Information
-
Patent Grant
-
6823683
-
Patent Number
6,823,683
-
Date Filed
Friday, January 24, 200322 years ago
-
Date Issued
Tuesday, November 30, 200421 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 062 186
- 062 159
- 062 244
- 062 435
- 062 3241
-
International Classifications
- F25B2900
- F25B1300
- F25D1702
- B60H132
-
Abstract
According to the method, heat delivered to the cabin (H) comes from a hot source (18) of a heat pump (12) comprising a main refrigerant circuit (14) taking heat from a cold source (16) to transfer it to the hot source (18). Heat taken from the cold source (16) comes from a flow of air recycled from the cabin. The cold source (16) has a refrigerant/coolant heat exchanger (24) thermally coupling the main circuit (14) to a first secondary coolant circuit (26) capable of being selectively connected to an outside heat exchanger (30) and to a cold heat exchanger (32). Air flow circuits have an inlet for admitting air recycled from the cabin, an outlet for delivering air to the outside of the vehicle, first connection means for connecting the recycled air inlet to the upstream end of the cold heat exchanger (32), and second connection means for connecting the downstream end of said cold heat exchanger (32) to the outside outlet.
Description
The present invention relates to a method and to apparatus for regulating the temperature of a motor vehicle cabin.
The state of the art, and in particular FR-2 697 210 discloses a method of regulating the temperature of a motor vehicle cabin, which method is of the type in which heat is delivered to the cabin from a hot source of a heat pump having a compressor circuit for a refrigerant fluid that takes heat from a cold source and transfers at least part of that heat to the hot source.
The compression circuit generally comprises an evaporator in heat exchange with the cold source, and a condenser in heat exchange with the hot source, these elements being interconnected by a compressor and an expander. The refrigerant vaporizes in the evaporator, thereby taking heat from the cold source. The compressor draws in the vaporized refrigerant and delivers it into the condenser cooled by heat exchange with the hot source, and the refrigerant condenses in the condenser. The expander allows the refrigerant in the liquid state to pass to the evaporator by lowering its pressure.
A heat pump can be used either to heat a space or a part, or else to cool said space or said part.
In FR-2 697 210, the cold source has firstly a first refrigerant/coolant heat exchanger thermally coupling the refrigerant circuit which constitutes a main circuit with a first secondary coolant circuit, and secondly the hot source has a second refrigerant/coolant heat exchanger thermally coupling the main refrigerant circuit to a second secondary coolant circuit.
The secondary circuits are capable of being selectively connected via appropriate valves to an outside heat exchanger placed in the vehicle engine compartment, and to an inside heat exchanger placed in the vehicle cabin. By acting on the valves, the heat pump can be used either to refrigerate the vehicle cabin (in this first case, the hot source is the outside heat exchanger and the cold source is the inside heat exchanger), or else to heat the cabin (in this second case the hot source is the inside heat exchanger and the cold source is the outside heat exchanger).
It should be observed that in the second case, the performance of the heat pump is limited by the temperature of the outside air. In the cold season, air temperature limits the efficiency of the heat pump while it is being used for the purposes of heating the cabin. Furthermore, frosting of the cold source in the cold season can harm the operating performance of the heat pump.
An object of the invention is to optimize the performance of temperature regulation apparatus using a heat pump, in particular when it is used for heating the cabin of a motor vehicle.
To this end, the invention provides a method of regulating the temperature of a motor vehicle cabin of the above-specified type, characterized in that heat coming from a flow of recycled cabin air is taken from the cold source.
The invention also provides apparatus for implementing the above-defined method, the apparatus being characterized in that the cold source comprises a first refrigerant/coolant heat exchanger thermally coupling the main refrigerant circuit to a first secondary coolant circuit capable of being selectively connected to an “outside” heat exchanger and to a “cold” heat exchanger, and in that the hot source comprises a second refrigerant/coolant heat exchanger thermally coupling the main refrigerant circuit to a second secondary coolant circuit capable of being selectively connected to the outside heat exchanger and to a “hot” heat exchanger.
