1. Field of the Invention
The present invention relates to vehicle vision systems. More particularly, the present invention relates to improving position and size estimates of nearby vehicles.
2. Description of the Related Art
Vehicle vision systems include a sensor or sensors that image scenes proximate a vehicle, e.g., in front or behind the vehicle. A vehicle having a vision system will be referred to herein as the host vehicle. A sensor for a vision system may include a radar system, an infrared sensor, an optical system, and the like. In any event, the sensor produces rudimentary image data of the scene around the host vehicle. Subsequently, image-processing techniques are applied to the rudimentary image data to identify objects that are within the sensor's field of view. Since vehicle vision systems are often used in collision avoidance systems, an object within the sensor's field of view will be referred to as a target.
While vehicle vision systems can identify when a target is in front of a host vehicle, such systems usually do not provide accurate information about either the target or its movement. As such, a driver of a host vehicle may be warned of a target, or the host vehicle may automatically take evasive action, yet the target may represent no danger.
To help identify when a target is a danger, it would be beneficial to accurately know both the size and the position of the target. To do so, the edges of the target must be known. Such edge information could then be used to accurately determine the target's height, width, and position. Accurate height, width, and position information would be very useful in differentiating between different types of targets, such as sedans, SUVs, and trucks, and in accurately discriminating between collisions and near misses. Therefore, there is a need in the art for a method and apparatus that provides accurate information regarding a target's size and position. Such methods and apparatus would be particularly beneficial in vehicle vision systems in general, and in collision avoidance systems in particular.
The principles of the present invention provide for a method and apparatus of accurately identifying edges of a nearby target using image intensity and depth information. The principles of the present invention further provide for vehicle vision systems and for collision avoidance systems that use identified edges of nearby targets to provide improved target size estimates and/or improved target position information.
A method that is in accord with the principles of the present invention uses image intensity data (such as from stereo cameras), a depth map that is aligned with the image intensity data, system (camera) calibration parameters, and a target's initial boundary information to provide more accurate information about the target. The target's initial boundary information, which represents an estimate of the target's outline and position, is projected onto the depth map and onto the image intensity data. This maps the approximate spatial position of the target onto the depth map and intensity data. A visibility analysis is then performed to determine whether the rear face of a target is within the system's field of view. If not, the initial boundary information is used to refine the target's position information (as subsequently described) using the depth map and the image intensity data. However, if the rear face is within the system's field of view, the image intensity data, the depth map, and the system calibration parameters are used to improve the target's boundary information and position information.
First, the bottom image intensity data row that is mapped by the initial boundary information is analyzed to determine whether a certain (predetermined) percentage of its depth measurements fall within a specified region around the target's depth. Then, each consecutive row (moving up the image) is subsequently analyzed in the same way. Each row that satisfies the required criterion is stored as the “last good row,” thus replacing the previously identified “last good row.” After the “last good row” has been identified, the next higher row will not meet the required criterion and the row search then terminates. The target's boundary information is adjusted to reflect the newly determined upper boundary (top) of the vehicle, i.e. the “last good row”.
Next, the procedure searches the image intensity data for vertical image edges around the target's depth. The procedure beneficially searches around the mapped boundary information for the strongest pair of vertical image edges, with the strength of a pair being defined as the sum of its edge strengths multiplied by a (predetermined) penalty term that reflects the difference in depth (from the depth map). The depth penalty helps ensure that the two vertical image edges (sides) belong to the same target. Preferably, identifying vertical image edges are subject to three constraints: vertical image edges that are “too strong” are rejected as being likely to correspond to contrast between lane markings and the road surface; a minimum strength for the vertical edge pair must be satisfied; and the vertical image edges must be at least a minimum distance apart. If no suitable vertical image edge pair can be found, then the boundary information is unaltered. But, if a suitable vertical image edge pair is identified, then the vertical edge positions are used to refine the target's boundary information.
The procedure continues by searching for a bottom target edge. The procedure searches the image intensity data for a horizontal image edge that corresponds to a dark-to-light transition between the target's shadow and the road surface. If a suitable bottom target edge is located, the target's boundary information is updated to reflect the found lower edge. But, if a bottom target edge is not found, the target's boundary information is set such that its lower edge corresponds to the lowest image row within the system's field of view at the initial target detection depth. That lowest image row is found from the system calibration parameters.
