific number of line pairs per millimeter), an average value of a modulation transfer function over a range of spatial frequencies, or any other value representative of or derived from a modulation transfer function. In the example of the apparatus 100 shown in
The MTF value calculated from the image captured through the polymer film 200 may be compared to a baseline MTF value calculated from a direct image of the test pattern 300 without the polymer film 200. For example, the baseline MTF value may be subtracted from the MTF value associated with the polymer film 200 such that a difference value of “0” represents no distortion caused by the polymer film 200 and a difference value of “1” represents total distortion (i.e. no resolution). In this way, a difference in measured MTF values between an image of the test pattern 300 viewed through the polymer film 200 and an image of the test pattern 300 directly may be obtained, such as difference data of the type shown in
In order to obtain MTF values for different angles of the polymer film 200, multiple images may be taken with the polymer film 200 rotated relative to the image sensor 110 and/or test pattern 300. For example, during the capturing of a first image of the test pattern 300 through the polymer film 200, the polymer film may be at an angle relative of the test pattern 300 of 55-65 degrees (e.g. 60 degrees) and, during capturing of an additional image of the test pattern 300 through the polymer film 200, the polymer film 200 may be at an angle relative to the test pattern 300 of 65-75 degrees (e.g. 70 degrees). The computer 120 may then adjust the manufacturing process parameter(s) based on both the MTF value calculated form the first image and an additional MTF value calculated from the additional image, both relative to a baseline MTF value as described above. It is contemplated that a sufficiently distortion-free film for use at off-normal incidence (e.g. for vehicle windshields) may have an MTF value difference (relative to baseline) of below 0.12 at 60 degrees and an MTF value difference (relative to baseline) of below 0.38 at 70 degrees.
It is contemplated that the computer 120 may be programmed to adjust the process parameter(s) automatically without user input or in response to commands entered into a user interface of the computer 120. In this regard, the apparatus 100 may be set up to allow the image sensor 110 to capture images of the test pattern 300 through the polymer film 200 in a continuous process. For example, the various images described above may be captured during or after cooling while the polymer film 200 is on the roller(s) 140. In the case of multiple images at different angles of incidence, multiple image sensors 110 and/or test patterns 300 may be set up at different stages or a single image sensor 110 and/or test pattern 300 may automatically move to multiple positions. As the computer 120 calculates MTF values from the captured images, the computer 120 may continuously adjust the relevant process parameters in order to keep the desired MTF value(s) (or difference(s) from baseline thereof) below specified values. Alternatively, the apparatus 100 may be set up to capture images and make adjustments to process parameters in a batch to batch process, either automatically or by manual operation. For example, after a polymer film 200 batch is completed (or during cooling), the relevant MTF values may be calculated and the computer 120 may make adjustments to the process parameters to improve the distortion characteristics of the next batch or to optimize the distortion characteristics of the next batch for a different purpose (e.g. to minimize distortion at a different range of angles of incidence).
Referring back to
The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
This application is a division of U.S. application Ser. No. 18/297,468 filed Apr. 7, 2023, which is a division of U.S. application Ser. No. 17/103,397 filed Nov. 24, 2020, now U.S. Pat. No. 11,648,723, issued May 16, 2023, which claims the benefit of U.S. Provisional Application No. 62/942,943 filed Dec. 3, 2019, the contents of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1337036 | Bergmann | Apr 1920 | A |
1366907 | Dunand | Feb 1921 | A |
2138086 | Blodjer | Nov 1938 | A |
2248331 | Blodjer | Jul 1941 | A |
2328687 | Serr | Sep 1943 | A |
2339280 | Madson | Jan 1944 | A |
2354415 | Woodard | Jul 1944 | A |
2461604 | Huntsman | Feb 1949 | A |
2511329 | Craig | Jun 1950 | A |
2546117 | Whelan | Mar 1951 | A |
2563125 | Malcom, Jr. | Aug 1951 | A |
2569715 | Green | Oct 1951 | A |
2640068 | Schaefer et al. | May 1953 | A |
2736109 | Scholl | Feb 1956 | A |
2923944 | Lindblom | Feb 1960 | A |
2963708 | Herbine et al. | Dec 1960 | A |
3095575 | Radov | Jul 1963 | A |
3298031 | Morgan | Jan 1967 | A |
3475766 | Raschke | Nov 1969 | A |
3577565 | Feldmann et al. | May 1971 | A |
3605115 | Bohner | Sep 1971 | A |
3685054 | Raschke | Aug 1972 | A |
3774239 | Kotzar | Nov 1973 | A |
3785102 | Amos | Jan 1974 | A |
3797042 | Gager | Mar 1974 | A |
3810815 | Welhart et al. | May 1974 | A |
3868293 | Selph | Feb 1975 | A |
3937863 | Moore | Feb 1976 | A |
3948662 | Alston et al. | Apr 1976 | A |
3950580 | Boudet | Apr 1976 | A |
3987569 | Chase | Oct 1976 | A |
4063740 | Mader | Dec 1977 | A |
4076373 | Moretti | Feb 1978 | A |
4090464 | Bishopp et al. | May 1978 | A |
D249597 | Dillon | Sep 1978 | S |
4138746 | Bergmann | Feb 1979 | A |
D254638 | Bay, Jr. | Apr 1980 | S |
4204231 | Permenter | May 1980 | A |
