The present invention relates to a method for removing thin metal films from substrates in the case that the thin metal films formed by vapor deposition or metal plating do not satisfy quality control standards, for example, and an apparatus for implementing this method.
High-performance glass substrates that have superior optical performance (transmittivity, etc.) and mechanical performance (flatness, etc.) are used in flat panel displays, for example. However, they are expensive, so if the thin metal films formed upon their surfaces do not satisfy quality control standards, it is preferable to remove the thin metal films and reuse the substrates.
Methods of removing these thin metal films include the method of removal by chemical etching. As shown in
However, the method of removal by chemical etching requires the use of strongly acidic or strongly alkaline chemical solutions, and thus has the following problems.
The present invention came about in consideration of the aforementioned problems with the prior art, and has as its object to provide a method that is able to efficiently remove thin metal films basically in a non-contact manner without the use of strongly acidic or strongly alkaline chemical solutions, and that does not require precise positional control, and an apparatus for implementing this method.
The first method for removing thin metal films according to the present invention is one that uses a first apparatus for removing thin metal films according to the present invention comprising: a metal-plate electrode disposed at an incline that guides the downstream flow of electrolyte, an auxiliary electrode disposed partially such that a portion thereof is immersed in the electrolyte on the upstream or downstream side of this metal-plate electrode, and a DC voltage supply that applies a DC voltage to the two electrodes, so that electrolyte that flows down upon the metal-plate electrodes in the state in which a DC voltage is applied to the metal-plate electrode and auxiliary electrode impinges upon the thin metal film on the insulator surface, thus removing the thin metal film.
Thus, with this first method according to the present invention, without using strongly acidic or strongly alkaline chemical solutions, and without requiring precision control of the position of a nozzle electrode with respect to a thin metal film on an insulator surface, the thin metal film can be removed efficiently in a non-contact manner without damaging the insulator.
In addition, the second method for removing thin metal films according to the present invention is one that uses a second apparatus for removing thin metal films according to the present invention, wherein a bottom-surface electrode is disposed below the metal-plate electrode and auxiliary electrode of the first apparatus for removing thin metal films according to the present invention so as to span across the two electrodes, and DC voltage of the same polarity as that of the auxiliary electrode is also applied to this bottom-surface electrode from the DC voltage supply. So in the second method for removing thin metal films according to the present invention, electrolyte that flows down upon the metal-plate electrodes in the state in which a DC voltage is also applied to the bottom-surface electrode disposed on the back side of the insulator impinges upon the thin metal film on the insulator surface, thus removing the thin metal film.
In this manner, the functions and meritorious effects of the first method according to the present invention are promoted even further.
In the first or second method according to the present invention, if a movement mechanism that moves at least one of the insulator and metal-plate electrode immersed in the electrolyte relative to the other is provided, and the thin metal film is removed while moving the insulator and metal-plate electrode relative to each other, then the thin metal film can be removed over a wide range.
In addition, the third method for removing thin metal films according to the present invention is one that uses a third apparatus for removing thin metal films according to the present invention, comprising that of either the first or second method according to the present invention, wherein a member that suppresses intrusion of electrolyte is provided on the admission side of the insulator in the metal-plate electrode, so as to suppress the early intrusion of electrolyte toward the side of the end of the insulator.
Doing so can prevent the occurrence of a pitted thin metal film.
In addition, the fourth method for removing thin metal films according to the present invention is one that uses a fourth apparatus for removing thin metal films according to the present invention, comprising that of any of the first through third methods according to the present invention, wherein the metal-plate electrode is made a rotatable electrode, abrasive material is disposed in the area where this electrode makes contact with the thin metal film, or means of supplying abrasive material to the area of contact between the electrode and the thin metal film is provided, and thus the abrasive material positioned in the area of contact between this electrode and the thin metal film abrades the surface of the thin metal film.
