A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The present invention relates generally to the field of touch screen technology and more particularly to a method and apparatus for reducing or eliminating false activation due to near touch events.
Touch screen technology has become a relatively common feature in modern electronic devices that use a display coupled with user input capability. This feature is particularly a characteristic of the recent generations of smart phones. Typically, touch screen display screens respond to finger contact to activate the display for further processes. However, because such displays require a relatively significant amount of energy, touch screens are typically designed to be activated by a user only when they are needed and to remain in a dormant or hibernating condition between uses. Such selective activation saves energy and thus preserves battery charge to increase the time between recharging. One problem with using touch screens is inadvertent activation which would consume battery charges unintentionally.
Thus it would be advantageous to reduce or eliminate inadvertent touch screen activations to reduce unnecessary battery usage and prevent unintended function initiation.
For some embodiments, methods of resolving near touch ambiguities in a touch-sensitive display may include providing a first sensor for detecting a first event indicating an apparent activation of said touch-sensitive display, providing a second sensor for detecting a second event indicating an apparent activation of said touch-sensitive display, wherein said first and second events being distinctly different physical phenomena; and activating said touch-sensitive display only when both said first and second sensors detect respective first and second events within a selected time window.
Other aspects and advantages of the present invention can be seen on review of the drawings, the detailed description and the claims, which follow.
The included drawings are for illustrative purposes and serve only to provide examples of possible structures and process steps for the disclosed techniques. These drawings in no way limit any changes in form and detail that may be made to embodiments by one skilled in the art without departing from the spirit and scope of the disclosure.
Applications of methods and apparatus according to one or more embodiments are described in this section. These examples are being provided solely to add context and aid in the understanding of the present disclosure. It will thus be apparent to one skilled in the art that the techniques described herein may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order to avoid unnecessarily obscuring the present disclosure. Other applications are possible, such that the following examples should not be taken as definitive or limiting either in scope or setting.
In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific embodiments. Although these embodiments are described in sufficient detail to enable one skilled in the art to practice the disclosure, it is understood that these examples are not limiting, such that other embodiments may be used and changes may be made without departing from the spirit and scope of the disclosure.
One or more embodiments may be implemented in numerous ways, including as a process, an apparatus, a system, a device, a method, a computer readable medium such as a computer readable storage medium containing computer readable instructions or computer program code, or as a computer program product comprising a computer usable medium having a computer readable program code embodied therein.
The disclosed embodiments may include methods of resolving near touch ambiguities in a touch-sensitive display including providing a first sensor for detecting a first event indicating an apparent activation of said touch-sensitive display, providing a second sensor for detecting a second event indicating an apparent activation of said touch-sensitive display, wherein said first and second events being distinctly different physical phenomena; and activating said touch-sensitive display only when both said first and second sensors detect respective first and second events within a selected time window.
The disclosed embodiments may include apparatus to resolve near touch ambiguities in a touch-sensitive display and include a first sensor for detecting a first event indicating an apparent activation of said touch-sensitive display; a second sensor for detecting a second event indicating an apparent activation of said touch-sensitive display, wherein said first and second events being distinctly different physical phenomena; and at least one logic device responsive to said first and second sensors for activating said touch-sensitive display only when both said first and second sensors detect respective first and second events within a selected time window.
The disclosed embodiments may include a machine-readable medium carrying one or more sequences of instructions for providing social information, which instructions, when executed by one or more processors, cause the one or more processors to detect a first event indicating an apparent activation of said touch-sensitive display; detect a second event indicating an apparent activation of said touch-sensitive display, wherein said first and second events being distinctly different physical phenomena; and activate said touch-sensitive display only when both said first and second sensors detect respective first and second events within a selected time window.
In general, many touch screen technologies (e.g., capacitive touch screens) suffer from false triggers when a finger is close to the screen, but not physically touching, due to for example, capacitive coupling through the air. These false positive events are problematic as users often hover and move their fingers above the display while using touch screen devices, leading to incorrect input.
Such unintended touch screen activations can be detrimental to overall device performance. Frequent unintended activations may incur increased battery usage which requires more frequent recharging and thus reduced availability of the device. Moreover, such unintended touch screen activations can enable device functions of which the user is unaware such as, for example in the case of smart phones, initiating unintentional phone calls which may incur phone charges and waste time for the unintended recipients of such phone calls. Other accidental device functions may alter program settings and thus generate errors that wreak havoc and confusion when the user intentionally seeks to use the program.
Diagram 10 comprises a touch screen sensor 12, a vibro-acoustic event sensor 14 and a window timer 16. The touch screen sensor 12 comprises a touch-sensitive surface on a device (i.e., smart phone) which may be based on well-known capacitive, optical, resistive, electric field, acoustic or other technologies that form the underlying basis for touch interaction. An actual example of such a surface may be by way of illustration one of a Synaptics “Clear Pad Family” of capacitive touch screens.
The vibro-acoustic event sensor 14 may comprise impact sensors, vibration sensors, accelerometers, strain gauges, or acoustic devices such as a condenser microphone, a piezoelectric microphone, MEMS microphone and the like. Actual examples of such devices include by way of illustration: Analog Devices ADXL 362 accelerometers, CUI Inc. 102-1721-ND electret microphones, and Analog Devices MiniSense 100 vibration sensors.
Diagram 10 further comprises logic devices OR gate 18 and AND gate 20. Inputs of the OR gate 18 are connected to both the touch screen sensor 12 and the vibro-acoustic event sensor 14. The output of the OR gate 18 is connected to the window timer 16 to cause the window timer 16 to start a square wave-shaped time window whenever either of the touch screen sensor 12 or the vibro-acoustic event sensor 14 detects a respective event indicating an apparent activation of the display. The touch screen sensor 12, the vibro-acoustic event sensor 14 and the output of the window timer 16 are connected as inputs to the AND gate 20 so that only when both sensors detect respective events within the time window generated by the window timer 16, is a touch event fired resulting in screen activation.
The use of two distinctly different sensors—the touch screen sensor 12 and the vibro-acoustic event sensor 14—produces four possible sensor event combinations, may be described in the Table 1 below.