4248762 | Hornibrook et al. | Feb 1981 | A |
4248918 | Hornibrook et al. | Feb 1981 | A |
4268134 | Gulati et al. | May 1981 | A |
4273098 | Silverstein | Jun 1981 | A |
4301193 | Zuk | Nov 1981 | A |
4332861 | Franz et al. | Jun 1982 | A |
4333983 | Allen | Jun 1982 | A |
4380563 | Ayotte | Apr 1983 | A |
4528701 | Smith | Jul 1985 | A |
4557980 | Hodnett, III | Dec 1985 | A |
4582764 | Allerd et al. | Apr 1986 | A |
4625341 | Broersma | Dec 1986 | A |
4658515 | Oatman | Apr 1987 | A |
4696860 | Epperson | Sep 1987 | A |
4701965 | Landis | Oct 1987 | A |
4716601 | Mcneal | Jan 1988 | A |
4726074 | Baclit et al. | Feb 1988 | A |
4729179 | Quist, Jr. | Mar 1988 | A |
4769265 | Coburn, Jr. | Sep 1988 | A |
D299767 | Hsin | Feb 1989 | S |
4842919 | David et al. | Jun 1989 | A |
4850049 | Landis et al. | Jul 1989 | A |
4852185 | Olson | Aug 1989 | A |
4852186 | Landis | Aug 1989 | A |
4853974 | Olim | Aug 1989 | A |
4856535 | Forbes | Aug 1989 | A |
4864653 | Landis | Sep 1989 | A |
4867178 | Smith | Sep 1989 | A |
4884296 | Nix, Jr. | Dec 1989 | A |
4884302 | Foehl | Dec 1989 | A |
4889754 | Vargas | Dec 1989 | A |
D306363 | Stackhouse et al. | Feb 1990 | S |
4907090 | Ananian | Mar 1990 | A |
4911964 | Corbo | Mar 1990 | A |
D307065 | Friedman | Apr 1990 | S |
4920576 | Landis | May 1990 | A |
4934792 | Tovi | Jun 1990 | A |
4945573 | Landis | Aug 1990 | A |
4950445 | Salce et al. | Aug 1990 | A |
D311263 | Russell | Oct 1990 | S |
4964171 | Landis | Oct 1990 | A |
4965887 | Paoluccio et al. | Oct 1990 | A |
4973511 | Farmer et al. | Nov 1990 | A |
4975981 | Ray | Dec 1990 | A |
5000528 | Kawakatsu | Mar 1991 | A |
5002326 | Spicer et al. | Mar 1991 | A |
D318147 | Russell | Jul 1991 | S |
5035004 | Koester | Jul 1991 | A |
D319449 | Millar | Aug 1991 | S |
5046195 | Koritan | Sep 1991 | A |
D321268 | Nix, Jr. | Oct 1991 | S |
5052054 | Birum | Oct 1991 | A |
5054480 | Bare et al. | Oct 1991 | A |
5067475 | Posnansky | Nov 1991 | A |
5071206 | Hood et al. | Dec 1991 | A |
H1023 | Wiseman | Mar 1992 | H |
5104929 | Bilkadi | Apr 1992 | A |
5113528 | Burke, Jr. et al. | May 1992 | A |
D331820 | Scanlon | Dec 1992 | S |
D333366 | Brown | Feb 1993 | S |
5183700 | Austin | Feb 1993 | A |
5194293 | Foster | Mar 1993 | A |
5201077 | Dondlinger | Apr 1993 | A |
5206956 | Olson | May 1993 | A |
5208916 | Kelman | May 1993 | A |
5239406 | Lynam | Aug 1993 | A |
5318685 | O'Shaughnessy | Jun 1994 | A |
D349177 | Russell | Jul 1994 | S |
D349178 | Russell | Jul 1994 | S |
5327180 | Hester, III et al. | Jul 1994 | A |
D349362 | Russell | Aug 1994 | S |
5364671 | Gustafson | Nov 1994 | A |
5365615 | Piszkin | Nov 1994 | A |
D353691 | Scanlon | Dec 1994 | S |
D354588 | Russell | Jan 1995 | S |
D354589 | Russell | Jan 1995 | S |
5420649 | Lewis | May 1995 | A |
D359586 | Lofton | Jun 1995 | S |
D361160 | Russell | Aug 1995 | S |
5443877 | Kramer et al. | Aug 1995 | A |
D362086 | Russell | Sep 1995 | S |
5468247 | Matthai et al. | Nov 1995 | A |
5471036 | Sperbeck | Nov 1995 | A |
5473778 | Bell | Dec 1995 | A |
5486883 | Candido | Jan 1996 | A |
5507332 | McKinnon | Apr 1996 | A |
5510173 | Pass et al. | Apr 1996 | A |
5512116 | Campfield | Apr 1996 | A |
5523132 | Zhang et al. | Jun 1996 | A |
RE35318 | Warman | Aug 1996 | E |
5544361 | Fine et al. | Aug 1996 | A |
5553608 | Reese et al. | Sep 1996 | A |
5555570 | Bay | Sep 1996 | A |
5557683 | Eubanks | Sep 1996 | A |
5584130 | Perron | Dec 1996 | A |
5592698 | Woods | Jan 1997 | A |
5593786 | Parker et al. | Jan 1997 | A |
5622580 | Mannheim | Apr 1997 | A |
5633049 | Bilkadi et al. | May 1997 | A |
5668612 | Hung | Sep 1997 | A |
5671483 | Reuber | Sep 1997 | A |
5673431 | Batty | Oct 1997 | A |
5687420 | Chong | Nov 1997 | A |
5694650 | Hong | Dec 1997 | A |
5702415 | Matthai et al. | Dec 1997 | A |
5709825 | Shih | Jan 1998 | A |
5740560 | Muoio | Apr 1998 | A |
5792535 | Weder | Aug 1998 | A |
5806102 | Park | Sep 1998 | A |
5815848 | Jarvis | Oct 1998 | A |
5819311 | Lo | Oct 1998 | A |
5846659 | Hartmut et al. | Dec 1998 | A |
D404849 | Desy | Jan 1999 | S |
5885704 | Peiffer et al. | Mar 1999 | A |
5896991 | Hippely et al. | Apr 1999 | A |
5924129 | Gill | Jul 1999 | A |
5937596 | Leeuwenburgh et al. | Aug 1999 | A |
5956175 | Hojnowski | Sep 1999 | A |
5972453 | Akiwa et al. | Oct 1999 | A |
5991072 | Solyntjes et al. | Nov 1999 | A |
5991081 | Haaland et al. | Nov 1999 | A |
5991930 | Sorrentino | Nov 1999 | A |
D418256 | Caruana | Dec 1999 | S |
6008299 | Mcgrath et al. | Dec 1999 | A |
6049419 | Wheatley et al. | Apr 2000 | A |
6085358 | Cogan | Jul 2000 | A |
6173447 | Arnold | Jan 2001 | B1 |
6217099 | Mckinney et al. | Apr 2001 | B1 |
6221112 | Snider | Apr 2001 | B1 |
6237147 | Brockman | May 2001 | B1 |
6250765 | Murakami | Jun 2001 | B1 |
6305073 | Badders | Oct 2001 | B1 |
6347401 | Joyce | Feb 2002 | B1 |
6375865 | Paulson et al. | Apr 2002 | B1 |
6378133 | Daikuzono | Apr 2002 | B1 |
6381750 | Mangan | May 2002 | B1 |
6385776 | Linday | May 2002 | B2 |
6388813 | Wilson et al. | May 2002 | B1 |
6403005 | Mientus et al. | Jun 2002 | B1 |
6416872 | Maschwitz | Jul 2002 | B1 |
6432522 | Friedman et al. | Aug 2002 | B1 |
6461709 | Janssen et al. | Oct 2002 | B1 |
6469752 | Ishikawa et al. | Oct 2002 | B1 |
6481019 | Diaz et al. | Nov 2002 | B2 |
6491390 | Provost | Dec 2002 | B1 |
6531180 | Takushima et al. | Mar 2003 | B1 |
6536045 | Wilson et al. | Mar 2003 | B1 |
6536589 | Chang | Mar 2003 | B2 |
6555235 | Aufderheide et al. | Apr 2003 | B1 |
6559902 | Kusuda et al. | May 2003 | B1 |