According to other characteristics of this apparatus:
the cold and hot heat exchangers are coolant/air heat exchangers;
the cold and hot heat exchangers are arranged in an air conditioning unit preferably disposed in the cabin, the unit defining air flow circuits passing through the cold and hot heat exchangers;
the air flow circuits comprise a “recycled” air inlet for air recycled from the cabin, an “outside” outlet for delivering air to the outside of the vehicle, first connection means for connecting the recycled air inlet to the upstream end of the cold heat exchanger, and second connection means for connecting the downstream end of said cold heat exchanger to the outside outlet;
the second connection means comprise air distribution means for distributing air to the upstream end of the hot heat exchanger and to the outside outlet;
the air flow circuits comprise an “outside” air inlet for admitting air from outside the vehicle, a “cabin” air outlet for delivering air to the cabin, third connection means for connecting the outside air inlet to the upstream end of the hot heat exchanger, and fourth connection means for connecting the downstream end of the hot heat exchanger to the cabin outlet;
the third connection means comprise air distribution means for distributing air to the upstream end of the hot heat exchanger and to the upstream of the cold heat exchanger;
the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the cold heat exchanger; and
the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the hot heat exchanger.
The invention will be better understood on reading the following description given purely by way of example and made with reference to the accompanying drawings, in which:
FIGS. 1
to
3
are diagrammatic views in three respective different configurations of use showing apparatus of the invention for regulating the temperature of a motor vehicle;
FIG. 4
is a diagrammatic view of an air conditioning unit for the apparatus shown in the preceding figures;
FIG. 5
is a functional diagram showing the flows of air passing through the air conditioning unit shown in
FIG. 4
; and
FIGS. 6 and 7
show variant embodiments of the air conditioning unit shown in FIG.
4
.
FIGS. 1
to
3
show motor vehicle temperature regulation apparatus constituting a first embodiment of the invention, and given overall reference
10
.
In the description below, two parts are said to be thermally coupled together when they exchange heat between each other by means of a suitable heat exchanger.
The temperature regulation apparatus
10
comprises a heat pump
12
having a main refrigerant circuit
14
of the compression type taking heat from a cold source
16
and transferring at least some of it to a hot source
18
.
The cold and hot sources
16
and
18
are connected together by a compressor
20
(electrically or mechanically driven) and an expander valve
22
. The refrigerant vaporizes taking heat from the cold source
16
. the compressor
20
draws in the vaporized refrigerant and delivers it to the hot source where it condenses and cools. The expander valve
22
allows the refrigerant to pass in liquid form towards the cold source
16
by lowering its pressure. The refrigerant circulates around the circuit
14
in the direction marked by arrows in FIG.
1
.
The cold source
16
comprises a first refrigerant/coolant heat exchanger
24
thermally coupling the main refrigerant circuit
14
to a first secondary circuit
26
for liquid coolant. This circuit includes a pump
28
for circulating the liquid coolant, which pump is connected to the inlet of the first heat exchanger
24
.
The first secondary circuit
26
is capable of being selectively connected to an “outside” heat exchanger
30
and to a “cold” heat exchanger
32
.
In the example shown in
FIGS. 1
to
3
, the outside heat exchanger
30
is a coolant/air heat exchanger placed in the engine compartment M of the vehicle, and the cold heat exchanger
32
is a coolant/air heat exchanger placed in the vehicle cabin H.
The hot source
18
has a second refrigerant/coolant heat exchanger
34
thermally coupling the main refrigerant circuit
14
to a second secondary circuit
36
for liquid coolant. This second secondary circuit comprises a pump
38
for circulating the liquid coolant, which pump is connected to the inlet of the second heat exchanger
34
.
The second secondary circuit
36
is capable of being selectively connected to the outside heat exchanger
30
and to a “hot” heat exchanger
39
.
In the example shown in
FIGS. 1
to
3
, the hot heat exchanger
39
is a coolant/air heat exchanger placed in the vehicle cabin H.
A conventional fan (not shown in the figures) serves to cause a flow of air to circulate through the cold and hot heat exchangers
32
and
39
.