The touch event firing (screen activation) may only occur when both the touch screen sensor 12 and the vibro-acoustic event sensor 14 detect different respective events caused by a physical action of the user. When neither event has been detected by the respective touch screen sensor 12 and the vibro-acoustic event sensor 14, or when only one event has been detected by the touch screen sensor 12 or the vibro-acoustic event sensor 14 in a selected time period, touch event firing does not result.
It may be possible for vibro-acoustic events to occur independent of any user input. For example, by placing a smartphone onto a table, a mechanical vibration is produced that is similar in nature to the impact of a finger hitting a screen. However, without a paired touch screen event, no touch event is triggered.
Further, there are techniques that can use acoustic processing to classify the type of touch (e.g., FingerSense). Thus, some embodiments of the present invention may employ such algorithms such that only a finger touch acoustic event and a touch screen event, trigger a system touch event. Any other impact types/sounds will lead to the touch being rejected, further increasing robustness. Processing may also be employed to reject sensor outputs which fail to meet selected criteria such as peak thresholds or signal shape requirements.
As shown further in
Thus it will be understood that what has been disclosed herein are an apparatus and method for reducing or entirely eliminating unintentional activation of a touch-sensitive display by use of two distinct sensors detecting distinctly different physical phenomena to obviate display activation in response to an ambiguous near touch event.
These and other aspects of the disclosure may be implemented by various types of hardware, software, firmware, etc. For example, some features of the disclosure may be implemented, at least in part, by machine-readable media that include program instructions, state information, etc., for performing various operations described herein. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher-level code that may be executed by the computer using an interpreter. Examples of machine-readable media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media; and hardware devices that are specially configured to store and perform program instructions, such as read-only memory (“ROM”) and random access memory (“RAM”).
Any of the above embodiments may be used alone or together with one another in any combination. Although various embodiments may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the embodiments do not necessarily address any of these deficiencies. In other words, different embodiments may address different deficiencies that may be discussed in the specification. Some embodiments may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some embodiments may not address any of these deficiencies.
While various embodiments have been described herein, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present application should not be limited by any of the embodiments described herein, but should be defined only in accordance with the following and later-submitted claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2008028 | Mccortney et al. | Jul 1935 | A |
2430005 | Denneen et al. | Nov 1947 | A |
3354531 | Pryor | Nov 1967 | A |
3441790 | McDonald | Apr 1969 | A |
4561105 | Crane et al. | Dec 1985 | A |
4597932 | Kurihara et al. | Jul 1986 | A |
4686332 | Greanias et al. | Aug 1987 | A |
5483261 | Yasutake | Jan 1996 | A |
5544265 | Bozinovic et al. | Aug 1996 | A |
5596656 | Goldberg | Jan 1997 | A |
5615285 | Beernink | Mar 1997 | A |
5625818 | Zarmer et al. | Apr 1997 | A |
5666438 | Beernink et al. | Sep 1997 | A |
5867163 | Kurtenbach | Feb 1999 | A |
5933514 | Ostrem et al. | Aug 1999 | A |
6028593 | Rosenberg et al. | Feb 2000 | A |
6118435 | Fujita | Sep 2000 | A |
6208330 | Hasegawa et al. | Mar 2001 | B1 |
6212295 | Ostrem et al. | Apr 2001 | B1 |
6222465 | Kumar et al. | Apr 2001 | B1 |
6246395 | Goyins et al. | Jun 2001 | B1 |
6252563 | Tada et al. | Jun 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6337698 | Kelly, Jr. et al. | Jan 2002 | B1 |
6492979 | Kent | Dec 2002 | B1 |
6504530 | Wilson | Jan 2003 | B1 |
6643663 | Dabney et al. | Nov 2003 | B1 |
6707451 | Nagaoka | Mar 2004 | B1 |
6748425 | Duffy et al. | Jun 2004 | B1 |
6772396 | Cronin et al. | Aug 2004 | B1 |
6933930 | Devige et al. | Aug 2005 | B2 |
6943665 | Chornenky | Sep 2005 | B2 |
7050955 | Carmel et al. | May 2006 | B1 |
7084884 | Nelson et al. | Aug 2006 | B1 |
7098896 | Kushler et al. | Aug 2006 | B2 |
7212197 | Schkolne et al. | May 2007 | B1 |
7443396 | Ilic | Oct 2008 | B2 |
7581194 | Iwema et al. | Aug 2009 | B2 |
7982724 | Hill | Jul 2011 | B2 |
8086971 | Radivojevic et al. | Dec 2011 | B2 |
8144126 | Wright | Mar 2012 | B2 |