6576349 | Lingle et al. | Jun 2003 | B2 |
6584614 | Hogg | Jul 2003 | B2 |
6592950 | Toshima et al. | Jul 2003 | B1 |
6614423 | Wong et al. | Sep 2003 | B1 |
6622311 | Diaz et al. | Sep 2003 | B2 |
D480838 | Martin | Oct 2003 | S |
6654071 | Chen | Nov 2003 | B2 |
6660389 | Liu et al. | Dec 2003 | B2 |
6662371 | Shin | Dec 2003 | B2 |
6667738 | Murphy | Dec 2003 | B2 |
6739718 | Jung | May 2004 | B1 |
6745396 | Landis et al. | Jun 2004 | B1 |
6750922 | Benning | Jun 2004 | B1 |
6773778 | Onozawa et al. | Aug 2004 | B2 |
6773816 | Tsutsumi | Aug 2004 | B2 |
6777055 | Janssen et al. | Aug 2004 | B2 |
6800378 | Hawa et al. | Oct 2004 | B2 |
6838610 | De Moraes | Jan 2005 | B2 |
6841190 | Liu et al. | Jan 2005 | B2 |
6847492 | Wilson et al. | Jan 2005 | B2 |
6864882 | Newton | Mar 2005 | B2 |
6870686 | Wilson et al. | Mar 2005 | B2 |
6879319 | Cok | Apr 2005 | B2 |
6907617 | Johnson | Jun 2005 | B2 |
6911593 | Mazumder et al. | Jun 2005 | B2 |
6922850 | Arnold | Aug 2005 | B1 |
6952950 | Doe et al. | Oct 2005 | B2 |
6967044 | O'Brien | Nov 2005 | B1 |
D512797 | Canavan et al. | Dec 2005 | S |
6973677 | Diaz et al. | Dec 2005 | B2 |
6995976 | Richardson | Feb 2006 | B2 |
7070837 | Ross | Jul 2006 | B2 |
7071927 | Blanchard | Jul 2006 | B2 |
D526446 | Cowan et al. | Aug 2006 | S |
7097080 | Cox | Aug 2006 | B2 |
7101810 | Bond et al. | Sep 2006 | B2 |
7103920 | Otterson | Sep 2006 | B1 |
7143979 | Wood et al. | Dec 2006 | B2 |
7184217 | Wilson et al. | Feb 2007 | B2 |
D541991 | Lawrence | May 2007 | S |
7215473 | Fleming | May 2007 | B2 |
7226176 | Huang | Jun 2007 | B1 |
7238401 | Dietz | Jul 2007 | B1 |
7311956 | Pitzen | Dec 2007 | B2 |
D559442 | Regelbrugge et al. | Jan 2008 | S |
7344241 | Baek | Mar 2008 | B2 |
7351470 | Draheim et al. | Apr 2008 | B2 |
D569557 | Cho | May 2008 | S |
7389869 | Mason, Jr. | Jun 2008 | B2 |
7410684 | Mccormick | Aug 2008 | B2 |
7425369 | Oakey et al. | Sep 2008 | B2 |
D586052 | Elias | Feb 2009 | S |
7495895 | Carnevali | Feb 2009 | B2 |
7597441 | Farwig | Oct 2009 | B1 |
7629052 | Brumwell | Dec 2009 | B2 |
7631365 | Mahan | Dec 2009 | B1 |
7663047 | Hanuschak | Feb 2010 | B2 |
7709095 | Persoone et al. | May 2010 | B2 |
7722921 | Shimoda et al. | May 2010 | B2 |
7727615 | Kato et al. | Jun 2010 | B2 |
7735156 | VanDerWoude et al. | Jun 2010 | B2 |
7752682 | Vanderwoude et al. | Jul 2010 | B2 |
7812077 | Borade et al. | Oct 2010 | B2 |
7858001 | Qin et al. | Dec 2010 | B2 |
7937775 | Manzella, Jr. et al. | May 2011 | B2 |
7957524 | Chipping | Jun 2011 | B2 |
8024818 | Davenport | Sep 2011 | B1 |
8044942 | Leonhard et al. | Oct 2011 | B1 |
8101277 | Logan et al. | Jan 2012 | B2 |
8234722 | VanDerWoude et al. | Aug 2012 | B2 |
8261375 | Reaux | Sep 2012 | B1 |
8282234 | VanDerWoude et al. | Oct 2012 | B2 |
8292347 | Drake | Oct 2012 | B1 |
8294843 | Hollaway | Oct 2012 | B2 |
8316470 | McNeal et al. | Nov 2012 | B2 |
8361260 | Wilson et al. | Jan 2013 | B2 |
8407818 | VanDerWoude et al. | Apr 2013 | B2 |
D683077 | Klotz et al. | May 2013 | S |
8455105 | Hobeika et al. | Jun 2013 | B2 |
D692187 | Isobe | Oct 2013 | S |
D692189 | Isobe | Oct 2013 | S |
8567596 | Mason, Jr. | Oct 2013 | B1 |
8693102 | Wilson et al. | Apr 2014 | B2 |
8819869 | VanDerWoude et al. | Sep 2014 | B2 |
8889801 | Liao et al. | Nov 2014 | B2 |
8918198 | Atanasoff | Dec 2014 | B2 |
8974620 | Wilson et al. | Mar 2015 | B2 |
D726378 | Wako | Apr 2015 | S |
8999509 | Port et al. | Apr 2015 | B2 |
9023162 | Mccormick et al. | May 2015 | B2 |
9104256 | Wilson et al. | Aug 2015 | B2 |
9128545 | Wilson et al. | Sep 2015 | B2 |
9150763 | Lopez et al. | Oct 2015 | B2 |
9161858 | Capers et al. | Oct 2015 | B2 |
9170415 | Mansuy | Oct 2015 | B2 |
9173437 | VanDerWoude et al. | Nov 2015 | B2 |
9204823 | Derenne et al. | Dec 2015 | B2 |
9274625 | Wilson et al. | Mar 2016 | B2 |
9295297 | Wilson | Mar 2016 | B2 |
D759900 | Cummings et al. | Jun 2016 | S |
9442306 | Hines et al. | Sep 2016 | B1 |
9471163 | Wilson et al. | Oct 2016 | B2 |
9526290 | Wilson | Dec 2016 | B2 |
9575231 | Chu et al. | Feb 2017 | B2 |
D781507 | Huh | Mar 2017 | S |
D781508 | Huh | Mar 2017 | S |
9629407 | Foster | Apr 2017 | B2 |
9671622 | Vetrini et al. | Jun 2017 | B1 |
9706808 | Sclafani et al. | Jul 2017 | B2 |
9726940 | Tomiyasu | Aug 2017 | B2 |
D805256 | Yang | Dec 2017 | S |
9905297 | Best | Feb 2018 | B2 |
D815190 | Dellemann | Apr 2018 | S |
9968155 | Wilson | May 2018 | B2 |
10070678 | Wilson | Sep 2018 | B2 |
10165819 | Klotz et al. | Jan 2019 | B2 |
10201207 | VanDerWoude et al. | Feb 2019 | B2 |
10226095 | Wilson | Mar 2019 | B2 |
10227501 | Hwang et al. | Mar 2019 | B2 |
D849240 | Guo et al. | May 2019 | S |
D850256 | Ryszawy | Jun 2019 | S |
10321731 | Wilson | Jun 2019 | B2 |
10345934 | Wilson et al. | Jul 2019 | B2 |
10384084 | Isham et al. | Aug 2019 | B2 |
10427385 | Wilson et al. | Oct 2019 | B2 |
10449397 | VanDerWoude et al. | Oct 2019 | B2 |
10520756 | Gallina et al. | Dec 2019 | B2 |
10537236 | Bennett et al. | Jan 2020 | B2 |
D879384 | Sato | Mar 2020 | S |
D882182 | Fekete | Apr 2020 | S |
10620670 | Wilson et al. | Apr 2020 | B2 |
10687569 | Mcdirmid | Jun 2020 | B1 |
10716986 | Winter et al. | Jul 2020 | B2 |
10874163 | VanDerWoude et al. | Dec 2020 | B2 |
D907299 | Brown, II et al. | Jan 2021 | S |
D907300 | Brown, II et al. | Jan 2021 | S |
D925129 | Wilson | Jul 2021 | S |
D925834 | Babin et al. | Jul 2021 | S |
11090516 | VanDerWoude et al. | Aug 2021 | B2 |
11141959 | Wilson et al. | Oct 2021 | B2 |
11147323 | Wilson | Oct 2021 | B1 |
