The invention relates to repairing or replacing a bimetallic weld in a jet pump diffuser assembly and, more particularly, to a jet pump diffuser clamping assembly that structurally replaces/repairs the weld.
In a boiling water nuclear reactor, hollow tubular jet pumps positioned within the shroud annulus provide the required reactor core flow. The lower portion of the jet pump is a long conical tubular section. The function of the diffuser is to slow the high velocity flow stream and thus convert the dynamic head of the flow stream into static pressure.
The jet pump diffuser assemblies in boiling water reactors can be one of two differing design configurations. The first configuration incorporates an adapter component, which is comprised of an upper austenitic stainless steel ring and a lower inconel alloy 600 ring. These two rings were shop-welded, as this was a bimetallic weld (a weld of dissimilar metals) and more difficult to perform than a weld joining similar metals. This adapter component then facilitated the assembly of the diffuser in the reactor, as the lower section of the adapter was welded to the inconel alloy 600 shroud support plate. The diffuser tail pipe being constructed of austenitic stainless steel was then joined to the upper section of the adapter, which was constructed of austenitic stainless steel. As such, at the time of field construction of the reactor these two welds of similar metals were performed.
The second design configuration consists of a lower ring constructed of inconel alloy 600, shop-welded to the diffuser tail pipe. Since the diffuser tail pipe is fabricated from austenitic stainless steel, this was a bimetallic weld. This design approach results in the welding of the lower ring to the shroud support plate as the only weld required to be performed at the time of field construction of the reactor.
Regardless of diffuser assembly design configuration under consideration, a bimetallic weld is present in the diffuser assembly. In the event that the structural integrity of the bimetallic weld of the diffuser assembly should become degraded, a means of reinforcing or structurally replacing this weld is desired.
In an exemplary embodiment of the invention, a clamp assembly connects a diffuser adapter or lower ring to a diffuser tail pipe of a jet pump diffuser in a boiling water nuclear reactor. The clamp assembly includes at least two clamp segments shaped generally corresponding to an exterior circumference of the diffuser, a swivel link affixed at each end of each of the clamp segments, and at least two connecting bands pivotably secured to the swivel links between the ends of the clamp segments. The clamp segments each includes a locking assembly engageable with the diffuser adapter or lower ring and the diffuser tail pipe.
In another exemplary embodiment of the invention, a method of repairing a weld joining a diffuser adapter or lower ring to a diffuser tail pipe of a jet pump diffuser in a boiling water nuclear reactor includes the steps of forming a plurality of holes in the diffuser adapter or lower ring and the diffuser tail pipe; positioning two clamp segments each including a clamp body and upper and lower pin inserts on the diffuser such that the upper pin inserts engage the holes in the diffuser tail pipe and such that the lower pin inserts engage the holes in the diffuser adapter or lower ring; connecting a swivel link at each end of each of the clamp segments; securing two connecting bands to the swivel links between the ends of the clamp segments; and tightening the connection between the clamp segments and the swivel links to ensure proper fit-up and substantially equal distribution of loads.
In still another exemplary embodiment of the invention, the clamp assembly includes two clamp segments shaped generally corresponding to an exterior circumference of the diffuser. Each clamp segment includes a clamp body housing an upper pin insert and a lower pin insert. The upper and lower pin inserts have pins engageable with corresponding holes formed in the diffuser adapter or lower ring and the diffuser tail pipe. A swivel link is affixed at each end of each of the clamp segments, and at least two connecting bands are pivotably secured to the swivel links between the ends of the clamp segments.
The jet pump diffuser clamp assembly 10 is shown installed on a jet pump diffuser PD in
As shown in
The preferably conical pins and mating tapered holes are sized such that the pins seat in the tapered holes (i.e. the pin inserts and clamp bodies do not bottom-out or touch the diffuser when the clamp assembly bolts are tightened). As such, leakage of coolant is minimized, since the conical pins theoretically seal the tapered holes. Although cylindrical pins could be used, and the invention is not meant to be limited to conical pins per se, if the pins were cylindrical and they fit into cylindrical holes, there would need to be a clearance between the pins and holes in order to facilitate assembly. The radial clearance would therefore provide a leakage path at every pin-hole interface. In an attempt to minimize leakage, the conical pins and tapered holes are provided.
With continued reference to
Ends of the connecting bands 16 include openings 34 therein that are aligned between openings 36 in the swivel links 14. A pin 38 is fit through the aligned openings to secure the connecting bands 16 within the swivel link. Each of the bolts 32 and the pins 38 preferably also include crimp collars 40 to ensure fastener retention.