8154524 | Wilson et al. | Apr 2012 | B2 |
8154529 | Sleeman et al. | Apr 2012 | B2 |
8170346 | Ludwig | May 2012 | B2 |
8199126 | Taubman | Jun 2012 | B1 |
8253744 | Macura et al. | Aug 2012 | B2 |
8269744 | Agari et al. | Sep 2012 | B2 |
8327029 | Purser | Dec 2012 | B1 |
8441790 | Pance et al. | May 2013 | B2 |
8547357 | Aoyagi | Oct 2013 | B2 |
8624878 | Sarwar et al. | Jan 2014 | B2 |
8670632 | Wilson | Mar 2014 | B2 |
8674943 | Westerman et al. | Mar 2014 | B2 |
8743091 | Bernstein | Jun 2014 | B2 |
8760395 | Kim et al. | Jun 2014 | B2 |
8762332 | Keebler et al. | Jun 2014 | B2 |
8769524 | Bhullar et al. | Jul 2014 | B2 |
9013452 | Harrison et al. | Apr 2015 | B2 |
9019244 | Harrison | Apr 2015 | B2 |
9030498 | Galor et al. | May 2015 | B2 |
9052772 | West | Jun 2015 | B2 |
9060007 | Keebler et al. | Jun 2015 | B2 |
9182882 | Fowler et al. | Nov 2015 | B2 |
9329688 | Harrison | May 2016 | B2 |
9329715 | Schwarz et al. | May 2016 | B2 |
9377863 | Bychkov et al. | Jun 2016 | B2 |
9557852 | Tsai et al. | Jan 2017 | B2 |
9612689 | Harrison et al. | Apr 2017 | B2 |
9696859 | Heller | Jul 2017 | B1 |
9864453 | Munemoto et al. | Jan 2018 | B2 |
10082935 | Harrison et al. | Sep 2018 | B2 |
10606417 | Schwarz | Mar 2020 | B2 |
10642404 | Harrison | May 2020 | B2 |
20020009227 | Goldberg et al. | Jan 2002 | A1 |
20020057837 | Wilkinson et al. | May 2002 | A1 |
20020070927 | Fujitsuka et al. | Jun 2002 | A1 |
20020126161 | Kuzunuki et al. | Sep 2002 | A1 |
20030048260 | Matusis | Mar 2003 | A1 |
20030110085 | Murren et al. | Jun 2003 | A1 |
20030132922 | Phillip | Jul 2003 | A1 |
20030217873 | Paradiso et al. | Nov 2003 | A1 |
20040012573 | Morrison et al. | Jan 2004 | A1 |
20040021681 | Liao | Feb 2004 | A1 |
20040054711 | Multer | Mar 2004 | A1 |
20040141010 | Fitzmaurice et al. | Jul 2004 | A1 |
20040160421 | Sullivan | Aug 2004 | A1 |
20040199867 | Brandenborg | Oct 2004 | A1 |
20040225730 | Brown et al. | Nov 2004 | A1 |
20050083313 | Hardie-Bick et al. | Apr 2005 | A1 |
20050104867 | Westerman | May 2005 | A1 |
20050131778 | Bennett et al. | Jun 2005 | A1 |
20050146512 | Hill et al. | Jul 2005 | A1 |
20050165596 | Adar | Jul 2005 | A1 |
20050278467 | Gupta | Dec 2005 | A1 |
20050289461 | Amado et al. | Dec 2005 | A1 |
20060010400 | Dehlin et al. | Jan 2006 | A1 |
20060026535 | Hotelling et al. | Feb 2006 | A1 |
20060031746 | Toepfer et al. | Feb 2006 | A1 |
20060152499 | Roberts | Jul 2006 | A1 |
20060173985 | Moore | Aug 2006 | A1 |
20060184617 | Nicholas et al. | Aug 2006 | A1 |
20060217126 | Sohm et al. | Sep 2006 | A1 |
20060230021 | Diab et al. | Oct 2006 | A1 |
20060262104 | Sullivan | Nov 2006 | A1 |
20060288329 | Gandhi et al. | Dec 2006 | A1 |
20070011205 | Majjasie et al. | Jan 2007 | A1 |
20070044010 | Sull et al. | Feb 2007 | A1 |
20070075965 | Huppi et al. | Apr 2007 | A1 |
20070085157 | Fadell et al. | Apr 2007 | A1 |
20070100959 | Eichstaedt et al. | May 2007 | A1 |
20070109279 | Sigona | May 2007 | A1 |
20070126716 | Haverly | Jun 2007 | A1 |
20070168367 | Dickinson et al. | Jul 2007 | A1 |
20070176907 | Ishii | Aug 2007 | A1 |
20070186157 | Walker et al. | Aug 2007 | A1 |
20070192674 | Bodin et al. | Aug 2007 | A1 |
20070245020 | Ott, IV | Oct 2007 | A1 |
20070257767 | Beeson | Nov 2007 | A1 |
20070291297 | Harmon et al. | Dec 2007 | A1 |
20080005666 | Sefton et al. | Jan 2008 | A1 |
20080036743 | Westerman et al. | Feb 2008 | A1 |
20080042978 | Perez-Noguera | Feb 2008 | A1 |
20080082941 | Goldberg et al. | Apr 2008 | A1 |
20080103906 | Singh | May 2008 | A1 |
20080117168 | Liu et al. | May 2008 | A1 |
20080126388 | Naaman | May 2008 | A1 |
20080141132 | Tsai | Jun 2008 | A1 |
20080155118 | Glaser et al. | Jun 2008 | A1 |
20080158147 | Westerman et al. | Jul 2008 | A1 |
20080158168 | Westerman et al. | Jul 2008 | A1 |
20080158185 | Westerman | Jul 2008 | A1 |
20080168403 | Westerman et al. | Jul 2008 | A1 |
20080180406 | Han et al. | Jul 2008 | A1 |
20080244468 | Nishihara et al. | Oct 2008 | A1 |
20080288347 | Sifry | Nov 2008 | A1 |
20080319932 | Yih et al. | Dec 2008 | A1 |
20090025987 | Perksi et al. | Jan 2009 | A1 |
20090073144 | Chen et al. | Mar 2009 | A1 |
20090095540 | Zachut et al. | Apr 2009 | A1 |
20090150373 | Davis et al. | Jun 2009 | A1 |
20090157206 | Weinberg et al. | Jun 2009 | A1 |
20090174679 | Westerman | Jul 2009 | A1 |
20090178011 | Ording et al. | Jul 2009 | A1 |
20090231275 | Odgers | Sep 2009 | A1 |
20090232355 | Minear et al. | Sep 2009 | A1 |
20090254869 | Ludwig et al. | Oct 2009 | A1 |
20090259628 | Farrell et al. | Oct 2009 | A1 |
20090262637 | Badaye et al. | Oct 2009 | A1 |
20090267893 | Kato | Oct 2009 | A1 |
20090315835 | De Goes et al. | Dec 2009 | A1 |
20090318192 | Leblanc et al. | Dec 2009 | A1 |
20100036967 | Caine et al. | Feb 2010 | A1 |
20100060602 | Agari et al. | Mar 2010 | A1 |
20100085216 | Ms | Apr 2010 | A1 |
20100094633 | Kawamura et al. | Apr 2010 | A1 |