11307329 | Wilson | Apr 2022 | B1 |
11480801 | Morris et al. | Oct 2022 | B1 |
11490667 | Wilson | Nov 2022 | B1 |
11510718 | Childers et al. | Nov 2022 | B2 |
11548356 | Wilson et al. | Jan 2023 | B2 |
11579339 | Thothadri et al. | Feb 2023 | B2 |
11709296 | Wilson et al. | Jul 2023 | B2 |
11807078 | Wilson et al. | Nov 2023 | B2 |
11988850 | Wilson et al. | May 2024 | B2 |
20010035936 | Maisnik | Nov 2001 | A1 |
20020025441 | Hieda et al. | Feb 2002 | A1 |
20020036362 | Chigira et al. | Mar 2002 | A1 |
20020101411 | Chang | Aug 2002 | A1 |
20020109922 | Wilson et al. | Aug 2002 | A1 |
20020114934 | Liu et al. | Aug 2002 | A1 |
20020122925 | Liu et al. | Sep 2002 | A1 |
20020159159 | Wilson et al. | Oct 2002 | A1 |
20020195910 | Hus et al. | Dec 2002 | A1 |
20030012936 | Draheim et al. | Jan 2003 | A1 |
20030087054 | Janssen et al. | May 2003 | A1 |
20030110613 | Ross | Jun 2003 | A1 |
20040004605 | David | Jan 2004 | A1 |
20040109096 | Anderson et al. | Jun 2004 | A1 |
20040121105 | Janssen et al. | Jun 2004 | A1 |
20040139530 | Yan | Jul 2004 | A1 |
20040202812 | Congard et al. | Oct 2004 | A1 |
20040227722 | Friberg et al. | Nov 2004 | A1 |
20040238690 | Wood et al. | Dec 2004 | A1 |
20040246386 | Thomas et al. | Dec 2004 | A1 |
20040258933 | Enniss et al. | Dec 2004 | A1 |
20050002108 | Wilson et al. | Jan 2005 | A1 |
20050015860 | Reaux | Jan 2005 | A1 |
20050071909 | Diaz et al. | Apr 2005 | A1 |
20050133035 | Yahiaoui et al. | Jun 2005 | A1 |
20050180877 | Usami et al. | Aug 2005 | A1 |
20050186415 | Mccormick et al. | Aug 2005 | A1 |
20050188821 | Yamashita et al. | Sep 2005 | A1 |
20050200154 | Barbee et al. | Sep 2005 | A1 |
20050249957 | Jing et al. | Nov 2005 | A1 |
20050260343 | Han | Nov 2005 | A1 |
20060024494 | Amano et al. | Feb 2006 | A1 |
20060052167 | Boddicker et al. | Mar 2006 | A1 |
20060056030 | Fukuda et al. | Mar 2006 | A1 |
20060057399 | Persoone et al. | Mar 2006 | A1 |
20060114245 | Masters et al. | Jun 2006 | A1 |
20060138694 | Biernath et al. | Jun 2006 | A1 |
20060158609 | Heil | Jul 2006 | A1 |
20060177654 | Shoshi | Aug 2006 | A1 |
20060204776 | Chen et al. | Sep 2006 | A1 |
20060254088 | Mccormick | Nov 2006 | A1 |
20060285218 | Wilson et al. | Dec 2006 | A1 |
20070019300 | Wilson et al. | Jan 2007 | A1 |
20070181456 | Kusuda et al. | Aug 2007 | A1 |
20070211002 | Zehner et al. | Sep 2007 | A1 |
20070212508 | Mase | Sep 2007 | A1 |
20070229962 | Mason | Oct 2007 | A1 |
20070234592 | Crates | Oct 2007 | A1 |
20070234888 | Rotolo De Moraes | Oct 2007 | A1 |
20070286995 | Li et al. | Dec 2007 | A1 |
20080014446 | Donea et al. | Jan 2008 | A1 |
20080030631 | Gallagher | Feb 2008 | A1 |
20080030675 | Dillon | Feb 2008 | A1 |
20080055258 | Sauers | Mar 2008 | A1 |
20080118678 | Huang et al. | May 2008 | A1 |
20080151177 | Wang | Jun 2008 | A1 |
20080160321 | Padiyath et al. | Jul 2008 | A1 |
20080176018 | Enniss et al. | Jul 2008 | A1 |
20080192351 | Miyagawa et al. | Aug 2008 | A1 |
20080231979 | Chen | Sep 2008 | A1 |
20080256688 | Bruce | Oct 2008 | A1 |
20080286500 | Sussner et al. | Nov 2008 | A1 |
20080292820 | Padiyath et al. | Nov 2008 | A1 |
20090011205 | Thiel | Jan 2009 | A1 |
20090026095 | Lofland et al. | Jan 2009 | A1 |
20090054115 | Horrdin et al. | Feb 2009 | A1 |
20090086415 | Chipping | Apr 2009 | A1 |
20090087655 | Yamada et al. | Apr 2009 | A1 |
20090105437 | Determan et al. | Apr 2009 | A1 |
20090119819 | Thompson | May 2009 | A1 |
20090181242 | Enniss et al. | Jul 2009 | A1 |
20090233032 | Craig | Sep 2009 | A1 |
20090239045 | Kato et al. | Sep 2009 | A1 |
20090239048 | Sugihara et al. | Sep 2009 | A1 |
20100026646 | Xiao et al. | Feb 2010 | A1 |
20100033442 | Kusuda et al. | Feb 2010 | A1 |
20100102197 | Mcintyre | Apr 2010 | A1 |
20100102476 | Higgins | Apr 2010 | A1 |
20100122402 | Tipp | May 2010 | A1 |
20100146679 | Heil | Jun 2010 | A1 |
20100238119 | Dubrovsky et al. | Sep 2010 | A1 |
20100245273 | Hwang et al. | Sep 2010 | A1 |
20100270189 | Pedersen, II et al. | Oct 2010 | A1 |
20110007388 | Wilson et al. | Jan 2011 | A1 |
20110010994 | Wilson et al. | Jan 2011 | A1 |
20110012841 | Lin | Jan 2011 | A1 |
20110013273 | Wilson et al. | Jan 2011 | A1 |
20110014481 | Wilson et al. | Jan 2011 | A1 |
20110035936 | Lee | Feb 2011 | A1 |
20110052864 | Son | Mar 2011 | A1 |
20110097574 | Faldysta et al. | Apr 2011 | A1 |
20110119801 | Wright | May 2011 | A1 |
20110165361 | Sherman et al. | Jul 2011 | A1 |
20110168261 | Welser et al. | Jul 2011 | A1 |
20110267793 | Cohen et al. | Nov 2011 | A1 |
20110271497 | Suh et al. | Nov 2011 | A1 |
20110277361 | Nichol et al. | Nov 2011 | A1 |
20110279383 | Wilson et al. | Nov 2011 | A1 |
20120003431 | Huang | Jan 2012 | A1 |
20120030095 | Marshall et al. | Feb 2012 | A1 |
20120047614 | Choi | Mar 2012 | A1 |
20120070603 | Hsu | Mar 2012 | A1 |
20120081792 | Neuffer | Apr 2012 | A1 |
20120137414 | Saylor | Jun 2012 | A1 |
20120180204 | Hawkins | Jul 2012 | A1 |
20120183712 | Leonhard et al. | Jul 2012 | A1 |
20120188743 | Wilson et al. | Jul 2012 | A1 |
20120200816 | Krasnov et al. | Aug 2012 | A1 |
20120291173 | Gleason et al. | Nov 2012 | A1 |
20130045371 | O'Donnell | Feb 2013 | A1 |
20130083285 | McNeal et al. | Apr 2013 | A1 |
20130089688 | Wilson et al. | Apr 2013 | A1 |
20130098543 | Reuter et al. | Apr 2013 | A1 |
20130141693 | McCabe et al. | Jun 2013 | A1 |
20130145525 | Arenson et al. | Jun 2013 | A1 |
20130222913 | Tomoda et al. | Aug 2013 | A1 |
20130247286 | Vanderwoude et al. | Sep 2013 | A1 |
20130293959 | Mcdonald | Nov 2013 | A1 |