The refined boundary information is then used to refine the position of the target. The depth values within the refined target boundary information are sorted into histogram bins. Then, a refined measurement of the target's position is calculated, beneficially by determining the mean of 5 histogram bins around the median depth value of the histogram. This new depth value, the camera calibration parameters, and the refined boundary information are used to re-calculate the position of the target. The recalculated target position, together with the height and width of the target's edges from the boundary information, which are all in image pixel format, are then mapped to physical dimensions (usually meters).
So that the manner in which the above recited features of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Referring now to
Still referring to
The image preprocessor 206 outputs are coupled to the CPU 210 that performs and/or directs the various steps required to implement the present invention. The CPU 210 itself may include any of a number of presently available high-speed microcontrollers or microprocessors. The CPU 210 is supported by support circuits 208 that are generally well known in the art. These circuits may include cache, power supplies, clocks, input-output circuitry, and the like.
The memory 212, which is coupled to the CPU 210, stores image processing software routines 216 that are executed by the CPU 210 to facilitate the invention. The memory 212 also stores certain information databases 214 that are useful in producing depth maps and in identifying the target 110. Additionally, the memory 212 stores system calibration information 217 that is obtained during initial calibration of the vision system 102 and its components. Such calibration information may include the height of the cameras 200 and 202, the physical separation of the cameras, and the minimum heights that the cameras can image at various distances. The camera's heights and physical separation are useful in determining image depths (how far an imaged target is in front of the host vehicle 100); while the minimum image heights are related to how high a target must be to be seen. For example, the cameras 200 and 202 will usually be located such that they are unable to image the ground a short distance in front of the host vehicle 100. Although this embodiment is generally described in the context of a series of method steps, the method may be performed in hardware, software, or some combination of hardware and software.
One use of the stereo image information 300 is in generating a depth map 302. The resulting depth map is used to produce target information 304, which represents coarse data about the target. The depth map itself is made available for other purposes, which are subsequently explained. Target information production may make use of information stored in the information databases 214, which specifically includes a target template database 306. In practice, information from the secondary sensor 204 is also useful in producing the target position information. In any event, a subset of the target information is made available as initial boundary information. Furthermore, at least part of the system calibration information 217 is made available as system calibration parameters.
The image intensity data, depth map, initial boundary information, and system calibration parameters are used in a procedure 400, depicted in
Referring now to
At step 408, a visibility analysis is performed to determine whether the rear face of the target 110 is within the system's field of view. If not, the procedure bypasses a number of subsequent steps (steps 410-416) and advances to step 416, which is described subsequently.
However, if, at step 408, it is determined that the rear face of the target 110 is within the system's field of view, the initial boundary information is improved by finding the top, sides, and bottom of the mapped target in the image intensity data. The resulting refined boundary information includes information related to the height and width of the target 110, which assists in identifying the target and in improving the target's position information.
Improving the initial boundary information begins at step 410 with a depth-based search for the top of the target 110. Referring now to
Referring now to
Then, at step 414, a search is made to identify the target's bottom edge. This process uses the refined boundary information from step 412, the image intensity data, the depth map, and the system calibration parameters. It should be understood that under a wide range of illumination conditions, a target 110 casts a shadow on the road that is darker than the road itself. Referring now to
Referring now once again to
After step 416, the improved target position information and the target's height and width information are made available to other portions of the vision system 102 at steps 420 and 422, respectively. Then at step 424 the procedure 400 stops.
Regarding step 422, the height and width information of the target 110 can be made available either in pixel units, such as within the image intensity data, or in spatial units. When made available in spatial units a transformation from the pixel-based image intensity data to physical units will be required, a process that will likely use the depth map and the improved target position information.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application contains subject matter that is related to the subject matter described in U.S. patent application Ser. No. ______, filed Jun. 13, 2003, (Attorney Docket No. SAR/14885) entitled “Vehicular Vision System”, which is incorporated herein by reference in its entirety.