The present disclosure is related to a patient support apparatus, and in particular to a method of removing moisture from a mattress topper included in the patient support apparatus. More particularly, the present disclosure is related to a method of removing moisture from a mattress topper using a blower included in the patient support apparatus.
A patient support apparatus may include a moisture removal system typically used to cool and dry a patient's skin to improve the health of the patient while the patient rests on the patient support apparatus. The cooling and drying of the patient's skin reduces the possibility of decubitus ulcers (bed sores) that may developed by the patient while he/she rests on the patient support apparatus.
Some moisture removal systems conduct ambient air through a topper included in the mattress and along the interface of the patient's skin with the topper. Such systems may utilize a blower to conduct ambient air through the moisture removal system and to the topper. Such systems rely on the ability of the ambient air to absorb moisture from the patient that passes into the topper.
The present application discloses one or more of the features recited in the appended claims and/or the following features which, alone or in any combination, may comprise patentable subject matter:
According to one aspect of the present disclosure, a patient support apparatus comprises a patient support surface, a source of pressurized air, a dehumidifier, and a conduit. The patient support surface includes a topper having an upwardly-facing surface that is vapor permeable. The dehumidifier is in fluid communication with the source of pressurized air to receive pressurized air therefrom. The dehumidifier is operable to selectively treat the pressurized air to reduce the moisture content of the pressurized air. The conduit is coupled to the dehumidifier to conduct the pressurized air from the dehumidifier to the topper.
In some embodiments, the dehumidifier may include a first dryer that may include a first desiccant. The first desiccant may be configured to absorb moisture from the pressurized air. The first dryer may also include a heat source that may be configured to regenerate the first desiccant when the first desiccant is no longer able to absorb moisture from the pressurized air so that the first desiccant is able to absorb moisture from the pressurized air after regeneration is completed.
In some embodiments, the dehumidifier may include a second dryer that may include a second desiccant. The second desiccant may be configured to absorb moisture from the pressurized air. The second dryer may also include a second heat source that may be configured to regenerate the second desiccant when the second desiccant is no longer able to absorb moisture from the pressurized air so that the second desiccant is able to absorb moisture from the pressurized air after regeneration is completed.
In some embodiments, the pressurized air source may be a blower that may be coupled to the dehumidifier. The blower may be configured to drive pressurized air toward the topper. In other embodiments, the pressurized air source may be a compressor that may be coupled to the dehumidifier. The compressor may be configured to drive pressurized air toward the topper.
In some embodiments, the patient support apparatus may further comprise a first control valve. The first control valve may fluidly couple the blower to the first dryer. The first control valve may be operable to selectively direct pressurized air communicated to the first control valve from the blower to at least one of the first dryer and a second control valve. The first dryer may be bypassed when the first control valve directs pressurized air to the second control valve.
In some embodiments, the patient support apparatus may further comprise a controller. The controller may include a processor and also may include memory having instructions stored therein. The first control valve may be coupled to the controller. The instructions may be executable by the processor to cause the first control valve to direct pressurized air communicated to the first control valve by the blower to at least one of the first dryer and the second control valve.
In some embodiments, the patient support apparatus may further comprise a user interface. The user interface may include a display. The patient support apparatus may further comprise a sensor. The sensor may be coupled to the controller. The sensor may be configured to measure the relative humidity of the pressurized air communicated from the blower to the first control valve. The sensor may also be configured to communicate the relative humidity measurement to the controller so that the measurement is displayed on the display.
According to another aspect of the present disclosure, the patient support apparatus comprises a patient support surface, a pressurized air source, a dehumidifier, and a conduit. The support surface includes a topper having an upwardly-facing surface that is vapor permeable. The dehumidifier is in fluid communication with the blower. The dehumidifier is operable to selectively reduce the moisture content of ambient air provided to the dehumidifier so that it becomes treated air. The dehumidifier is operable to communicate treated air to the pressurized air source. The conduit may be coupled to the pressurized air source to conduct treated air from the pressurized air source to the topper.
In some embodiments, the dehumidifier may include a first dryer that may include a first desiccant. The first desiccant may be configured to absorb moisture from the ambient air so that it becomes treated air. The first dryer may also include a first heat source that may be configured to regenerate the first desiccant when the first desiccant is no longer able to absorb moisture from the ambient air so that the first desiccant is able to absorb moisture from the ambient air after regeneration is completed.