With this fourth method according to the present invention, any film remaining after electrolytic etching can be completely removed.
a) is a diagram used to explain the reason why a thin metal film remains in the terminal area in Embodiment 1 of the present invention;
b) is a diagram of an insulator wherein a thin metal film remains in the terminal area;
a) and (b) are other explanatory diagrams of modes by which a thin metal film is not allowed to remain in the terminal area in Embodiment 1 of the present invention;
Here follows an even more detailed description of the present invention made with reference to the appended drawings.
First,
In
In the example illustrated in
In the example illustrated in
With Embodiment 1 of the present invention described above, the thin metal film 24a is removed in the following manner.
Embodiment 1 of the present invention (excluding the example illustrated in
With Embodiment 1 of the present invention, as the insulator 24 is moved and the thin metal film 24a is removed, as it comes to the terminal end, as shown in
Accordingly, in Embodiment 1 of the present invention, as shown in
Instead of placing a conductor plate 31 of roughly the same thickness as the insulator 24 at the downstream-side end of the insulator 24 as shown in
Note that the one shown in
Next,
In Embodiments 1 and 2 of the present invention, the thin metal film directly below the anode portion is eluted, so as the etching proceeds. Therefore, the eluted metal increases the separation between the anode and thin film and may cause the current to cease to flow, stopping the etching process. If the surface area of the insulator 24 is large, it is not possible to remove the thin metal film 24a formed upon the entire surface.
To solve this problem, in Embodiments 1 and 2 of the present invention, if a movement mechanism that moves at least one of the insulator 24 and metal-plate electrode 21 immersed in the electrolyte relative to the other is provided, and the thin metal film 24a is removed while moving the insulator 24 and metal-plate electrode relative 21 to each other, then the thin metal film 24a can be removed over a wide range. In this case, in Embodiments 1 and 2 of the present invention, taking W (cm) to be the width of the metal-plate electrode 21, ν (cm/min) to be the relative movement speed, and I (A) to be the current, then it is preferable for the movement to occur at a relative movement speed indicated by the relationship:
0.1≧I/(W×ν)≧0.03.
When the metal-plate electrode 21 is to be moved with respect to the other, in Embodiments 1 and 2 of the present invention, it is preferable that the positively-charged auxiliary electrode 22 is positioned on the upstream side of the negatively-charged metal-plate electrode 21, or namely, the auxiliary electrode 22 is disposed such that it passes over the thin metal film 24a on the surface of the insulator 24 before the metal-plate electrode 21 does.
The reason for this is that since the positively-charged anode portion is eluted in electrolytic etching, the etching of the thin metal film 24a starts with that portion of the thin metal film 24a that is close to the negatively-charged cathode, or namely positioned below the metal-plate electrode 21 in the examples illustrated in
In Embodiments 1 and 2 of the present invention, when the metal-plate electrode 21 is moved relative to the insulator 24, if the auxiliary electrode 22 is fixed, then the voltage-current relationship varies as the distance between the electrodes changes with the movement of the metal-plate electrode 21. As a result, the thin metal film 24a may not be removed uniformly.
In such a case, this can be solved by disposing the auxiliary electrode 22 parallel to the metal-plate electrode 21 as shown in
In Embodiments 1 and 2 of the present invention, while the process of removing the thin metal film 24a is being conducted, if the electrolyte 26 should leak out and cover the insulator 24, then the electrolytic etching would start before the end of the insulator 24 passes by the metal-plate electrode 21 or auxiliary electrode 22. This occurs because while etching normally occurs only between the electrodes because the electric field (the strength of concentration of current) is strongest between the electrodes, concentration of the electric field may occur at the end of the insulator 24 immersed in electrolyte 26, thus giving an electric field strength equal to that between the electrodes.
Moreover, the electric field is not uniform at the end of the insulator 24, so the removal of the thin metal film 24a may also not occur uniformly, and thus the thin metal film 24a may remain in a pitted manner as shown in
Even if the metal-plate electrode 21 is passed over the portion where such a pitted thin metal film 24b remains, the continuity of the thin metal film is disrupted so the closed circuit described previously is not formed and the thin metal film 24b is not removed but remains.