20140020153 | Romanski et al. | Jan 2014 | A1 |
20140050909 | Choi et al. | Feb 2014 | A1 |
20140220283 | Wilson et al. | Aug 2014 | A1 |
20140259321 | Arnold | Sep 2014 | A1 |
20140289937 | Capers et al. | Oct 2014 | A1 |
20150033431 | Hofer Kraner et al. | Feb 2015 | A1 |
20150103474 | Cho | Apr 2015 | A1 |
20150131047 | Saylor et al. | May 2015 | A1 |
20150202847 | Johnson et al. | Jul 2015 | A1 |
20150234209 | Miyamoto et al. | Aug 2015 | A1 |
20150258715 | Ohta | Sep 2015 | A1 |
20150294656 | Hanuschak | Oct 2015 | A1 |
20150309609 | Wilson et al. | Oct 2015 | A1 |
20150349147 | Xi et al. | Dec 2015 | A1 |
20150359675 | Wilson | Dec 2015 | A1 |
20160023442 | Faris | Jan 2016 | A1 |
20160050990 | Hayes | Feb 2016 | A1 |
20160073720 | Niedrich | Mar 2016 | A1 |
20160231834 | Hardi | Aug 2016 | A1 |
20160259102 | Taka | Sep 2016 | A1 |
20160271922 | Uzawa et al. | Sep 2016 | A1 |
20160291543 | Saito | Oct 2016 | A1 |
20160318227 | Kim et al. | Nov 2016 | A1 |
20170052286 | Hines et al. | Feb 2017 | A1 |
20170071792 | Wilson et al. | Mar 2017 | A1 |
20170079364 | Paulson | Mar 2017 | A1 |
20170129219 | Uebelacker et al. | May 2017 | A1 |
20170173923 | Davis et al. | Jun 2017 | A1 |
20170192131 | Wilson et al. | Jul 2017 | A1 |
20170208878 | Kakinuma et al. | Jul 2017 | A1 |
20170232713 | Mannheim Astete et al. | Aug 2017 | A1 |
20170281414 | Wilson | Oct 2017 | A1 |
20170299898 | Gallina et al. | Oct 2017 | A1 |
20170318877 | Yahiaoui et al. | Nov 2017 | A1 |
20180029337 | Wilson et al. | Feb 2018 | A1 |
20180042324 | King | Feb 2018 | A1 |
20180052334 | Repko | Feb 2018 | A1 |
20180094164 | Ito et al. | Apr 2018 | A1 |
20180148578 | Ohta et al. | May 2018 | A1 |
20180161208 | Huh | Jun 2018 | A1 |
20180229480 | Chung | Aug 2018 | A1 |
20180236753 | Wykoff, II et al. | Aug 2018 | A1 |
20180295925 | Gagliardo et al. | Oct 2018 | A1 |
20180338550 | Boulware et al. | Nov 2018 | A1 |
20190021430 | Elliott | Jan 2019 | A1 |
20190037948 | Romanski et al. | Feb 2019 | A1 |
20190116300 | Okuno | Apr 2019 | A1 |
20190118057 | Winter et al. | Apr 2019 | A1 |
20190209912 | Isserow et al. | Jul 2019 | A1 |
20190212474 | Le Quang et al. | Jul 2019 | A1 |
20190346591 | Thothadri et al. | Nov 2019 | A1 |
20190389182 | Wilson et al. | Dec 2019 | A1 |
20200100657 | Lee et al. | Apr 2020 | A1 |
20200115519 | Phillips et al. | Apr 2020 | A1 |
20200124768 | Wilson | Apr 2020 | A1 |
20200134773 | Pinter et al. | Apr 2020 | A1 |
20200154808 | Inouye | May 2020 | A1 |
20200178622 | Jascomb et al. | Jun 2020 | A1 |
20200247102 | Wilson et al. | Aug 2020 | A1 |
20200261055 | Zwierstra et al. | Aug 2020 | A1 |
20200281301 | Wynalda, Jr. | Sep 2020 | A1 |
20200310494 | Ahn et al. | Oct 2020 | A1 |
20200359718 | Jefferis et al. | Nov 2020 | A1 |
20200375272 | Ulmer et al. | Dec 2020 | A1 |
20200384747 | Fukuda et al. | Dec 2020 | A1 |
20210030095 | Reicher | Feb 2021 | A1 |
20210162645 | Wilson et al. | Jun 2021 | A1 |
20210283994 | Wilson | Sep 2021 | A1 |
20210298380 | Brown, II et al. | Sep 2021 | A1 |
20210298390 | Sup, IV et al. | Sep 2021 | A1 |
20210307425 | Keim | Oct 2021 | A1 |
20210315291 | Votolato et al. | Oct 2021 | A1 |
20210318553 | Gharabegian | Oct 2021 | A1 |
20210321692 | Wilson | Oct 2021 | A1 |
20210321693 | Wilson et al. | Oct 2021 | A1 |
20210329999 | Ackerman | Oct 2021 | A1 |
20210368886 | Swart et al. | Dec 2021 | A1 |
20210386155 | Rose | Dec 2021 | A1 |
20210393440 | Leatt et al. | Dec 2021 | A1 |
20210394427 | Frisco et al. | Dec 2021 | A1 |
20220015472 | Boza | Jan 2022 | A1 |
20230106407 | Arima et al. | Apr 2023 | A1 |
Number | Date | Country |
---|---|---|
2005244595 | Jul 2006 | AU |
2015277196 | Jan 2017 | AU |
2386043 | Nov 2003 | CA |
3637188 | May 1988 | DE |
19808535 | Sep 1999 | DE |
202004010014 | Apr 2005 | DE |
202020101562 | Apr 2020 | DE |
202020101794 | Apr 2020 | DE |
192075 | Aug 1986 | EP |
671258 | Sep 1995 | EP |
1471415 | Oct 2004 | EP |
1517791 | Mar 2005 | EP |
1047537 | Mar 2010 | EP |
3157480 | Apr 2017 | EP |
2310862 | Sep 1997 | GB |
2492574 | Jan 2013 | GB |
61017860 | Jan 1986 | JP |
S6117860 | Jan 1986 | JP |
62053832 | Mar 1987 | JP |
04314537 | Nov 1992 | JP |
06143496 | May 1994 | JP |
07021456 | Jan 1995 | JP |
10167765 | Jun 1998 | JP |
2000334812 | Dec 2000 | JP |
2002328613 | Nov 2002 | JP |
2012183822 | Sep 2012 | JP |
2014032222 | Feb 2014 | JP |
2015128896 | Jul 2015 | JP |
2018200329 | Dec 2018 | JP |
6767596 | Oct 2020 | JP |
20120001292 | Jan 2012 | KR |
200700793 | Jan 2007 | TW |
201027992 | Jul 2010 | TW |
0024576 | May 2000 | WO |
03052678 | Jun 2003 | WO |
2009008857 | Jan 2009 | WO |
2015009114 | Jan 2015 | WO |
2015091425 | Jun 2015 | WO |
2015093413 | Jun 2015 | WO |
2015195814 | Dec 2015 | WO |
2019006151 | Jan 2019 | WO |
2019055267 | Mar 2019 | WO |
2021176316 | Sep 2021 | WO |
Entry |
---|
Prosecution History of Re-Examination U.S. Appl. No. 95/002,073 titled Touch Screen Protector; pp. 1-1,980. |
www.store.moshimode.com; “iVisor AG for iPad 2 Black”; 2004-2010. |
Defendant's Motion for Summary Judgment; Oct. 25, 2013; pp. 1-31. |
Jake Gaecke; “Appletell Reviews the iVisor for iPad”; www.appletell.com; Sep. 15, 2010 at 12:32 p.m. www.technologytell.com/apple/60407/appletell-reviews-ag-for-ipad/; 2 pages. |
www.nushield.com/technology.php; “What Makes NuShield Screen Protectors Superior”, 2 pages. |
www.spigen.com; “Something You Want”; 2 pages. |
www.zagg.com; “Apple iPad 2 (Wi-Fi 3G) Screen Protector”; 2 pages. |
www.gadgetguard.com; “Invisible Gadget Guard, the Original”; 1 page. |