In some embodiments, the dehumidifier may include a second dryer that may include a second desiccant. The second desiccant may be configured to absorb moisture from the treated air to reduce the moisture content of the treated air. The second dryer may also include a second heat source that may be configured to regenerate the second desiccant when the second desiccant is no longer able to absorb moisture from the treated air so that the second desiccant is able to absorb moisture from the treated air after regeneration is completed.
In some embodiments, the patient support apparatus may further comprise a first control valve and also a second control valve. The second control valve may be fluidly coupled to the first control valve. Ambient air may be provided to the first control valve. The first control valve may be operable to selectively direct ambient air to at least one of the first dryer and the second control valve. The first dryer may be bypassed when the first control valve directs ambient air to the second control valve.
In some embodiments, the patient support apparatus may further comprise a controller. The controller may include a processor and also memory having instructions stored therein. The first control valve may be coupled to the controller. The instructions may be executable by the processor to cause the first control valve to direct ambient air to the first dryer. The instructions may also be executable by the processor to cause the first control valve to direct ambient air to the second control valve to bypass the first dryer.
According to another aspect of the present disclosure, a patient support apparatus comprises a patient support surface, a source of pressurized air, a dehumidifier, and a conduit. The patient support surface includes a topper having an upwardly-facing surface that is vapor permeable. The dehumidifier is in fluid communication with the source of pressurized air to receive pressurized air therefrom. The dehumidifier is operable to selectively treat the pressurized air to reduce the moisture content of the pressurized air. The conduit is coupled to the dehumidifier to conduct the pressurized air from the dehumidifier to the topper. The dehumidifier includes a first dryer that includes a first desiccant and a second dryer that includes a second desiccant.
In some embodiments, the patient support apparatus may further comprise a first control valve. The pressurized air source may be fluidly coupled to a first port that may be included in the first control valve. The first dryer may be fluidly coupled to a second port that may be included in the first control valve.
In some embodiments, the patient support apparatus may further comprise a second control valve. The first dryer may be fluidly coupled to a first port that may be included in the second control valve. The second dryer may be fluidly coupled to a second port that may be included in the second control valve.
In some embodiments, the patient support apparatus may further comprise a third control valve. The second dryer may be fluidly coupled to a first port that may be included in the third control valve. The conduit may be fluidly coupled to a second port that may be included in the third control valve.
In some embodiments, the patient support apparatus may further comprise a fourth control valve. The first control valve may be fluidly coupled to a first port that may be included in the fourth control valve. The third control valve may be fluidly coupled to a second port that may be included in the fourth control valve.
In some embodiments, the patient support apparatus may further comprise first sensor. The first sensor may be configured to measure the relative humidity of pressurized air communicated from the pressurized air source to the first port of the first control valve.
In some embodiments, the patient support apparatus may further comprise a second sensor. The second sensor may be configured to measure the relative humidity of pressurized air communicated from the first dryer to the first port of the second control valve. The second sensor may be configured to measure the relative humidity of pressurized air treated using the first dryer.
In some embodiments, the patient support apparatus may further comprise a third sensor. The third sensor may be configured to measure the relative humidity of pressurized air communicated from the second dryer to the first port of the third control valve. The third sensor may be configured to measure the relative humidity of pressurized air treated using the second dryer. The third sensor may also be configured to measure the relative humidity of pressurized air treated using the first dryer and the second dryer.
According to another aspect of the present disclosure, a method for removing moisture from a support surface included in a patient support apparatus on which a patient rests comprises measuring the relative humidity of pressurized air provided by a pressurized air source included in the patient support apparatus using a first sensor included in the patient support apparatus, communicating the relative humidity measurement provided by the first sensor to a controller included in the patient support apparatus, determining whether the relative humidity measurement exceeds a first predetermined value using the controller, and if the relative humidity measurement exceeds the first predetermined value, issuing a first output signal from the controller to a first control valve included in the patient support apparatus to cause pressurized air communicated to the first control valve from the pressurized air source to be communicated from the first control valve to a first dryer included in a dehumidifier that is included in the patient support apparatus, treating the pressurized air using the first dryer to reduce the moisture content of the pressurized air, and communicating the treated pressurized air from the first dryer toward the support surface to remove moisture from the patient accumulating on the support surface.
