This application claims priority of the German patent application 103 40 604.2 filed Sep. 1, 2003 which is incorporated by reference herein.
The invention concerns a method and an apparatus for connecting two components to one another using at least one screw, the relative position being precisely adjustable in one direction during fastening.
In order to connect two (for example, mechanical or optical) components immovably to one another and additionally to bring about a relative displacement of the one component with respect to the other, it is known, for example, to create a threaded connection by the fact that the component to be aligned comprises at least one elongated hole through which engages a screw that is connected to the stationary part. Another known technical solution consists in providing a transport thread by the actuation of which a linear shift of the movable component is possible. It is additionally known to perform a relative displacement of two components with respect to one another by means of an eccentric.
This aforesaid existing art entails several disadvantages. With the elongated-hole version, the component to be moved cannot be precisely and reproducibly displaced in one direction. In particular, small displacements cannot be performed in controlled fashion. The use of a transport thread is on the one hand complex; on the other hand this technical solution results in only an inadequately guided connection, and physical accessibility in the direction of the displacement is moreover always necessary. The use of an eccentric necessitates additional retention in order to prevent displacement in other degrees of freedom; furthermore, immobilization of the position that has been or is to be set is also necessary.
It is therefore the object of the present invention to describe a method and an apparatus for releasable fastening and for modification of relative position, the aforesaid disadvantages being reliably eliminated.
With the present invention, relative positions can be set in one direction with high precision, and simultaneously an undesired displacement in other degrees of freedom can be prevented. Simple mechanical means are used in this context. An equal and opposite rotation of two screws (or nuts), which coact with a trapezoidal support having a V-shaped flank, allows sensitive, zero-backlash modification of the position of the component that is to be moved and then fastened.
The present invention also makes possible, in addition to a pure linear translation with subsequent immobilization of the component, centering in the plane, or alignment in three dimensions.
The invention will be explained in more detail below with reference to the schematic drawings, in which:
a is a plan view of the two components with the associated shifting and fastening means;
b is a side view of what is depicted in
c shows what is depicted in
d shows what is depicted in
a is a section through the component depicted in
b shows what is depicted in
Into these V-shaped notch zones 9a1, 9a2, 9b1, 9b2 engage two screws 3, as shown in
b depicts the situation in which left and right screws 3 are anchored to the same “depth” in the fixed base component 1, so that movable component 2 is in its center position. This is indicated by a dashed vertical line extending through
In
a and 3b illustrate the inventive principle of simultaneous opposite-direction actuation of screws 3 to achieve a desired displacement travel of component 2 (linear translation direction 6). The Figures depict an isosceles trapezoid that is obtained when a vertical section plane is placed through component 2, parallel to its plane of symmetry, in such a way that point contact is made the one hand between contour 3b′ of screw head 3b and beveled surface 9b1, and on the other hand between contour 3a′ of screw head 3a and beveled surface 9a1. Single-point contact Pbh is visible on the right side, and single-point contact Pat likewise on the left side. These contact points are located at different vertical levels h, t on the isosceles trapezoid. Comparing the schematic diagram of
It is within the scope of the present invention to modify the slope of the beveled surfaces from one component to another. Different translation amounts are thus obtained as a function of the thickness of component 2. It is also possible to equip beveled surfaces 9a1, 9a2, provided on the left side of component 2, with a slope different from that of beveled surfaces 9b1, 9b2 arranged on the right side of component 2. It is additionally possible to vary the V-shaped notch zones 9a1, 9a2; 9b1, 9b2; 9a3, 9a4, 9b3, 9b4 in terms of their V angle. This also yields optimum adaptation capabilities in each individual case in order to achieve a desired translation travel.
As is already indirectly evident from
The same applies to the three-dimensional shape of the undersides of screw heads 3a, 3b. These shapes can be semi-spherical or ellipsoidal or paraboloidal. The only fundamental condition is that the respective contours of screw heads 3a, 3b form single-point contacts with the respective beveled surfaces. This therefore means that in the context of the present invention it is also possible to embody the undersides of the screw heads in frustoconical fashion if the beveled surfaces are non-planar, so that a non-linear line of all single-point contacts is obtained as screws 3 are rotated. This therefore means that, in contrast to what is depicted in
A disk-shaped component Br is connected via a rotation shaft D to a fixed base component, here called a baseplate G. Disk Br has in its peripheral region two spherical elongated holes L that are at identical distances from the center point of the disk, i.e. from the point at which rotation shaft D penetrates through disk Br. Each of elongated holes L has on its one side a V-shaped contour, only one V side in each case possessing a beveled surface E.
In this embodiment as well, the variants mentioned above—in terms of the angle or side length of the V, or the surface shape of individual beveled surface E or the slope of individual beveled surface E—can be provided for. It is also self-evident that a fixed base component 1 or a component 1′ can be used instead of baseplate G.
A further tilting variant is shown in
Lastly,
The variants depicted, which individually make possible either a linear translation or a nonlinear translation or a rotation or a tilt, can be combined in any desired fashion so that translations in the plane (centering operation) or in three dimensions (alignment operation) can be achieved.
One example is depicted in
All other possible combinations become evident from this exemplifying depiction. For example, instead of intermediate component 1a that has a planar contact surface 5, it is also possible to receive a component 2′ that corresponds to a baseplate of elevated configuration in the manner of
It is within the scope of the present invention for displaceable component 2, 2′ to have different functions. It may be, for example, a purely mechanical functional element, for example a stop or an abutment that must be positioned in accurately aligned fashion. On the other hand, it is also possible for this component 2, 2′ to carry an optical element on its upper side 2a so that it functions, in a way, as a mount element. It is thus conceivable for it to be, for example, a prism frame, a graduated device, a mirror, a grating, a light fiber exit end, a diaphragm, a slit, or a lens.
Number | Date | Country | Kind |
---|---|---|---|
103 40 604 | Sep 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1911770 | Redfield | May 1933 | A |
4035093 | Redshaw | Jul 1977 | A |
4081848 | Blanding | Mar 1978 | A |
4621962 | Rozniecki | Nov 1986 | A |
5047896 | Zust | Sep 1991 | A |
5141357 | Sherman et al. | Aug 1992 | A |
5310299 | Bernstein | May 1994 | A |
5352002 | Vouillon et al. | Oct 1994 | A |
5833225 | Weber | Nov 1998 | A |
6394439 | Weber | May 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20050047857 A1 | Mar 2005 | US |