www.incipotech.com; “Protect Your iPhone 4 with Screen Protectors from Incipo”; 3 pages. |
www.store.moshimonde.com; “iVisor AG iPad Screen Protector”; Jul. 2010; 7 pages. |
www.store.moshimonde.com; “iVisor XT Crystal Clear Protector for iPad”; Aug. 2010; 3 pages. |
www.store.moshimonde.com; “iVisor AG for iPad 2 Black”; Mar. 2011; 5 pages. |
www.store.moshimonde.com; “iVisor AG for iPad 2 White”; Mar. 2011; 3 pages. |
www.store.moshimonde.com; “iVisor AG for iPhone 4/4S Black”; Nov. 2010; 5 pages. |
www.store.moshimonde.com; “iVisor AG for iPhone 4/4S White”; May 2010; 4 pages. |
Dictionary.com (http://dictionary.reference.com) 2012. |
Racing Optics, Inc. v. Aevoe, Inc., d/b/a/ Moshi; Case No. 15-cv-017744-JCM-VCF; Aevoe's Initial Disclosure Non-Infringement, Invalidity and Unenforceability Contentions (Redacted) dated Jan. 7, 2016. |
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 9,128,545) dated Jan. 7, 2016. |
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 9,104,256) dated Jan. 7, 2016. |
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 8,974,620) dated Jan. 7, 2016. |
I-Blason LLC v. Aevoe, Inc. and Aevoe Corp.; Case IPR2016-TBA; Petition for Inter Partes Review of U.S. Pat. No. 8,044,942 (including Exhibits 1001-1019). |
Dupont Teijin Films, “Mylar Polyester Film—Optical Properties”, Jun. 2003, 2 pages. |
https://en.wikipedia.org/wiki/Black_body, “Black Body”, Jul. 2009, 11 pages. |
https://en.wikipedia.org/wiki/Infrared, “Infrared”, Jul. 2009, 12 pages. |
https://en.wikipedia.org/wiki/BoPET, “PET Film (biaxially oriented)”, Jul. 2009, 4 pages. |
Instashield LLC, Bionic Wrench® Inventor Creates Low-Cost Face Shield for Masses, Apr. 15, 2020, 3 pages. |
Tom Zillich, Surrey manufacturer hopes to hit home run with face shield that clips to baseball cap, Apr. 29, 2020, 3 pages. |
Opentip, Opromo Safety Face Shield Visor for Adult Kids, Protective Cotton Hat with Removable PVC Face Cover <https://www.opentip.com/product.php?products_id=11699030>, May 5, 2020, 3 pages. |
Hefute, Hefute 5 PCS Protective Face Cover with Shield Comfortable Full Protection Face Compatiable with Glasses Anti-Droplet Anti-Pollution and Windproof Transparent Safety Face Cover with Shield(Style B) <https://www.amazon.com/dp/B086GSG8DH/ref=sspa_dk_detail_9?psc=1&pd_rd_i=B086GSG8DH&pd_rd_w=Ocdm2&pf_rd_p=48d372c1-f7e1-4b8b-9d02-4bd86f5158c5&pd_rd_wg=qkB2b&pf_rd_r=M%E2%80%A6>, May 6, 2020, 7 pages. |
Geanbaye, Geanbaye Safety Full Face Shield Cap Detachable Baseball Cap Anti-Saliva Anti-Spitting Eye Protective Hat Windproof Dustproof <https://www.amazon.com/dp/B086DV32B8/ref=sspa_dk_detail_8?psc=1&pd_rd_i=B086DV32B8&pd_rd_w=MwjfT&pf_rd_p=48d372c1-f7e1-4b8b-9d02-4bd86f5158c5&pd_rd_wg=pxuOs&pf_rd_r=PNDA%E2%80%A6>, May 5, 2020, 8 pages. |
Leigh Buchanan, These 2 Companies Are Making Face Shields for Everyone <https://www.inc.com/leigh-buchanan/face-shields-coronavirus-protection-open-source.html>, May 6, 2020, 8 pages. |
Brim Shield, photographs, Apr. 21, 2020, 1 pages. |
Hatshield, Shield Yourself With the Hatshield <https://www.hat-shield.com/?gclid=CjwKCAjwp-X0BRAFEiwAheRui1u89v_3URuiwEVvBRGa9TaEfWoZVMJXRkWsZgPTUw-0fHJ5HD-8uhoCc84QAvD_BwE>, Apr. 17, 2020, 11 pages. |
Eli N. Perencevich, Moving Personal Protective Equipment Into the Community Face Shields and Containment of COVID-19, Apr. 29, 2020, 2 pages. |
Chang, Tian-Ci; Cao, Xun; Bao, Shan-Hu; Ji, Shi-Dong; Luo, Hong-Jie; Jin, Ping; Review of Thermochromic Vanadium Dioxide Based Smart Coatings: From Lab to Commercial Application; Dec. 16, 2017. |
Saudi Basic Industries Corporation (SABIC); “The Department of Transportation [DOT] Guidebook”; Oct. 2016. |
Hostaphan RBB, “Transparent, Temperature Stable Polyester Film for Cooking & Roasting Bags” Jul. 2016. |
Hostaphan Win, “White, Long-Term Stable, Thermally Stable Polyester Film for PV Back Sheet Laminates”; Jul. 2016. |
PCT Search Report & Written Opinion for PCT/US2019/054565 (Dec. 20, 2019). |
PCT Search Report & Written Opinion for PCT/US2015/036248 (Sep. 16, 2015). |
“Declaration of Jerome Aho”; Filed Aug. 3, 2007; Case 3:07-cv-00221-FDW-DCK; Includes: Exhibit A, Nascar Postcard (1 page), Exhibit B, 50th Anniversary Nascar letter sent Jan. 7, 1998 (1 page), and Exhibit C, Front page of “The Official Nascar Preview and Press Guide” (1 page); 9 pages. |
Racing Optics, Inc. v. David Leon O'Neal, Edward M. Wallace and Clear View Racing Optics, LLC; Case 3:07 CV 221; Includes: Exhibit A, Wilson et al. U.S. Pat. No. 6,847,492; and Exhibit B, Wilson et al. U.S. Pat. No. 7,184,217; 34 pages. |
International Search Report; International Application No. PCT/US99/95128; Date of Completion: Jan. 18, 2000; 54 pages. |
International Search Report; International Application No. PCT/US02/10971; Date of Completion: Nov. 20, 2002; 3 pages. |
International Search Report; International Application No. PCT/US03/16284; Date of Completion: Mar. 9, 2004; 3 pages. |
European Search Report for Application No. 15809930.9-107 / 3157480 (Dec. 15, 2017). |
Canadian Office Action for Application Serial No. 2,952,436 (Nov. 15, 2019). |
Canadian Office Action for Application Serial No. 2,952,436 (May 3, 2019). |
Australian Examination Report for Application Serial No. 2015277196 (Oct. 18, 2018). |
www.wikipedia.org, Refractive Index, Oct. 31, 2014. |
Racing Optics, Inc. v. Aevoe Corp. DBA Moshi; Case 2:15-cv-01774-RCJ-VCF; “Answer to Aevoe's Counterclaims—Jury Trial Demanded”; Nov. 2, 2015; 15 pages. |
Gregory Brower et al.; “Complaint for Patent Infringement”; Sep. 15, 2015; 15 pages. |