In some embodiments, if the relative humidity measurement exceeds the first predetermined value, the method may further comprise measuring the relative humidity of the treated pressurized air communicated toward the support surface by the first dryer using a second sensor included in the patient support apparatus. The method may further comprise communicating the relative humidity measurement provided by the second sensor to the controller. The method may further comprise determining whether the relative humidity measurement provided by the second sensor exceeds a second predetermined value using the controller.
In some embodiments, if the relative humidity measurement provided by the second sensor exceeds the second predetermined value, the method may further comprise issuing a second output signal from the controller to a second control valve included in the patient support apparatus to cause treated pressurized air communicated to the second control valve from the first dryer to be communicated from the second control valve to a second dryer included in the dehumidifier. The method may further comprise treating the treated pressurized air communicated from the second control valve to the second dryer using the second dryer to reduce the moisture content of the treated pressurized air. The method may further comprise communicating the treated pressurized air from the second dryer toward the support surface to remove moisture from the patient accumulating on the support surface. The method may further comprise measuring the relative humidity of the treated pressurized air communicated from the second dryer toward the support surface using a third sensor included in the patient support apparatus. The method may further comprise communicating the relative humidity measurement provided by the third sensor to the controller. The method may further comprise issuing a third output signal from the controller to a third control valve included in the patient support apparatus to cause treated pressurized air communicated to the third control valve from the second dryer to be communicated from the third control valve through a conduit included in the patient support apparatus and to the support surface so that the treated pressurized air is used to remove moisture from the patient accumulating on the support surface.
Additional features, which alone or in combination with any other feature(s), including those listed above and those listed in the claims, may comprise patentable subject matter and will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments exemplifying the best mode of carrying out the invention as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
Referring to
The patient is supported by the support surface 20 that is configured to underlie the patient resting on the bed 10. The support surface 20 includes a topper 22 which defines a top face 24 of the support surface 20 and is configured to conduct pressurized air provided by the pressurized air source 16 along the top face 24 when the patient is supported on the bed 10. For the purposes of the present disclosure, pressurized air refers to air that has a pressure greater than the pressure of ambient or atmospheric air. The pressurized air is produced by the pressurized air source 16 and routed to the support surface 20 through a conduit 25 included in the moisture removal system 12 of the bed 10. The pressurized air provided by the pressurized air source 16 may be pressurized air which is treated using the dehumidifier 18 so that the moisture content of the pressurized air is reduced prior to being conducted along the top face 24. The pressurized air provided by the pressurized air source 16 may also be pressurized air that has not been treated using the dehumidifier 18 prior to being conducted to the support surface 20.
The bed 10 also includes a control unit 26 which includes a controller 28, a plurality of sensors, and a plurality of control valves which are described in more detail below and shown in
Referring again to
Referring to
The topper 22 illustratively includes a bottom layer 44, a middle layer 45, and a top layer 46 as shown in
Referring now to
The pressurized air source 16 may be a mechanical fan or blower including a casing and an impeller and a hub contained by the casing. The fan or blower may also include a motor used to rotate the impeller to propel pressurized air toward the dehumidifier 18. The pressurized air source 16 may also be a compressor that is used to reduce the volume of the ambient air by increasing its pressure and thereby propelling pressurized air toward the dehumidifier 18.
The bed 10 includes the control unit 26 and a user interface 48 as shown in
The control unit 26 includes the controller 28 which manages electronically controlled functions associated with the bed 10. As shown in
The control unit 26 also includes the plurality of sensors and the plurality of control valves as indicated above and shown in
Each of the sensors 60, 61, 62 are illustratively relative humidity sensors coupled to the controller 28 and configured to provide relative humidity measurements to the controller 28 of pressurized air provided by the pressurized air source 16 and conducted through the moisture removal system 12 to the support surface 20. As suggested above, each of the sensors 60, 61, 62 are included as inputs 56.
Referring now to
Each of the control valves 64, 65, 66, 67 is illustratively a 3-way valve configured to permit air flow between two of three different ports included in each control valve as shown in
As shown in
The first control valve 64 is operable to direct the flow of pressurized air generated by the pressurized air source 16 and communicated to the first control valve 64 at the first inlet port 64a to at least one of the second outlet port 64b and the third outlet port 64c. As previously mentioned, the first control valve 64 is in communication with the controller 28 to receive output signals therefrom. The controller 28 may, in response to receiving a relative humidity measurement of the pressurized air from the first sensor 60, transmit a first control valve output signal A to the first control valve 64 to cause pressurized air to be directed from the first inlet port 64a to the second outlet port 64b. In another example, the controller 28, in response to receiving the relative humidity measurement from the first sensor 60, may transmit a first control valve output signal B to the first control valve 64 to cause pressurized air to be directed from the first inlet port 64a to the third outlet port 64c.