The heat pump
12
connected to the first and second heat exchangers
24
and
34
is located, for example, in the engine compartment of the vehicle.
The refrigerant circulating in the main circuit is of conventional type. The refrigerant is selected, for example, from chlorine and fluorine derivatives of methane or ethane (Freon), hydrocarbons, ammonia, or carbon dioxide. The coolant liquid circulating in the first or second secondary circuits
26
or
36
is preferably a mixture of water and antifreeze (glycol).
The two secondary coolant circuits
26
,
36
are connected to the outside, cold, and hot heat exchangers
30
,
32
, and
39
respectively by means of a three-port valve
40
of the first secondary circuit, a three-port valve
42
of the second secondary circuit, and a three-port valve
44
common to both secondary circuits.
The three-port valve
40
of the first secondary circuit
26
is connected to the outlet of the first refrigerant/coolant heat exchanger
24
of the cold source, to the inlet of the outside heat exchanger
30
, and to the inlet of the cold heat exchanger
32
.
The valve
42
of the second secondary circuit
36
is connected to the outlet of the second refrigerant/coolant heat exchanger
34
of the hot source, to the inlet of the outside heat exchanger
30
, and to the inlet of the hot heat exchanger
39
.
The valve
44
common to the first and second secondary coolant circuits
26
and
36
is connected to the inlet of the first refrigerant/coolant heat exchanger
24
of the cold source, to the inlet of the second refrigerant/coolant heat exchanger
34
of the hot source, and to the outlet of the outside heat exchanger
30
.
The valves
40
to
44
are controlled by conventional electrical, mechanical, thermomechanical, or pneumatic means.
The heat exchanger
39
is suitable for taking heat from the vehicle engine cooling liquid and delivering it to the cabin.
For this purpose, the heat exchanger
39
is connected to a branch
48
of a cooling liquid circuit for the vehicle engine
50
. Naturally, this engine is located in the engine compartment M. The downstream end of the branch
48
is connected to a coolant inlet of the hot heat exchanger
39
. The upstream end of the branch
48
is connected to a coolant outlet of the hot heat exchanger
39
. Where appropriate, a valve
52
serves to adjust the flow rate of the cooling liquid circulating in the hot heat exchanger
39
, coming from the upstream end of the branch
48
.
The vehicle cabin can thus be heated by means of heat taken from the engine cooling circuit by using the hot heat exchanger
39
, and without resorting to an additional heat exchanger specific to the cooling circuit.
FIG. 1
shows the configuration of the temperature regulation apparatus
10
in vehicle cabin refrigerating mode. In this configuration, the valves
40
to
44
are set so as to connect the first secondary coolant circuit
26
to the cold heat exchanger
32
and the second secondary coolant circuit
36
to the outlet heat exchanger
30
.
The coolant of the first secondary circuit
26
takes heat from the cabin via the cold heat exchanger
32
and delivers it to the vaporized refrigerant via the first refrigerant/coolant heat exchanger
24
.
The coolant of the second secondary circuit
36
takes heat from the condensed refrigerant via the second refrigerant/coolant heat exchanger
34
and delivers it to the outside of the vehicle via the outside heat exchanger
30
.
FIG. 2
shows the apparatus
10
in a first configuration for heating the cabin. In this configuration, the valves
40
to
44
are set so as to connect the first secondary coolant circuit
26
to the outside heat exchanger
30
and the second secondary coolant circuit
36
to the hot heat exchanger
39
.
The coolant of the first secondary circuit
26
takes heat from outside the vehicle via the outside heat exchanger
30
and delivers it to the vaporized refrigerant via the first refrigerant/coolant heat exchanger
24
.
The coolant of the second secondary circuit
36
takes heat from the condensed refrigerant via the second refrigerant/coolant heat exchanger
34
and delivers it to the cabin, via the hot heat exchanger
39
.
Where appropriate, the valve
52
is opened at least partially so as to allow the hot heat exchanger
39
to provide the cabin with heat taken from the vehicle engine cooling liquid.