Since the diffuser tailpipe TP and the diffuser adapter or lower ring DA are typically formed of different materials having different coefficients of thermal expansion, it is desirable to match the coefficients of thermal expansion between any interfacing components. As such, the upper pin insert 20, which is engageable with the diffuser tailpipe TP, is formed of a first material having a coefficient of thermal expansion substantially matching that of the diffuser tailpipe TP. Correspondingly, the lower pin insert 22, which is engageable with the diffuser adapter or lower ring DA, is formed of a second material having a coefficient of thermal expansion substantially matching that of the diffuser adapter or lower ring DA. In one exemplary arrangement, the first material of the upper pin insert is type 316 austenitic stainless steel, and the second material of the lower pin insert is inconel alloy 600.
In a similar context, since the clamp body 18 spans across both the diffuser tailpipe TP and the diffuser adapter or lower ring DA, it is desirable to engineer the thermal expansion of the clamp body to be substantially equivalent to the combined thermal expansion of the diffuser tailpipe TP and the diffuser adapter or lower ring DA at operating temperatures. As such, the clamp body 18 is formed of a material having a coefficient of thermal expansion that is intermediate between the coefficients of thermal expansion of austenitic stainless steel (upper section of the adapter and diffuser tail pipe) and inconel alloy 600 (lower section of the adapter or lower ring). In an exemplary embodiment of the invention, the material of the clamp body 18 is type XM-19 austenitic stainless steel (nitronic 50).
As a consequence, as the reactor heats up from ambient to operating temperature, the pins 26 expand in concert with the expanding holes H, and since the geometry of the pins 26 substantially matches the geometry of the holes H, leakage is minimized and thermal stresses are not imposed on clamp and diffuser components. Moreover, thermal expansion of the clamp body 18 is engineered to be equivalent to the combined thermal expansion of the jet pump tailpipe TP and adapter piece or lower ring. DA. As a result, thermal stresses at the bimetallic weld of the adapter are alleviated.
The holes H, which are conical in a preferred exemplary embodiment of the invention, may be formed via electric discharge machining (EDM) in the tailpipe TP and the adapter or lower ring DA components, as shown in
The repair clamp installation process is shown in
The clamp assembly described herein serves to structurally repair/replace the weld connecting the jet pump adapter or lower ring to the jet pump tailpipe. Since the clamp assembly is designed to structurally replace the attachment bimetallic weld, it is not necessary that the existing weld be accessible for visual inspection after the repair clamp has been installed. The clamp assembly is remotely installable in the reactor. The clamp assembly is simplified in design and installation, resulting in a superior alternative for jet pump diffuser repair installations.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3144165 | Pegon et al. | Aug 1964 | A |
3310329 | Luker | Mar 1967 | A |
4619447 | Blake | Oct 1986 | A |
4632221 | Stanford | Dec 1986 | A |
4709729 | Harrison | Dec 1987 | A |
5345484 | Deaver et al. | Sep 1994 | A |
5443246 | Peterson | Aug 1995 | A |
5521951 | Charnley et al. | May 1996 | A |
5530219 | Offer et al. | Jun 1996 | A |
5602887 | Jensen | Feb 1997 | A |
5623525 | Jensen | Apr 1997 | A |
5642955 | Jensen | Jul 1997 | A |
5646969 | Jensen | Jul 1997 | A |
5675619 | Erbes et al. | Oct 1997 | A |
5699397 | Jensen | Dec 1997 | A |
5707089 | Fend | Jan 1998 | A |
5785361 | Bourbour et al. | Jul 1998 | A |
5785447 | Fonti et al. | Jul 1998 | A |
5803686 | Erbes et al. | Sep 1998 | A |
5905771 | Erbes et al. | May 1999 | A |
5908210 | Fetzer | Jun 1999 | A |
6029964 | Bohl | Feb 2000 | A |
6053652 | Deaver et al. | Apr 2000 | A |
6086120 | Deaver et al. | Jul 2000 | A |
6108391 | Deaver et al. | Aug 2000 | A |
6373019 | Offer et al. | Apr 2002 | B1 |
6375130 | Jensen et al. | Apr 2002 | B1 |
6375230 | Jensen et al. | Apr 2002 | B1 |
6417476 | Offer et al. | Jul 2002 | B1 |
6456682 | Jensen | Sep 2002 | B1 |
6575652 | Krauss | Jun 2003 | B2 |
6647083 | Jensen | Nov 2003 | B1 |
6857814 | Jensen | Feb 2005 | B2 |
6889889 | Offer et al. | May 2005 | B2 |
20080107227 | Koepke | May 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080144761 A1 | Jun 2008 | US |