As shown in
The second control valve 65 is operable to direct the flow of pressurized air generated by the pressurized air source 16 and communicated to the second control valve 65 at the first port 65a to at least one of the second port 65b and the third port 65c. The second control valve 65 is also operable to direct the flow of treated pressurized air communicated to the second control valve 65 at port 65c to the port 65b. As previously mentioned, the second control valve 65 is in communication with the controller 28 to receive output signals therefrom. The controller 28 may, in response to receiving a relative humidity measurement of the pressurized air provided by the pressurized air source 16 from the first sensor 60, transmit a second control valve output signal A to the second control valve 65 to cause pressurized air to be directed from the first port 65a to the second port 65b. In another example, the controller 28, in response to receiving the relative humidity measurement from the first sensor 60, may transmit a second control valve output signal B to the second control valve 65 to cause pressurized air to be directed from the first port 65a to the third port 65c. In yet another example, the controller 28, in response to receiving the relative humidity measurement from the second sensor 61, may transmit a second control valve output signal C to the second control valve 65 to cause pressurized air to be directed from the third port 65c to the second port 65b.
As shown in
The third control valve 66 is operable to direct the flow of pressurized air generated by the pressurized air source 16 and communicated to the third control valve 66 at the third port 66c to the second port 66b. The third control valve 66 is also operable to direct the flow of treated pressurized air communicated to the third control valve 66 at the first port 66a to at least one of the third port 66c and the second port 66b. As previously mentioned, the third control valve 66 is in communication with the controller 28 to receive output signals therefrom. The controller 28 may, in response to receiving a relative humidity measurement of the treated pressurized air from the second sensor 61, transmit a third control valve output signal A to the third control valve 66 to cause treated pressurized air to be directed from the first port 66a to the second port 66b. In another example, the controller 28, in response to receiving the relative humidity measurement from the second sensor 61, may transmit a third control valve output signal B to the third control valve 66 to cause treated pressurized air to be directed from the first port 66a to the third port 66c, thereby bypassing the second dryer 70. In yet another example, the controller 28, in response to receiving the relative humidity measurement from the first sensor 60, may transmit a third control valve output signal C to the third control valve 66 to cause pressurized air to be directed from the third port 66c to the second port 66b for treatment using the second dryer 70.
As shown in
The fourth control valve 67 is operable to direct the flow of pressurized air communicated to the fourth control valve 67 at either one of the first port 67a and the third port 67c to the second port 67b. It should be understood that the first port 67a receives treated pressurized air that is treated by the second dryer 70 or both dryers 68, 70. It should also be understood that the third port 67c receives either (non-treated) pressurized air or treated pressurized air that is treated using the first dryer 68. As previously mentioned, the fourth control valve 67 is in communication with the controller 28 to receive output signals therefrom. The controller 28 may, in response to receiving a relative humidity measurement of the pressurized air provided by the pressurized air source 16 from the first sensor 60, the second sensor 61, and/or the third sensor 62, transmit a fourth control valve output signal A to the fourth control valve 67 to cause treated pressurized air to be directed from the first port 67a to the second port 67b. In another example, the controller 28, in response to receiving the relative humidity measurement from the first sensor 60, the second sensor 61, and/or the third sensor 62, may transmit a fourth control valve output signal B to the fourth control valve 67 to cause either (non-treated) pressurized air or treated pressurized air to be directed from the third port 67c to the second port 67b.
As suggested in
The first desiccant 74 is configured to absorb moisture from the AIR IN so that the AIR OUT has a lower relative humidity than the AIR IN as previously stated. The first desiccant 74 is illustratively a synthetic porous crystalline aluminosilicate such as a silica gel desiccant. As an example, approximately one pound of silica gel desiccant is able to absorb about 50% of the moisture of standard air coming in contact with the silica gel desiccant over a time period of approximately one hour. Standard air has an absolute pressure of 14.7 psi at a temperature of approximately 70° F. and is provided to the silica gel desiccant at a rate of approximately 80 L/min for the purposes of the present disclosure.