Accordingly, in Embodiments 1 and 2 of the present invention, by placing a member that suppresses the intrusion of electrolyte 26 on the advancing side of the insulator 24 at the metal-plate electrode 21, for example, a rubber wall 34a with substantially the same width as that of the insulator 24 in as close of contact with the surface of the insulator 24 as possible as shown in
In addition, in Embodiments 1-3 of the present invention, current flows via the electrolyte 26, so the current flowing through the electrolyte 26 causes deterioration of the efficiency of etching of the thin metal film 24a.
Accordingly, in Embodiments 1-3 of the present invention, if an insulator wall 36 with substantially the same width as that of the insulator 24 is disposed in as close of contact with the surface of the insulator 24 as possible between the metal-plate electrode 21 and auxiliary electrode 22 on the surface side of the insulator 24, as shown in
In addition, while Embodiments 1-3 of the present invention are able to remove the thin metal film 24a efficiently without damaging the insulator 24, the current flowing through the electrolyte 26 removes the thin metal film 24a by eluting the thin metal film 24a, so there are cases in which a residue of film from electrolytic etching remains.
Accordingly, in Embodiments 1-3 of the present invention, the metal-plate electrode 21 is replaced with a rotatable electrode 37 and also abrasive material is disposed in the area where this rotatable electrode 37 makes contact with the thin metal film 24a, or means of supplying abrasive material to the area of contact between this electrode 37 and the thin metal film 24a is provided. With such a constitution, the abrasive material positioned in the area of contact between this electrode 37 and the thin metal film abrades the surface of the thin metal film 24a, so any residual film left from electrolytic etching is completely removed. This is Embodiment 4 of the present invention.
The example shown in
The examples given above are ones wherein abrasive material is disposed in the area of contact between the electrode 37 and the thin metal film 24a, but rather than having abrasive material disposed at the electrode 37, abrasive material may be supplied to the area of contact between this electrode 37 and the thin metal film 24a.
Here follows a description of the results of experiments performed in order to confirm the meritorious effects of the present invention.
When the first apparatus for removing thin metal films according to the present invention with the constitution shown in
[Machining Conditions]
When the first apparatus for removing thin metal films according to the present invention with the constitution shown in
[Machining Conditions]
When the third apparatus for removing thin metal films according to the present invention with the constitution shown in
[Machining Conditions]
When the third apparatus for removing thin metal films according to the present invention with the constitution shown in
[Machining Conditions]
When the fourth apparatus for removing thin metal films according to the present invention with the constitution shown in
[Machining Conditions]
The aforementioned embodiments do not correspond to all of the Claims of the present invention, but even with those Claims for which an embodiment is not presented, the thin metal films formed upon the insulator were of course removed efficiently and the insulator could be reused.
As described above, with the present invention, without using strongly acidic or strongly alkaline chemical solutions, and without requiring precision control of the position of an electrode with respect to a thin metal film on an insulator surface, the thin metal film can be removed efficiently in a non-contact manner without damaging the insulator, and expensive high-performance glass substrates used in the semiconductor field can be reused.
Number | Date | Country | Kind |
---|---|---|---|
2002-298947 | Oct 2002 | JP | national |
2002-336838 | Nov 2002 | JP | national |
This application is a Continuation of PCT/JP03/012630 filed Oct. 2, 2003, and claims priority under 35 U.S.C. § 119 to Japanese Patent Application Nos. 2002-298947 filed Oct. 11, 2002 and 2002-336838 filed Nov. 20, 2002, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6153535 | Takimoto | Nov 2000 | A |
6723224 | Yahalom et al. | Apr 2004 | B2 |
20020011421 | Haba et al. | Jan 2002 | A1 |
Number | Date | Country |
---|---|---|
S51-050247 | May 1976 | JP |
S59-193859 | Dec 1984 | JP |
S62-290900 | Dec 1987 | JP |
H07-207500 | Aug 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20050179023 A1 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP03/12630 | Oct 2003 | US |
Child | 11103182 | US |