Jeffrey A. Silverstri et al.; “Answer to Complaint for Patent Infringement”; Oct. 7, 2015; 59 pages. |
United States Patent and Trademark Office; Office Action for U.S. Appl. No. 15/090,681; Aug. 26, 2016; 8 pages. |
List of References and considered by Examiner for U.S. Appl. No. 15/090,681; Receipt date Jun. 30, 2016; 3 pages. |
List of References and considered by Examiner for U.S. Appl. No. 15/090,681; Receipt date Apr. 27, 2016; 4 pages. |
Examiner's search strategy and results for U.S. Appl. No. 15/090,681; Aug. 21, 2016; 2 pages. |
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01164; Petition for Inter Partes Review of U.S. Pat. No. 9,104,256 (including Exhibits 1001-1011 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016. |
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01165; Petition for Inter Partes Review of U.S. Patent No. 9, 128,545(including Exhibits 1001-1006 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016. |
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01166; Petition for Inter Partes Review of U.S. Pat. No. 9,274,625 (including Exhibits 1001-1011 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016. |
Exhibit 1—Invalidity Contentions re: '545 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016. |
Exhibit 2—Invalidity Contentions re: '256 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016. |
Exhibit 3—Invalidity Contentions re: '620 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016. |
Exhibit 4—Invalidity Contentions re: '625 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016. |
Exhibit 1002—U.S. Pat. No. 5,364,671 to Gustafson; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-6. |
Exhibit 1004—U.S. Pat. No. 7,351,470 to Draheim et al.; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-15. |
Exhibit 1001—U.S. Pat. No. 8,974,620 to Wilson et al.; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-15. |
Exhibit 1003—U.S. Pat. No. 6,250,765 to Murakami; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; p. 1-8. |
Exhibit 1005—U.S. Pat. No. 7,957,524 to Chipping; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2017; pp. 1-20. |
Aevoe Corp., Racing Optics, Inc.; Petition for Inter Partes Review; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-55. |
Exhibit 1006—Japanese Application No. JP 2002-328613 to Kitaguchi Translation; IPR2016-01745; at least as early as Sep. 7, 2016; pp. 1-10. |
Exhibit 1009—U.S. Appl. No. 13/838,311; Interview Summary; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; p. 1-3. |
Exhibit 1010—U.S. Appl. No. 15/838,311; Notice of Allowance; Case IPR2016-01745; Inter Partes Review of U.S.P.N. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-8. |
Aevoe Corp. v. Racing Optics, Inc.; Declaration of Darran Cairns; Case IPR2016-01745; Inter Partes Review of U.S Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-32. |
Aevoe Corp. v. Racing Optics, Inc.; Petitioner's Power of Attorney; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-3. |
Exhibit 1007—U.S. Appl. No. 13/838,311; Response to Office Action; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; p. 1-19. |
Exhibit 1008—U.S. Appl. No. 13/838,311; Response and Request for Continued Examination; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-21. |
Aevoe Corp. v. Racing Optics, Inc.; Mandatory Notices; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-4. |
Aevoe Corp. v. Racing Optics, Inc.;Power of Attorney; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-4. |
Aevoe Corp. v. Racing Optics, Inc.; Notice of Filing Date; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 6, 2016; p. 1-5. |
Aevoe Corp. v. Racing Optics, Inc.; Decision; Case IPR2016-01164; Inter Partes Review of U.S. Pat. No. 9,104,256; at least as early as Nov. 7, 2016; p. 1-24. |
Aevoe Corp. v. Racing Optics, Inc.; Decision; Case IPR2016-01166; Inter Partes Review of U.S. Pat. No. 9,274,625; at least as early as Nov. 7, 2016; p. 1-23. |
Aevoe Corp. v. Racing Optics, Inc.; Decision; Case IPR2016-01165; Inter Partes Review of U.S. Pat. No. 9,128,545; at least as early as Nov. 7, 2016; p. 1-25. |
Settlement and License Agreement, Dec. 21, 2007, 28 pgs. |
United States Patent and Trademark Office; Office Action dated Dec. 21, 2016 pertaining to U.S. Appl. No. 15/090,681, filed Apr. 5, 2016; 8 pages. |
PCT Search Report and Written Opinion for US2020/016245 (Apr. 28, 2020). |
Professional Plastics (http://www.professionalplastics.com/MelinexPETFilmDupont) 2012. |
Whitney, Frank D., Preliminary Injunction, Aug. 21, 2007, 5 pgs. |
Higgins, John P., Answer and Counterclaims to First Amended Complaint, Sep. 4, 2007, 27 pgs. |
Ballato, John, Expert Report of John Ballato, Ph.D., Nov. 12, 2007, 5 pgs. |
Russell, Geoffrey A., Rebuttal Report of Geoffrey A. Russell, Ph.D., on issues raised in the Export Report of John Ballato, Ph.D., Nov. 21, 2007, 15 pgs. |
Higgins, John P., Defendants' Second Supplement to Its Response to Plaintiffs' First Set of Interrogatories, Dec. 7, 2007, 25 pgs. |
Barnhardt, John J. III, Redacted Version Defendants' Memorandum in Support of Motion for Partial Summary Judgment, Dec. 3, 2007, 36 pgs. |
Higgins, John P., Defendants' Second Supplement to its Response to Plaintiffs' First Set of Interrogatories, Dec. 7, 2007, 26 pgs. |
Whitney, Frank D., Consent Judgment Order, Jan. 3, 2008, 5 pgs. |
Ballato, John, Supplemental Expert Report of John Ballato, Ph.D., Nov. 19, 2007, 10 pgs. |