Moisture absorbed by the first desiccant 74 becomes water vapor as shown in
The first desiccant 74 is configured to be regenerated once the first desiccant absorbs moisture to the point that the first desiccant 74 becomes saturated and is no longer able to absorb moisture from the pressurized air provided by the pressurized air source 16. The first desiccant 74 may be regenerated by heating it to a regeneration temperature using the heat source 72 for a sufficient period of regeneration time. In one example, the regeneration time may between 1-2 hours and the regeneration temperature may be between 200-300° F. As in explained in more detail below, the second dryer 70 may be used to treat the pressurized air supplied by the pressurized air source 16 while the first desiccant 74 is being regenerated.
For the purposes of the present disclosure, the second dryer 70 is considered to be similar to the first dryer 68. The second dryer 70 therefore includes a second housing defining a second treatment chamber, a second desiccant and a second heat source contained within the second treatment chamber, a second vent, and a second bleed valve. The second desiccant is configured to absorb moisture from the AIR IN so that the AIR OUT has a lower relative humidity than the AIR IN as previously stated. The second desiccant is illustratively a silica gel desiccant capable of being regenerated as described above. As explained in more detail below, the first dryer 68 may be used to treat the pressurized air supplied by the pressurized air source 16 while the second desiccant is being regenerated.
As shown in
Referring back to
The method includes the first step of measuring the relative humidity of the pressurized air exiting the pressurized air source 16 using the first sensor 60. The first sensor 60 provides a first relative humidity measurement of the pressurized air prior to treatment using the first dryer 68 or the second dryer 70.
The method proceeds by communicating the first relative humidity measurement provided by the first sensor 60 to the controller 28. The first relative humidity measurement provided by the first sensor 60 is communicated to the controller 28 as a first input signal.
The method proceeds by determining whether the first relative humidity measurement exceeds a first predetermined value using the controller 28. The first predetermined value may be a relative humidity value associated with a desired level of moisture removal from the patient's skin using the topper 22. If the first relative humidity measurement exceeds the first predetermined value, the method proceeds by issuing a first output signal to the first control valve 64 from the controller 28 to cause pressurized air to be communicated from the first inlet port 64a to the first dryer 68 through the second outlet port 64b. If the first relative humidity measurement does not exceed the first predetermined value, the method proceeds by issuing a second output signal to the first control valve 64 from the controller 28 to cause pressurized air to be communicated from the first inlet port 64a to the first port 65a of the second control valve 65 through the third outlet port 64c, thereby bypassing the first dryer 68.
If the second output signal is issued by the controller 28 to the first control valve 64, the method proceeds by issuing a third output signal to the second control valve 65 from the controller 28 to cause pressurized air to be communicated from the first port 65a to the fourth control valve 67 through the second port 65b. The second dryer 70 is thereby bypassed in this step.
If the third output signal is issued by the controller 28 to the second control valve 65, the method proceeds by issuing a fourth output signal to the fourth control valve 67 from the controller 28 to cause non-treated pressurized air to be communicated from the third port 67c toward the topper 22 through the second port 67b. Non-treated pressurized air communicated from the second port 67b toward the topper 22 is routed to the topper 22 using the conduit 25.
If the first output signal is issued by the controller 28 to the first control valve 64, the method proceeds by treating the pressurized air using the first dryer 68 as discussed above. Pressurized air treated using the first dryer 68 is routed past the second sensor 61 and to the third control valve 66 as shown in
Once the pressurized air is treated using the first dryer 68, the method proceeds by measuring the relative humidity of the treated pressurized air exiting the first dryer 68 using the second sensor 61. The second sensor 61 provides a second relative humidity measurement of the treated pressurized air prior to further treatment using the second dryer 70 as shown in
The method proceeds by communicating the second relative humidity measurement provided by the second sensor 61 to the controller 28. The second relative humidity measurement provided by the second sensor 61 is communicated to the controller 28 as a second input signal.