FIG. 3
shows the apparatus
10
in a second cabin heating configuration. In this configuration, the valves
42
and
44
are set as in
FIG. 2
except that the second secondary coolant circuit
36
is connected to hot heat exchanger
39
. The valve
40
is set in such a manner as to connect the first secondary coolant circuit
26
to the cold heat exchanger
32
.
The coolant of the first secondary circuit
26
takes heat from the cabin (more particularly from a flow of recycled cabin air, as explained in greater detail below), via the cold heat exchanger
32
, and delivers it to the vaporized refrigerant via the first refrigerant/coolant heat exchanger
24
.
The coolant of the second secondary circuit
26
takes heat from the condensed refrigerant via the second refrigerant/coolant heat exchanger
34
and delivers it to the cabin via the hot heat exchanger
39
.
In its second heating configuration, the apparatus
10
enables heat coming from a flow of recycled cabin air to be taken from the cold source
16
.
As in the first heating configuration of the apparatus
10
shown in
FIG. 2
, the valve
52
can be at least partially open so as to allow the heat exchanger
39
to supply the cabin with heat taken from the vehicle engine cooling liquid.
Naturally, the valves
40
to
44
can be set in configurations that are intermediate relative to the cabin cooling and heating configurations shown in
FIGS. 1
to
3
, for example in order to accelerate cabin heating while contributing to controlling the relative humidity in the cabin.
In order to be able to regulate cabin temperature by configuring the apparatus
10
as shown in
FIGS. 1
to
3
, and more particularly as shown in
FIG. 3
(second cabin heating configuration), the cold heat exchanger
32
and the hot heat exchanger
39
are disposed in an air conditioning unit
62
as shown in FIG.
4
.
The air conditioning unit
62
placed inside the cabin defines air flow circuits passing through the cold and hot heat exchangers
32
and
39
. The air flow circuits comprise an inlet for air from outside the vehicle, referred to as the “outside” air inlet
64
, an inlet for air recycled from the cabin, referred to as the “recycled” air inlet
66
, an outlet for delivering air to the outside of the cabin, referred to as the “outside” inlet
68
, and an outlet for delivering air to the cabin, referred to as the “cabin” outlet
70
.
The air flow circuits also comprise first means for connecting the recycled air inlet
66
to the upstream end of the cold heat exchanger
32
, said means comprising a flap
72
, for example, and second means for connecting the downstream end of this cold heat exchanger
32
to the outside outlet
68
, said means comprising a flap
74
, for example.
The flap
72
can be moved between two extreme positions for maximum and minimum recycled air flow as represented respectively by a continuous line and by a dashed line in FIG.
4
.
The flap
74
constitutes a part for distributing air to the upstream of the hot heat exchanger
39
and to the outside outlet
68
. Thus, the flap
74
is movable between two extreme positions for maximum air flow firstly to the outside outlet
68
and secondly to the upstream of the hot heat exchanger
39
, these positions being represented respectively by a continuous line and by a dashed line in FIG.
4
.
The air flow circuits also comprise third connection means for connecting the outside air inlet
64
to the upstream end of the hot heat exchanger
39
, e.g. comprising a flap
76
, and fourth means for connecting the downstream end of the hot heat exchanger
39
to the cabin outlet
70
, comprising a connection duct
78
provided where appropriate with an air flow rate adjusting part (not shown).
The flap
76
serves to distribute air between the upstream end of the hot heat exchanger
39
and the downstream end of the cold heat exchanger
32
. Thus, the flap
76
can be moved between two extreme positions providing firstly maximum air flow towards the upstream end of the hot heat exchanger
39
and secondly towards the upstream end of the cold heat exchanger
32
, these positions being represented respectively by a continuous line and by a dashed line in FIG.
4
.
Air drive means such as a fan device
80
are arranged upstream from the cold heat exchanger
32
, as shown in
FIG. 4
, or downstream from said cold heat exchanger
32
.
In a variant, additional air drive means such as an additional fan device
82
can be arranged downstream (see
FIG. 6
) or upstream (see
FIG. 7
) of the hot heat exchanger
39
.