20100123666 | Wickholm et al. | May 2010 | A1 |
20100127997 | Park et al. | May 2010 | A1 |
20100194703 | Fedor et al. | Aug 2010 | A1 |
20100214267 | Radivojevic et al. | Aug 2010 | A1 |
20100225601 | Homma et al. | Sep 2010 | A1 |
20100251112 | Hinckley et al. | Sep 2010 | A1 |
20100265185 | Oksanen | Oct 2010 | A1 |
20100271322 | Kondoh et al. | Oct 2010 | A1 |
20100274622 | Kennedy et al. | Oct 2010 | A1 |
20100279738 | Kim et al. | Nov 2010 | A1 |
20100289754 | Sleeman et al. | Nov 2010 | A1 |
20100302184 | East et al. | Dec 2010 | A1 |
20100306649 | Russ et al. | Dec 2010 | A1 |
20100309158 | Iwayama et al. | Dec 2010 | A1 |
20100309933 | Stark et al. | Dec 2010 | A1 |
20110003550 | Klinghult et al. | Jan 2011 | A1 |
20110007000 | Lim | Jan 2011 | A1 |
20110018825 | Kondo et al. | Jan 2011 | A1 |
20110057670 | Jordan | Mar 2011 | A1 |
20110057885 | Lehtovirta | Mar 2011 | A1 |
20110074544 | D'Souza | Mar 2011 | A1 |
20110074701 | Dickinson et al. | Mar 2011 | A1 |
20110080349 | Holbein | Apr 2011 | A1 |
20110133934 | Tan et al. | Jun 2011 | A1 |
20110134063 | Norieda | Jun 2011 | A1 |
20110134083 | Norieda | Jun 2011 | A1 |
20110141066 | Shimotani et al. | Jun 2011 | A1 |
20110145706 | Wilson et al. | Jun 2011 | A1 |
20110164029 | King et al. | Jul 2011 | A1 |
20110167391 | Momeyer et al. | Jul 2011 | A1 |
20110169763 | Westerman et al. | Jul 2011 | A1 |
20110169778 | Nungester et al. | Jul 2011 | A1 |
20110173235 | Aman et al. | Jul 2011 | A1 |
20110175813 | Sarwar et al. | Jul 2011 | A1 |
20110175821 | King | Jul 2011 | A1 |
20110175832 | Miyazawa | Jul 2011 | A1 |
20110187652 | Huibers | Aug 2011 | A1 |
20110202848 | Ismalon | Aug 2011 | A1 |
20110210943 | Zaliva | Sep 2011 | A1 |
20110231290 | Narcisse et al. | Sep 2011 | A1 |
20110238613 | Shehory et al. | Sep 2011 | A1 |
20110246463 | Carson, Jr. et al. | Oct 2011 | A1 |
20110246503 | Bender et al. | Oct 2011 | A1 |
20110248927 | Michaelis et al. | Oct 2011 | A1 |
20110248948 | Griffin et al. | Oct 2011 | A1 |
20110261083 | Wilson | Oct 2011 | A1 |
20110298798 | Krah | Dec 2011 | A1 |
20110310040 | Ben-Shalom et al. | Dec 2011 | A1 |
20120001875 | Li et al. | Jan 2012 | A1 |
20120007821 | Zaliva | Jan 2012 | A1 |
20120007836 | Wu et al. | Jan 2012 | A1 |
20120011106 | Reid et al. | Jan 2012 | A1 |
20120019562 | Park et al. | Jan 2012 | A1 |
20120051596 | Darnell et al. | Mar 2012 | A1 |
20120056846 | Zaliva | Mar 2012 | A1 |
20120078942 | Cai et al. | Mar 2012 | A1 |
20120096041 | Rao et al. | Apr 2012 | A1 |
20120113017 | Benko et al. | May 2012 | A1 |
20120120000 | Lucic et al. | May 2012 | A1 |
20120131139 | Siripurapu et al. | May 2012 | A1 |
20120146938 | Worfolk et al. | Jun 2012 | A1 |
20120150871 | Hua et al. | Jun 2012 | A1 |
20120158629 | Hinckley et al. | Jun 2012 | A1 |
20120200517 | Nikolovski | Aug 2012 | A1 |
20120206330 | Cao et al. | Aug 2012 | A1 |
20120256845 | Noble | Oct 2012 | A1 |
20120262407 | Hinckley et al. | Oct 2012 | A1 |
20120274583 | Haggerty | Nov 2012 | A1 |
20120280827 | Kashiwagi et al. | Nov 2012 | A1 |
20120280927 | Ludwig | Nov 2012 | A1 |
20120287056 | Ibdah | Nov 2012 | A1 |
20120287076 | Dao et al. | Nov 2012 | A1 |
20120313969 | Szymczyk et al. | Dec 2012 | A1 |
20120324349 | Pop-Lazarov et al. | Dec 2012 | A1 |
20130009896 | Zaliva | Jan 2013 | A1 |
20130014248 | McLaughlin et al. | Jan 2013 | A1 |
20130027404 | Sarnoff | Jan 2013 | A1 |
20130030782 | Yogeswaren | Jan 2013 | A1 |
20130038554 | West | Feb 2013 | A1 |
20130091123 | Chen et al. | Apr 2013 | A1 |
20130100071 | Wright et al. | Apr 2013 | A1 |
20130176264 | Alameh | Jul 2013 | A1 |
20130176270 | Cattivelli et al. | Jul 2013 | A1 |
20130179773 | Lee | Jul 2013 | A1 |
20130187883 | Lim | Jul 2013 | A1 |
20130215070 | Sasaki | Aug 2013 | A1 |
20130234982 | Kang | Sep 2013 | A1 |
20130246861 | Colley et al. | Sep 2013 | A1 |
20130257757 | Kim | Oct 2013 | A1 |
20130265269 | Sharma et al. | Oct 2013 | A1 |
20130278526 | Zhu | Oct 2013 | A1 |
20130285942 | Ko | Oct 2013 | A1 |
20130287273 | Huang | Oct 2013 | A1 |
20130307814 | Chang | Nov 2013 | A1 |
20130307828 | Miller | Nov 2013 | A1 |
20130316813 | Derome et al. | Nov 2013 | A1 |
20130328813 | Kuo | Dec 2013 | A1 |
20130335333 | Kukulski et al. | Dec 2013 | A1 |
20140007002 | Chang et al. | Jan 2014 | A1 |
20140009401 | Bajaj et al. | Jan 2014 | A1 |
20140022189 | Sheng et al. | Jan 2014 | A1 |
20140032880 | Ka | Jan 2014 | A1 |
20140037951 | Shigetomi et al. | Feb 2014 | A1 |
20140043295 | Alameh | Feb 2014 | A1 |
20140071095 | Godsill | Mar 2014 | A1 |
20140082545 | Zhai et al. | Mar 2014 | A1 |
20140104191 | Davidson et al. | Apr 2014 | A1 |
20140104192 | Davidson et al. | Apr 2014 | A1 |
20140104274 | Hilliges et al. | Apr 2014 | A1 |
20140109004 | Sadhvani et al. | Apr 2014 | A1 |
20140168116 | Sasselli et al. | Jun 2014 | A1 |
20140184551 | Igarashi | Jul 2014 | A1 |