The method proceeds by determining whether the second relative humidity measurement exceeds a second predetermined value. The second predetermined value may be greater than, equal to, or less than the first predetermined value. The second predetermined value may be a relative humidity value associated with a desired level of moisture removal from the patient's skin using the topper 22. If the second relative humidity measurement exceeds the second predetermined value, the method proceeds by issuing a fifth output signal to the third control valve 66 from the controller 28 to cause treated pressurized air to be communicated from the first port 66a to the second dryer 70 through the second port 66b. If the second relative humidity measurement does not exceed the second predetermined value, the method proceeds by issuing a sixth output signal to the third control valve 66 from the controller 28 to cause treated pressurized air to be communicated from the first port 66a to the second control valve 65 through the third port 66c, thereby bypassing the second dryer 70.
If the sixth output signal is issued by the controller 28 to the third control valve 66, the method proceeds by issuing a seventh output signal to the second control valve 65 from the controller 28 to cause treated pressurized air to be communicated from the third port 65c to the fourth control valve 67 through the second port 65b. The second dryer 70 is thereby bypassed in this step.
If the seventh output signal is issued by the controller 28 to the second control valve 65, the method proceeds by issuing an eighth output signal to the fourth control valve 67 from the controller 28 to cause treated pressurized air to be communicated from the third port 67c toward the topper 22 through the second port 67b. Treated pressurized air communicated from the second port 67b toward the topper 22 is routed to the topper 22 using the conduit 25. It should be understood that treated pressurized air routed to the topper 22 following the issuance of the seventh output signal is treated only by the first dryer 68.
If the fifth output signal is issued by the controller 28 to the third control valve 66, the method proceeds by treating the treated pressurized air using the second dryer 70 as discussed above. Pressurized air treated using the second dryer 70 is routed past the third sensor 62 and to the fourth control valve 67 as shown in
Once the treated pressurized air is treated for a second time using the second dryer 70, the method proceeds by measuring the relative humidity of the treated pressurized air exiting the second dryer 70 using the third sensor 62. The third sensor 62 provides a third relative humidity measurement of the treated pressurized air as shown in
The method proceeds by communicating the third relative humidity measurement provided by the third sensor 62 to the controller 28. The third relative humidity measurement provided by the third sensor 62 is communicated to the controller 28 as a third input signal.
Once the third relative humidity measurement provided by the third sensor 62 is communicated to the controller 28 as the third input signal, the method concludes by issuing a ninth output signal to the fourth control valve 67 from the controller 28 to cause pressurized air treated by both dryer 68, 70 to be communicated from the first port 67a toward the topper 22 through the second port 67b. Treated pressurized air communicated from the second port 67b toward the topper 22 is routed to the topper 22 using the conduit 25.
In the event that the first desiccant 74 of the first dryer 68 becomes saturated so that regeneration is required, the second relative humidity measurement provided by the second sensor 61 to the controller 28 may indicate that regeneration is required (i.e. the relative humidity of the air exiting the first dryer 68 is greater than it would be if the first desiccant 74 was not saturated and could absorb moisture). To that end, the controller 28 may issue a first regeneration signal to the first control valve 64 that causes non-treated pressurized air to be communicated from the first inlet port 64a to the second control valve 65 through the third outlet port 64c, thereby bypassing the first dryer 68 while the first desiccant 74 is being regenerated. The issuance of the first regeneration signal may prevent the controller 28 from issuing the first output signal to the first control valve 64 until regeneration of the first desiccant 74 is completed.
In the event that the second desiccant of the second dryer 70 becomes saturated so that regeneration is required, the third relative humidity measurement provided by the third sensor 62 to the controller 28 may indicate that regeneration is required (i.e. the relative humidity of the air exiting the second dryer 70 is greater than it would be if the second desiccant was not saturated and could absorb moisture). To that end, the controller 28 may issue a second regeneration signal to the third control valve 66 to cause treated pressurized air to be communicated from the first port 66a to the second control valve 65 through the third port 66c, thereby bypassing the second dryer 70 while the second desiccant is being regenerated. The second regeneration signal may also be issued by the controller 28 to the second control valve 65 to cause non-treated pressurized air to be communicated from the first port 65a to the fourth control valve 67 through the second port 65b. Issuance of the second regeneration signal may prevent the controller 28 from issuing the fifth output signal to the third control valve 66 until regeneration of the second desiccant is completed.