The recycled air inlet
66
is preferably connected to orifices for taking air from the cabin that are arranged in the rear portion thereof.
FIG. 5
shows the principle on which the air conditioning unit
62
operates.
In
FIG. 5
, the air flows are represented by broad arrows. Each hot or cold heat exchanger
32
or
39
can be fed at its upstream end with air coming from outside the vehicle (shaded two-branched arrow
64
on the left in
FIG. 5
) and by a flow of air recycled from the cabin (solid line two-branched arrow
66
on the left of FIG.
5
).
The air flow downstream from the hot heat exchanger
39
can be directed to the cabin (solid line arrow
70
on the right of FIG.
5
). The air flow downstream from the cold heat exchanger
32
can be delivered to the outside of the vehicle (shaded arrow
68
to the right in FIG.
5
), or where appropriate, to the upstream end of the hot heat exchanger
39
.
When the apparatus
10
is configured so as to cool the vehicle cabin without heating the air flow but taking air from outside the vehicle, as shown in
FIG. 1
, the flaps
72
to
76
are placed in their positions represented by dashed lines in
FIG. 4
, for example. Thus, since the hot heat exchanger
39
is deactivated, the outside air flows through the cold heat exchanger
32
and is then delivered to the cabin without cycling.
When the apparatus
10
is in its first heating configuration, as shown in
FIG. 2
, the flap
76
is moved from the preceding position so as to occupy its position represented by a continuous line in
FIG. 4
, for example. Thus, the outside air passes through the hot heat exchanger
39
(which in this configuration is activated), and is then delivered to the cabin.
When the apparatus
10
is in its second heating configuration, as shown in
FIG. 3
, the flaps
72
to
76
are placed in their positions represented by continuous lines in FIG.
4
. Thus, the flow of air recycled from the cabin passes through the cold heat exchanger
32
and is then sent towards the outside of the vehicle while the hot heat exchanger
39
has a flow of outside air passing therethrough as in the first heating configuration.
Naturally, the flaps
72
to
74
can be set into positions that are intermediate relative to those described above in order to combine various recycled and outside air flows through the hot and cold heat exchangers
39
and
32
.
The second heating configuration of the apparatus
10
as shown in
FIG. 3
is particularly well adapted to heating the cabin in the cold season.
In this second heating configuration, the first secondary circuit
26
is connected to the cold heat exchanger
32
which, on coming into contact with air recycled from the cabin, is unlikely to frost. The cold heat exchanger
32
acts as a cold source for the coolant circulating in the first secondary circuit
36
, which cold source is hotter than the outside heat exchanger
30
connected to the first secondary circuit
26
in the first heating configuration of the apparatus
10
as shown in FIG.
2
.
It should be observed that when the flaps
72
to
76
are set into their continuous line positions shown in
FIG. 4
, the hot heat exchanger
39
passes solely a flow of air taken from outside the vehicle and that is not recycled, thus reducing any risk of mist forming on the cabin windows.
Amongst the advantages of the invention, it should be observed that when the apparatus
10
is in its second heating configuration, the operation of the heat pump
12
is optimized because the cold heat exchanger
32
acts as a cold source relative to the coolant circulating in the first secondary circuit
26
, which cold source is hotter than the outside heat exchanger
30
.
In addition, in the cold season, the second heating configuration of the apparatus
10
enables the temperature inside the cabin to be raised more quickly than is possible with the first heating configuration of the apparatus
10
. This advantage occurs in particular because heat taken from the cold source
16
comes from a flow of recycled cabin air at a temperature which is higher than the temperature of the outside air.