20140208275 | Mongia et al. | Jul 2014 | A1 |
20140210788 | Harrsion et al. | Jul 2014 | A1 |
20140210791 | Hanauer et al. | Jul 2014 | A1 |
20140240271 | Land et al. | Aug 2014 | A1 |
20140240293 | Mccaughan | Aug 2014 | A1 |
20140240295 | Harrison | Aug 2014 | A1 |
20140253477 | Shim et al. | Sep 2014 | A1 |
20140267065 | Levesque | Sep 2014 | A1 |
20140267085 | Li et al. | Sep 2014 | A1 |
20140289659 | Harrison et al. | Sep 2014 | A1 |
20140300559 | Tanimoto et al. | Oct 2014 | A1 |
20140327626 | Harrison et al. | Nov 2014 | A1 |
20140331313 | Kim et al. | Nov 2014 | A1 |
20140368436 | Abzarian et al. | Dec 2014 | A1 |
20150002405 | Kuan et al. | Jan 2015 | A1 |
20150035759 | Harrison et al. | Feb 2015 | A1 |
20150077378 | Duffield | Mar 2015 | A1 |
20150089435 | Kuzmin | Mar 2015 | A1 |
20150145820 | Huang et al. | May 2015 | A1 |
20150177907 | Takano | Jun 2015 | A1 |
20150187206 | Saurin | Jul 2015 | A1 |
20150227229 | Schwartz | Aug 2015 | A1 |
20150242009 | Xiao et al. | Aug 2015 | A1 |
20150253858 | Koukoumidis et al. | Sep 2015 | A1 |
20150293592 | Cheong et al. | Oct 2015 | A1 |
20160012348 | Johnson et al. | Jan 2016 | A1 |
20160018942 | Kang et al. | Jan 2016 | A1 |
20160062545 | Lai | Mar 2016 | A1 |
20160077615 | Schwarz et al. | Mar 2016 | A1 |
20160077650 | Durojaiye et al. | Mar 2016 | A1 |
20160077664 | Harrison et al. | Mar 2016 | A1 |
20160085324 | Schwarz et al. | Mar 2016 | A1 |
20160085333 | Christopher | Mar 2016 | A1 |
20160085372 | Munemoto et al. | Mar 2016 | A1 |
20160098185 | Xiao et al. | Apr 2016 | A1 |
20160117015 | Veneri et al. | Apr 2016 | A1 |
20160156837 | Rodzevski et al. | Jun 2016 | A1 |
20160171192 | Holz et al. | Jun 2016 | A1 |
20160224145 | Harrison et al. | Aug 2016 | A1 |
20160231865 | Harrison et al. | Aug 2016 | A1 |
20160299615 | Schwarz et al. | Oct 2016 | A1 |
20170024892 | Harrison et al. | Jan 2017 | A1 |
20170060279 | Harrison | Mar 2017 | A1 |
20170153705 | Kim et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
1797305 | Jul 2006 | CN |
1928781 | Mar 2007 | CN |
101111817 | Jan 2008 | CN |
101299174 | Nov 2008 | CN |
101339477 | Jan 2009 | CN |
101410781 | Apr 2009 | CN |
101424974 | May 2009 | CN |
101438218 | May 2009 | CN |
101566894 | Oct 2009 | CN |
101763190 | Jun 2010 | CN |
101763193 | Jun 2010 | CN |
101921610 | Dec 2010 | CN |
101968696 | Feb 2011 | CN |
102153776 | Aug 2011 | CN |
102349035 | Feb 2012 | CN |
102362249 | Feb 2012 | CN |
102708862 | Oct 2012 | CN |
102789332 | Nov 2012 | CN |
103150019 | Jun 2013 | CN |
104020878 | Sep 2014 | CN |
104160364 | Nov 2014 | CN |
105431799 | Mar 2016 | CN |
106200861 | Dec 2016 | CN |
106200861 | Dec 2016 | CN |
107077242 | Aug 2017 | CN |
107924279 | Apr 2018 | CN |
108803933 | Nov 2018 | CN |
0 938 039 | Aug 1999 | EP |
1 659 481 | May 2006 | EP |
1 762 926 | Mar 2007 | EP |
2 136 358 | Dec 2009 | EP |
2 280 337 | Feb 2011 | EP |
3028125 | Mar 2017 | EP |
3195095 | Apr 2018 | EP |
3198386 | Apr 2018 | EP |
3341829 | Mar 2019 | EP |
2 344 894 | Jun 2000 | GB |
2 468 742 | Sep 2010 | GB |
H09-69137 | Mar 1997 | JP |
2004-213312 | Jul 2004 | JP |
2005-018611 | Jan 2005 | JP |
2007-524970 | Aug 2007 | JP |
2009-543246 | Dec 2009 | JP |
2011-028555 | Feb 2011 | JP |
2013-519132 | May 2013 | JP |
2013-532495 | Aug 2013 | JP |
10-2002-0075283 | Oct 2002 | KR |
10-2011-0061227 | Jun 2011 | KR |
10-2012-0100351 | Sep 2012 | KR |
94004992 | Mar 1994 | WO |
2006-070044 | Jul 2006 | WO |
2006070044 | Jul 2006 | WO |
2008126347 | Oct 2008 | WO |
2009071919 | Jun 2009 | WO |
2011096694 | Aug 2011 | WO |
2012064034 | May 2012 | WO |
2012166277 | Dec 2012 | WO |
WO 2013059488 | Apr 2013 | WO |
2013061998 | May 2013 | WO |
2014037951 | Mar 2014 | WO |
2014182435 | Nov 2014 | WO |
2015017831 | Nov 2015 | WO |
2016048848 | Mar 2016 | WO |
2016043957 | Sep 2016 | WO |
2017034752 | Mar 2017 | WO |
Entry |
---|
Asano, Futoshi, Goto, Masataka, Itou, Katunobu, Asoh, Hideki; Real-Time Sound Source Localization and Separation System and its Application to Automatic Speech Recognition; Proceedings of Eurospeech, 2001; p. 1013-1016; 2001. |
Benko, Hrvoje, Wilson, Andrew, Balakrishnan, Ravin; Sphere: Multi-Touch Interactions on a Spherical Display; Proceedings of UIST, 2008; pp. 77-86; 2008. |
Burges, Christopher; A Tutorial on Support Vector Machines for Pattern Recognition; Data Mining and Knowledge Discovery, 2; pp. 121-167; 1998. |
Cao, Xiang, Wilson, Andrew, Balakrishnan, Ravin, Hinckley, Ken, Hudson, Scott; ShapeTouch: Leveraging Contact Shape on Interactive Surfaces; IEEE International Workshop on Horizontal Interactive Human Computer System (TABLETOP); pp. 139-146; 2008. |
Deyle, Travis, Palinko, Szabolcs, Poole, Erika Shehan, Starner, Thad; Hambone: A Bio-Acoustic Gesture Interface; Proceedings of ISWC, 2007; pp. 1-8; 2007. |