Referring now to
Except for the differences identified in the paragraph above, the first configuration of the moisture removal system 12 in the first embodiment of the present disclosure as illustrated in
Referring now to
Air provided by the moisture removal system 12 to the topper 22 is conducted through the middle layer 45 in the direction shown by arrows 23 in
Air provided by the moisture removal system 12 to the topper 22 evaporates the water vapor that passes into the middle layer 45 as suggested in
Air communicated to the topper 22 that is treated using one or both of the dryers 68, 70 has a greater capacity to evaporate the water vapor passing into the middle layer 45 than does non-treated air. Therefore, treated air tends to promote skin health for the patient supported on the support surface 20 to a greater degree than non-treated air.
Referring now to
As shown in
The support surface 220 includes a topper 222 which defines a top face 224 of the support surface 220. The moisture removal system 212 includes a control box 213, including a pressurized air source 216 and a dehumidifier 218, and a conduit 225. The support surface 220 is configured to conduct pressurized air provided by the pressurized air source 216 through the conduit 225 to the support surface 220 along the top face 224 when the patient is supported on the support surface 220. The pressurized air provided by the pressurized air source 216 may be pressurized air which is treated using the dehumidifier 218 so that the moisture content of the pressurized air is reduced prior to being conducted along the top face 224 of the support surface 220. The pressurized air provided by the pressurized air source 216 may also be pressurized air that has not been treated using the dehumidifier 218 prior to being conducted along the top face 224 of the support surface 220.
For the purposes of the present disclosure, the support surface 220 of the third embodiment is considered to be similar to the support surface 20 of the first embodiment. The components included in the support surface 20 as shown in
The control box 213 includes a controller 228, a plurality of sensors, and a plurality of control valves as shown in
Referring now to
For the purposes of the present disclosure, the pressurized air source 216 of the third embodiment is considered to be similar to the pressurized air source 16 of the first embodiment. Similarly, each of the dryers 268, 270 of the third embodiment are considered to be similar to the dryers 68, 70 of the first embodiment.
The control box 213 also includes the plurality of sensors and the plurality of control valves as indicated above and shown in
For the purposes of the present disclosure, the sensors 260, 261, 262 of the third embodiment are considered to be similar to the sensors 60, 61, 62 of the first embodiment. Similarly, the control valves 264, 265, 266, and 267 of the third embodiment are considered to be similar to the control valves 64, 65, 66, and 67 of the first embodiment.
Referring now to
Referring now to
Referring now to
Air provided by the moisture removal system 212 to the topper 222 is conducted through the middle layer 245 in the direction shown by arrows 223 in
Air provided by the moisture removal system 212 to the topper 222 evaporates the water vapor that passes into the middle layer 245 as suggested in
Referring now to
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
Referring now to
Except for the differences identified in the paragraph above, the fifth embodiment of the moisture removal system 412 illustrated in
Referring now to
For the purposes of the present disclosure, the moisture removal system 612 may be removably mounted to a footboard included in the hospital bed similar to the third embodiment of the present disclosure. The support surface 620 may be removably coupled to the support frame included in the bed and arranged to underlie a patient supported on the support surface 620 similar to the third embodiment of the present disclosure. The moisture removal system 612 is configured to cool and dry the support surface 620 to promote skin health by moving air along the support surface 620 when the patient is supported on the support surface 620.
The support surface 620 includes a topper 622 which forms a top face (not shown) of the support surface 620 similar to the third embodiment of the present disclosure. The moisture removal system 613 includes a control box 213, including a pressurized air source 616 and a dehumidifier 618, and a conduit 625 as shown in
For the purposes of the present disclosure, the support surface 620 of the seventh embodiment is considered to be similar to the support surface 20 of the first embodiment. The components included in the support surface 20 as shown in
The control box 613 includes a controller 628, a plurality of sensors, a plurality of control valves, and a regeneration fan 671 as shown in
The moisture removal system 612 includes the control box 613 and the conduit 625 as shown in
For the purposes of the present disclosure, the pressurized air source 616 of the seventh embodiment is considered to be similar to the pressurized air source 16 of the first embodiment. Similarly, each of the dryers 668, 670 of the seventh embodiment is considered to be similar to the dryers 68, 70 of the first embodiment.
The control box 613 includes the controller 628 and a user interface 648 as shown in
The control box 613 also includes the plurality of sensors and the plurality of control valves as indicated above and shown in
Each of the sensors 660, 661 of the seventh embodiment is illustratively a relative humidity sensor coupled to the controller 628 and configured to provide a relative humidity measurement to the controller 628 of pressurized air provided by the pressurized air source 616 and conducted through the moisture removal system 612 to the support surface 620. Each of the sensors 660, 661 is an input device providing the relative humidity measurement to the controller 628 as an input signal similar to each of the sensors 60, 61, 62 of the first embodiment.