Moore, Steven D., Plaintiffs' Motion to Strike Defendants' New and Untimely Invalidity Theory, Dec. 19, 2007, 3 pgs. |
Moore, Steven D., Plaintiffs' Brief in Support of Motion to Strike Defendants' New and Untimely Invalidity Theory, Dec. 19, 2007, 10 pgs. |
Barnhardt, John J. III, Notice Pursuant to 35 U.S.C. 282, Dec. 18, 2007, 3 pgs. |
Office Action for Canadian Patent Application No. 2,952,436; Jul. 8, 2020. |
www.wikipedia.org. “Black Body”, Jul. 2009, 11 pages. |
www.wikipedia.org. “Infrared”, Jul. 2009, 12 pages. |
www.wikipedia.org. “PET Film (biaxially oriented)”, Jul. 2009, 4 pages. |
PCT International Application No. PCT/US99/25128 with International Search Report, Date of Completion Jan. 18, 2000, 54 Pages. |
English translation of TW201027992, “Monitor Protection Device for a Flat Panel Display”, 11 pgs. |
Pulse Racing Innovations, EZ Tear Universal Single Pull Tearoff Ramp, webpage <https://www.pulseracinginnovations.com>, Dec. 30, 2020, 6 pages. |
PCT International Search Report and Written Opinion for International Application No. PCT/US20/24639, Jun. 11, 2020, 13 pages. |
PCT International Search Report and Written Opinion for International Application No. PCT/US2020/049919; Nov. 27, 2020. |
Tian-Chi Chang, Xun Cao, Shan-Hu Bao, Shi=Dong Ji, Hong-Jie Luo, Ping Jin; “Review on Thermochromic Vanadium Dioxide Based Smart Coatings: From Lab to Commercial Application”; Dec. 16, 2017. |
PCT International Search Report and Written Opinion for International Application No. PCT/US2020/062230; Feb. 8, 2021. |
“Anti-reflective coating,” Wikipedia, last updated Jul. 13, 2017 by Andy Dingley, <https://en.m.wikipedia.org/wiki/Anti-reflective_coating>. |
“Monotonic function,” Wikipedia, accessed May 24, 2017, <https://en.wikipedia.org/wiki/Monotonic_function>. |
“Thin Film,” Wikipedia, last updated Jun. 20, 2017, <https://en.wikipedia.org/wiki/Thin_film>. |
“Tips to Get Quality Anti-Reflection Optical Coatings,” Penn Optical Coatings, accessed May 24, 2017, <http://www.pennoc.com/tipsgetqualityantireflectionopticalcoatings/>. |
Langlet, M., “Antireflective Films”, from Chapter 15 of Handbook of Sol-Gel Science and Technology Processing Characterization and Applications, copyright 2005, pp. 332-334, 337, 339-341., taken from website <https://books.google.com/books ?id=i9swy1D2HxIC&lpg=PA339&dq=AR%20thick%20film%20coatings&pg=PA339#v=onepage&q=AR%20thick%20film%20coatings&f=false>. |
Li, H.-M. et al., “Influence of weight ratio in polymer blend film on the phase separation structure and its optical properties”, The European Physical Journal Applied Physics, 45, 20501, published Jan. 31, 2009, EDP Sciences, 4 pages. |
MDS Nordion, “Gamma Compatible Materials,” Datasheet, Aug. 2007, 4 pages, <https://ab-div-bdi-bl-blm.web.cern.ch/Radiation/Gamma_Compatible_Materials_List_company.pdf>, retrieved on Sep. 29, 2021. |
Zhang, Xin_Xiang et al., Abstract of “One-step sol-gel preparation of PDMS-silica ORMOSILs as environment-resistant and crack-free thick antireflective coatings,” Journal of Materials Chemistry, Issue 26, 2012, <http://pubs.rsc.org/en/content/articlelanding/2012/m/c2jm31005h#!divAbstract>. |
PCT International Search Report and Written Opinion for International Application No. PCT/US2017/044438, dated Oct. 23, 2017, 12 pages. |
Chemical Book, “Benzophenone”, https://www.chemicalbook.com/Chemical ProductProperty_EN_CB57 44679.htm, available at least as of 2017, accessed on line on Dec. 15, 2021 (Year: 2017). |
Chemical Book, “Polymethylhydrosiloxane”, https://www.chemicalbook.com/Chemical ProductProperty _EN_ CB3694969. htm, available at least as of 2017, accessed online on Dec. 15, 2021 (Year: 2017). |
Guide Chem, “UV Stabilizer”, https://wap.guidechem.com/trade/uv-stabilizer-uv-absorber-ligh-id3578792.html, available at least as of 2018, accessed online on Dec. 15, 2021 (Year: 2018). |
Hostaphan RBB biaxially oriented film data sheet (Year: 2011). |
PCT International Search Report and Written Opinion for International Application No. PCT/US2020/024639; Jun. 11, 2020. |
PCT International Search Report and Written Opinion for International Application No. PCT/US2021/026165, dated Jul. 9, 2021, 10 pages. |
PCT International Search Report and Written Opinion for International Application No. PCT/US21/20421, May 20, 2021, 8 pages. |
Wiseman, SR., United States Statutory Invention Registration No. H1023, published Mar. 3, 1992, 7 pages. |
Chemical Book, Bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, available online at least as of 2017, https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8121619.htm, accessed online Mar. 15, 2022 (Year: 2017). |
Pearson Dental, “UV Protection Face Shields”, https://www.pearsondental.com/catalog/subcat_thumb.asp?majcatid=750&catid=I0149, available online at least as of Jan. 27, 2021 per Internet Archive, accessed online on Sep. 15, 2021. (Year: 2021). |
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2022/031823, mailed Jul. 14, 2022, 11 pages. |
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2022/046171, mailed Jan. 18, 2023, 15 pages. |
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2023/012316, mailed Apr. 14, 2023, 11 pages. |
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2023/26598, mailed Sep. 12, 2023, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20240300159 A1 | Sep 2024 | US |
Number | Date | Country | |
---|---|---|---|
62942943 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18297468 | Apr 2023 | US |
Child | 18668588 | US | |
Parent | 17103397 | Nov 2020 | US |
Child | 18297468 | US |