Dietz, Paul, Harsham, Bret, Forlines, Clifton, Leigh, Darren, Yerazunis, William, Shipman, Sam, Schmidt-Nielsen, Bent, Ryall, Kathy; DT Controls: Adding Identity to Physical Interfaces; ACM Symposium on User Interface Software & Technology (UIST); pp. 245-252; 2005. |
Dietz, Paul, Leigh, Darren; DiamondTouch: A Multi-User Touch Technology; ACM Symposium on User Interface Software & Technology (UIST); pp. 219-226; 2001. |
Gutwin, Carl, Greenberg, Saul, Blum, Roger, Dyck, Jeff, Tee, Kimberly, McEwan, Gregor; Supporting Informal Collaboration in Shared-Workspace Groupware; Journal of Universal Computer Science, 14(9); pp. 1411-1434; 2008. |
Hall, Mark, Frank, Eibe, Holmes, Geoffrey, Pfahringer, Bernhard, Reutemann, Peter, Witten, Ian; The WEKA Data Mining Software: An Update; SIGKDD Explorations, 11(1); pp. 10-18; 2009. |
Harrison, Chris, Tan, Desney, Morris, Dan; Skinput: Appropriating the Body as an Input Surface; Proceedings of CHI, 2010; pp. 453-462; 2010. |
Harrison, Chris, Hudson, Scott; Scratch Input: Creating Large, Inexpensive, Unpowered and Mobile Finger Input Surfaces; Proceedings of UIST, 2008; pp. 205-208; 2008. |
Hartmann, Bjorn, Ringel Morris, Meredith, Benko, Hrvoje, Wilson, Andrew; Augmenting Interactive Tables with Mice & Keyboards; Proceedings of UIST, 2009; pp. 149-152; 2009. |
Hinckley, Ken, Song, Hyunyoung; Sensor Synaesthesia: Touch in Motion, and Motion in Touch; Proceedings of CHI, 2011; pp. 801-810; 2011. |
Hinckley, Ken, Yatani, Koji, Pahud, Michel, Coddington, Nicole, Rodenhouse, Jenny, Wilson, Andy, Benko, Hrvoje, Buxton, Bill; Pen + Touch=New Tools; Proceedings of UIST, 2010; pp. 27-36; 2010. |
Hinkley, Ken, Yatani, Koji, Pahud, Michel, Coddington, Nicole, Rodenhouse, Jenny, Wilson, Andy, Benko, Hrvoje, Buxton, Bill; Manual Deskterity: An Exploration of Simultaneous Pen + Touch Direct Input; Proceedings of CHI, 2010; pp. 2793-2802; 2010. |
Holz, Christian, Baudisch, Patrick; The Generalized Perceived Input Point Model and How to Double Touch Accuracy by Extracting Fingerprints; Proceedings of CHI, 2010; pp. 581-590; 2010. |
Kaltenbrunner, Martin, Bencina, Ross; reacTIVision: A Computer-Vision Framework for Table-Based Tangible Interaction; Proceedings of TEI, 2007; pp. 69-74; 2007. |
Matsushita, Nobuyuki, Rekimoto, Jun; HoloWall: Designing a Finger, Hand, Body, and Object Sensitive Wall; Proceedings of UIST, 1997; pp. 209-210; 1997. |
Mimio; http://www.mimio.com. |
Olwal, Alex, Wilson, Andrew; SurfaceFusion: Unobtrusive Tracking of Everyday Objects in Tangible User Interfaces; Proceedings of GI, 2008; pp. 235-242; 2008. |
Paradiso, Joseph, Leo, Che King; Tracking and Characterizing Knocks Atop Large Interactive Displays; Sensor Review, 25(2); pp. 134-143; 2005. |
Paradiso, Joseph, Hsiao, Kai-yuh, Strickon, Joshua, Lifton, Joshua, Adler, Ari; Sensor Systems for Interactive Surfaces; IBM Systems Journal, 39(3-4); pp. 892-914; 2000. |
Patten, James, Ishii, Hiroshi, Hines, Jim, Pangaro, Gian; Sensetable: A Wireless Object Tracking Platform for Tangible User Interfaces; Proceedings of CHI, 2001; pp. 253-260; 2001. |
Rekimoto, Jun, Saitoh, Masanori; Augmented Surfaces: A Spatially Continuous Work Space for Hybrid Computing Environments; Proceedings of CHI, 1999; pp. 378-385; 1999. |
Rekimoto, Jun, Sciammarella, Eduardo; ToolStone: Effective use of the Physical Manipulation Vocabularies of Input Devices; Proceedings of UIST, 2000; pp. 109-117; 2000. |
Rekimoto, Jun; SmartSkin: An Infrastructure for Freehand Manipulation on Interactive Surfaces; Proceedings of CHI, 2002; pp. 113-120; 2002. |
Vandoren, Peter, Van Laerhoven, Tom, Claesen, Luc, Taelman, Johannes, Di Fiore, Fabian, Van Reeth, Frank, Flerackers, Eddy; DIP-IT: Digital Infrared Painting on an Interactive Table; Proceedings of CHI, 2008; pp. 2901-2906; 2008. |
Wang, Feng, Ren, Xiangshi; Empirical Evaluation for Finger Input Properties in Multi-Touch Interaction; Proceedings of CHI, 2009; pp. 1063-1072; 2009. |
International Search Report and Written Opinion for PCT/US2012/060865; dated Mar. 29, 2013. |
Non-Final Office Action—dated Mar. 13, 2015—U.S. Appl. No. 13/958,427, filed Mar. 23, 2013, titled: “Capture of Vibro-Acoustic Data Used to Determine Touch Types”. |
Final Office Action—dated Jun. 19, 2015—U.S. Appl. No. 13/958,427, filed Mar. 23, 2013, titled: “Capture of Vibro-Acoustic Data Used to Determine Touch Types”. |
Non-Final Office Action—dated Apr. 6, 2015—U.S. Appl. No. 13/887,711, filed May 6, 2013, titled: “Using Finger Touch Types to Interact With Electronic Devices”. |
Final Office Action—dated Aug. 7, 2015—U.S. Appl. No. 14/191,329, filed Feb. 26, 2014, titled: “Using Capacitive Images for Touch Type Classification”. |
Non-Final Office Action—dated Oct. 1,2015—U.S. Appl. No. 14/492,604, filed Sep. 22, 2014, titled “Method and Apparatus for Improving Accuracy of Touch Screen Event Analysis By Use of Edge Classification”. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2014/049485 dated Nov. 17, 2014. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2014/033380 dated Mar. 13, 2015. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2014/034977 dated Sep. 18, 2014. |