Each of the control valves 664, 666 is illustratively a 3-way valve configured to permit air flow between two of three different ports included in each control valve as shown in
The second control valve 665 is illustratively a 4-way valve configured to permit air flow between four different ports as shown in
Referring to
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
In the arrangement shown in
In other configurations, the pressurized air may be treated and communicated toward the topper 622 by the second dryer 670 while the desiccant of the first dryer 668 is being regenerated. In other configurations, the pressurized air source 616 may be positioned downstream of the dehumidifier 618 relative to the ambient such that the first control valve 664 receives air from the ambient and the third control valve 666 provides one of treated pressurized air or non-treated pressurized air to the pressurized air source 616 through the third port 666c.
Referring now to
For the purposes of the present disclosure, the moisture removal system 712 may be removably mounted to a footboard included in the hospital bed similar to the third embodiment of the present disclosure. The support surface 720 may be removably coupled to the support frame included in the bed and arranged to underlie a patient supported on the support surface 720 similar to the third embodiment of the present disclosure. The moisture removal system 712 is configured to cool and dry the support surface 720 to promote skin health by moving air along the support surface 720 when the patient is supported on the support surface 720.
The support surface 720 includes a topper 722 which forms a top face (not shown) of the support surface 720. The moisture removal system 712 includes a control box 713, including a pressurized air source 716 and a dehumidifier 718, and a conduit 725 as shown in
For the purposes of the present disclosure, the support surface 720 of the eighth embodiment is considered to be similar to the support surface 20 of the first embodiment. The components included in the support surface 20 as shown in
The control box 713 includes a controller 728, a plurality of sensors, and a plurality of control valves as shown in
Referring to
For the purposes of the present disclosure, the pressurized air source 716 of the eighth embodiment is considered to be similar to the pressurized air source 16 of the first embodiment. Similarly, the dehumidifier 718 of the eighth embodiment is considered to be similar to each of the dryers 68, 70 of the first embodiment.
The control box 713 includes the controller 728 and a user interface 748 as shown in
The control box 713 also includes the plurality of sensors and the plurality of control valves as indicated above and shown in
Each of the sensors 760, 761 of the eighth embodiment is illustratively a relative humidity sensor coupled to the controller 728 and configured to provide a relative humidity measurement to the controller 728 of pressurized air provided by the pressurized air source 716 and conducted through the moisture removal system 712 to the support surface 720. Each of the sensors 760, 761 is an input providing the relative humidity measurement to the controller 728 as an input signal similar to each of the sensors 60, 61, 62 of the first embodiment.
Each of the control valves 764, 765 is illustratively a 3-way valve configured to permit air flow between two of three different ports included in each control valve as shown in
Referring to
As shown in
As shown in
As shown in
As shown in
In the configuration shown in
In other configurations, the dehumidifier 718 may not contain a heat source usable to regenerate the desiccant included in the dehumidifier 718 once the desiccant becomes saturated and is no longer able to absorb moisture from the pressurized air provided by the pressurized air source 716. The dehumidifier 718 may be removed from the moisture removal system 712 so that the saturated desiccant may be replaced with unsaturated desiccant. An external heat source may also be used to regenerate the saturated desiccant in the event that replacement of the desiccant is undesirable. The dehumidifier 718 may be bypassed once it is determined that the desiccant is saturated.
In other configurations, the pressurized air source 716 may be positioned downstream of the dehumidifier 718 relative to the ambient such that the first control valve 764 receives air from the ambient and the second control valve 765 provides one of treated pressurized air or non-treated pressurized air to the pressurized air source 716 through the second port 765b. Air communicated to the pressurized air source 716 may be communicated thereafter to the topper 722 through the conduit 725.
Although certain illustrative embodiments have been described in detail above, variations and modifications exist within the scope and spirit of this disclosure as described and as defined in the following claims.
This present application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/774,703, entitled “METHOD AND APPARATUS FOR REMOVING MOISTURE FROM A MATTRESS TOPPER,” which was filed on Mar. 8, 2013, the entirety of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
20130067661 | Schwirian et al. | Mar 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20140250604 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61774703 | Mar 2013 | US |