Claims
- 1. Motor vehicle temperature regulation apparatus comprising:a heat pump comprising a main compression circuit for a refrigerant fluid that takes heat from a cold source to transfer the heat to a hot source; the cold source comprising a first heat exchanger for exchanging heat between the refrigerant fluid and a coolant liquid, thermally coupling the main refrigerant circuit to a first secondary coolant circuit capable of being selectively connected to at least two heat exchangers; and the hot source comprising a second heat exchanger for exchanging heat between the refrigerant fluid and a coolant liquid, thermally coupling the main refrigerant circuit to a second secondary coolant circuit capable of being selectively connected to two heat exchangers; wherein the first secondary circuit is capable of being selectively connected to an “outside” heat exchanger and to a “cold” heat exchanger, and wherein the second secondary circuit is capable of being selectively connected to the outside heat exchanger and to a “hot” heat exchanger, the apparatus further comprising a unit that forms a flow of recycled cabin air passing through the cold heat exchanger.
- 2. Apparatus according to claim 1, characterized in that the cold and hot heat exchangers are coolant/air heat exchangers.
- 3. Apparatus according to claim 2, characterized in that the cold and hot heat exchangers are arranged in an air conditioning unit preferably disposed in the cabin, the unit defining air flow circuits passing through the cold and hot heat exchangers and forming the unit for forming a flow of recycled cabin air passing through the cold heat exchanger.
- 4. Apparatus according to claim 3, characterized in that the air flow circuits comprise a “recycled” air inlet for air recycled from the cabin, an “outside” outlet for delivering air to the outside of the vehicle, first connection means for connecting the recycled air inlet to the upstream end of the cold heat exchanger, and second connection means for connecting the downstream end of said cold heat exchanger to the outside outlet.
- 5. Apparatus according to claim 4, characterized in that the second connection means comprise air distribution means for distributing air to the upstream end of the hot heat exchanger and to the outside outlet.
- 6. Apparatus according to claim 4, characterized in that the air flow circuits comprise an “outside” air inlet for admitting air from outside the vehicle, a “cabin” air outlet for delivering air to the cabin, third connection means for connecting the outside air inlet to the upstream end of the hot heat exchanger, and fourth connection means for connecting the downstream end of the hot heat exchanger to the cabin outlet.
- 7. Apparatus according to claim 6, characterized in that the third connection means comprise air distribution means for distributing air to the upstream end of the hot heat exchanger and to the upstream of the cold heat exchanger.
- 8. Apparatus according to claim 3, characterized in that the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the cold heat exchanger.
- 9. Apparatus according to claim 3, characterized in that the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the hot heat exchanger.
- 10. Apparatus according to claim 5, characterized in that the air flow circuits comprise an “outside” air inlet for admitting air from outside the vehicle, a “cabin” air outlet for delivering air to the cabin, third connection means for connecting the outside air inlet to the upstream end of the hot heat exchanger, and fourth connection mean for connecting the downstream end of the hot heat exchanger to the cabin outlet.
- 11. Apparatus according to claim 4, characterized in that the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the cold heat exchanger.
- 12. Apparatus according to claim 5, characterized in that the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the cold heat exchanger.
- 13. Apparatus according to claim 6, characterized in that the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the cold heat exchanger.
- 14. Apparatus according to claim 7, characterized in that the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the cold heat exchanger.
- 15. Apparatus according to claim 4, characterized in that the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the hot heat exchanger.
- 16. Apparatus according to claim 5, characterized in that the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the hot heat exchanger.
- 17. Apparatus according to claim 6, characterized in that the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the hot heat exchanger.
- 18. Apparatus according to claim 7, characterized in that the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the hot heat exchanger.
- 19. Apparatus according to claim 8, characterized in that the air conditioning unit comprises means for driving air, said means being arranged upstream or downstream from the hot heat exchanger.
Priority Claims (2)
| Number |
Date |
Country |
Kind |
| 00 06116 |
May 2000 |
FR |
|
| 00 15363 |
Nov 2000 |
FR |
|
PCT Information
| Filing Document |
Filing Date |
Country |
Kind |
| PCT/FR01/01457 |
|
WO |
00 |
| Publishing Document |
Publishing Date |
Country |
Kind |
| WO01/87655 |
11/22/2001 |
WO |
A |
US Referenced Citations (8)
Foreign Referenced Citations (2)
| Number |
Date |
Country |
| 199 30 148 |
Jan 2000 |
DE |
| 2 697 210 |
Apr 1994 |
FR |