Non-Final Office Action—dated Oct. 7, 2015—U.S. Appl. No. 14/495,041, filed Sep. 24, 2014, titled “Method for Improving Accuracy of Touch Screen Event Analysis by Use of Spatiotemporal Touch Patterns”. |
Extended European Search Report dated Mar. 19, 2018 in European Patent Application No. 15843933.1, 8 pages. |
Extended European Search Report dated Mar. 27, 2018 in European Patent Application No. 15843989.3, 8 pages. |
Extended European Search Report dated May 14, 2018 in European Patent Application No. 15847469.2, 11 pages. |
Weidong, S. et al., “SenGuard: Passive user identification on smartphones using multiple sensors,” IEEE 7th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 141-148, 2011. |
Final Office Action dated Feb. 26, 2016 in U.S. Appl. No. 14/492,604, 16 pages. |
Non-Final Office Action dated Sep. 9, 2016 in U.S. Appl. No. 13/887,711, 24 pages. |
Non-Final Office Action dated Sep. 29, 2016 in U.S. Appl. No. 14/834,434, 12 pages. |
Pedro, L et al., “Augmenting touch interaction through acoustic sensing”, Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, pp. 53-56, Nov. 13-16, 2011. |
Sarah, M. K. et aL, “A Personal Touch—Recognizing Users Based on Touch Screen Behavior,” PhoneSense'12, Nov. 6, 2012, Toronto, ON, Canada, Nov. 6, 2012, 5 pages. |
Schwarz, J. et al., “Probabilistic Palm Rejection Using Spatiotemporal Touch Features and Iterative Classification”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2009-2012, Apr. 26-May 1, 2014. |
Search Report dated Apr. 21, 2017 in Chinese Patent Application No. 201580000833.0, 1 page. |
“Swype Advanced Tips”, [http://www.swype.com/tips/advanced-tips], Jun. 25, 2014, retrieved via the Wayback Machine on Jun. 29, 2018, [https:web.archive.org/web/20140625073212/http://www.swype.com/tips/advanced-tips], 2 pages. |
“Swype Basics”, [http://www.swype.com/tips/swype-basics], retrieved via the Wayback Machine dated Jun. 14, 2014, retrieved via the Wayback Machine on Jun. 29, 2018, [https:web.archive.org/web/20140614200707/http://www.swype.com/tips/swype-basics, 2 pages. |
“Swype Tips”, [http://www.swype.com/category/tips], Jul. 2, 2014, retrieved via the Wayback Machine on Jun. 29, 2018, [https:web.archive.org/web/20140702102357/http://www.swype.com/category/tips, 2 pages. |
Kherallah, Metal., “On-line handwritten digit recognition based on trajectory and velocity modeling,” Pattern Recognition Letters, vol. 29, Issue 5, pp. 580-594, Apr. 1, 2008. |
Non-Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/856,414, 17 pages. |
Non-Final Office Action dated Apr. 16, 2018 in U.S. Appl. No. 13/958,427, 14 pages. |
Non-Final Office Action dated Apr. 19, 2017 in U.S. Appl. No. 14/869,998, 7 pages. |
Non-Final Office Action dated Apr. 26, 2018 in U.S. Appl. No. 14/495,041, 15 pages. |
Non-Final Office Action dated Dec. 20, 2017 in U.S. Appl. No. 14/834,434, 12 pages. |
Non-Final Office Action dated Jul. 8, 2015 in U.S. Appl. No. 14/191,329, 18 pages. |
Non-Final Office Action dated Jul. 11, 2017 in U.S. Appl. No. 14/390,831, 79 pages. |
Non-Final Office Action dated Jul. 17, 2017 in U.S. Appl. No. 15/073,407, 8 pages. |
Non-Final Office Action dated Jul. 19, 2017 in U.S. Appl. No. 14/219,919, 20 pages. |
Non-Final Office Action dated Jun. 9, 2016 in U.S. Appl. No. 14/612,089, 11 pages. |
Non-Final Office Action dated May 7, 2018 in U.S. Appl. No. 14/191,329, 17 pages. |
Non-Final Office Action dated May 9, 2018 in U.S. Appl. No. 13/887,711, 27 pages. |
Non-Final Office Action dated Nov. 15, 2017 in U.S. Appl. No. 15/198,062, 24 pages. |
Non-Final Office Action dated Nov. 24, 2015 in U.S. Appl. No. 14/191,329, 31 pages. |
Non-Final Office Action dated Oct. 8, 2015 in U.S. Appl. No. 13/958,427, 15 pages. |
Non-Final Office Action dated Oct. 18, 2017 in U.S. Appl. No. 15/406,770, 12 pages. |
Non-Final Office Action dated Oct. 19, 2015 in U.S. Appl. No. 14/668,870, 6 pages. |
Non-Final Office Action dated Oct. 23, 2014 in U.S. Appl. No. 14/275,124, 10 pages. |
Non-Final Office Action dated Oct. 25, 2013 in U.S. Appl. No. 13/410,956, 8 pages. |
Non-Final Office Action dated Oct. 28, 2015 in U.S. Appl. No. 14/390,831, 22 pages. |
Non-Final Office Action dated Sep. 8, 2016 in U.S. Appl. No. 14/492,604, 14 pages. |
Notice of Allowance dated Jan. 26, 2015 in U.S. Appl. No. 13/849,698, 27 pages. |
Notice of Allowance dated Dec. 6, 2016 in U.S. Appl. No. 14/751,589, 27 pages. |
Non-Final Office Action dated Jul. 30, 2018 in U.S. Appl. No. 15/406,770, 20 pages. |
Notice of Allowance dated Feb. 2, 2015 in U.S. Appl. No. 13/780,494, 43 pages. |
Final Office Action dated Aug. 8, 2018 in U.S. Appl. No. 14/834,434, 19 pages. |
Non-Final Office Action dated Sep. 2, 2014 in U.S. Appl. No. 13/863,193, 41 pages. |
Final Office Action dated Mar. 4, 2015 in U.S. Appl. No. 13/863,193, 50 pages. |
Non-Final Office Action dated Jan. 7, 2016 in U.S. Appl. No. 13/863,193, 58 pages. |
Final Office Action dated Sep. 15, 2016 in U.S. Appl. No. 13/863,193, 50 pages. |
Non-Final Office Action dated Apr. 6, 2017 in U.S. Appl. No. 13/863,193, 70 pages. |
Final Office Action dated Jan. 9, 2018 in U.S. Appl. No. 13/863,193, 50 pages. |
Notice of Allowance dated May 22, 2018 in U.S. Appl. No. 13/863,193, 73 pages. |
Notice of Allowance dated Sep. 1, 2016 in U.S. Appl. No. 13/856,414, 28 pages. |
Chinese Office Action for Chinese Patent Application No. 201510240522.3 dated Jun. 28, 2018, 30 pages (Including English translation). |
Chinese Office Action for Chinese Patent Application No. 201280062500.7, dated Apr. 27, 2018, 19 pages (Including English translation). |
Chinese Office Action for Chinese Patent Application No. 201280062500.7, dated Oct. 10, 2018, 14 pages. |
Office Action dated Mar. 30, 2018 for U.S. Appl. No. 15/886,562, 45 pages. |
Office Action dated Aug. 10, 2018 for U.S. Appl. No. 15/886,562, 86 pages. |
Japanese Office Action dated Aug. 1, 2018 for Japanese Patent Application No. 2017-049566, 9 pages (including English translation). |
Korean Office Action dated Jan. 10, 2019 for Korean Patent Application No. 2014-7010323, 12 pages (Including English translation). |
Office Action dated Jan. 28, 2019 for U.S. Appl. No. 15/836,798, 30 pages. |
Final Office Action received for U.S. Appl. No. 15/075,648 dated Dec. 21, 2018, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/815,679 dated Sep. 28, 2018, 69 pages. |
Final Office Action received for U.S. Appl. No. 15/198,062 dated Sep. 6, 2018, 32 pages. |
Chinese Office Action dated Apr. 21, 2017 for Chinese Patent Application No. 201480022056.5, 23 pages (with Translation). |
Chinese Office Action dated Feb. 9, 2018 for Chinese Patent Application No. 201480022056.5, 19 pages (with Translation). |
Non-Final Office Action received for U.S. Appl. No. 16/126,175 dated Nov. 1, 2018, 86 pages. |
Third Chinese Office Action received for Chinese Patent Application No. 201480022056.5 dated Jul. 19, 2018, 6 pages.(Including English translation). |
Communication pursuant to Article 94(3) EPC for European Patent Application No. 14785422.8 dated Nov. 22, 2018, 5 pages. |
Communication pursuant to Article 94(3) EPC for European Patent Application No. 15845310.0 dated Jan. 3, 2019, 4 pages. |
Communication pursuant to Article 94(3) EPC for European Patent Application No. 15840819.5 dated Jan. 23, 2019, 6 pages. |
Chinese First Office Action received for Chinese Patent Application No. 201510240372.6 dated Sep. 27, 2018, 18 pages (Including English translation). |
Chinese Second Office Action received for Chinese Patent Application No. 201510240372.6 dated May 15, 2019, 16 pages (Including English translation). |
Communication pursuant to Article 94(3) EPC for European Patent Application No. 15843933.1 dated Jan. 23, 2019, 6 pages. |
Chinese Search Report received for Chinese Patent Application No. 201580053216.7, dated Apr. 16, 2019, 2 pages. |
European Search Report received for European Patent Application No. 16839786.7, dated Feb. 12, 2019, 10 pages. |
Communication pursuant to Rules 70(2) and 70a(2) EPC received for European Patent Application No. 16839786.7 dated Mar. 1, 2019, 1 page. |
Chinese Second Office Action received for Chinese Patent Application No. 201580000833.0 dated Jan. 15, 2018, 17 pages. |
European Search Report received for European Patent Application No. 16818725.0, dated Dec. 21, 2018, 11 pages. |
Communication pursuant to Rules 70(2) and 70a(2) EPC received for European Patent Application No. 16818725.0 dated Jan. 8, 2019, 1 page. |
First Office Action received for Canadian Patent Application No. 2869699, dated Nov. 27, 2014, 3 pages. |
Second Office Action received for Canadian Patent Application No. 2869699, dated Jun. 14, 2016, 4 pages. |
Third Office Action received for Canadian Patent Application No. 2869699, dated Jan. 9, 2017, 3 pages. |
First Examination report received for Australian Patent Application No. 2012225130, dated Feb. 9, 2015, 4 pages. |
First Office Action received for Canadian Patent Application No. 2802746, dated Apr. 9, 2013, 3 pages. |
Communication pursuant to Article 94(3) EPC received for European Patent Application No. 14832247.2 dated May 3, 2019, 7 pages. |
Final Office Action received for U.S. Appl. No. 15/075,648 dated May 31, 2019, 17 pages. |
European Search Report dated Apr. 8, 2019 for European Application No. 18195588.1, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/836,798 dated Jul. 5, 2019, 95 pages. |
Final Office Action received for U.S. Appl. No. 14/684,407 dated Jun. 10, 2019, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/191,329 dated Jul. 16, 2019, 30 pages. |
First Office Action received for Chinese Patent Application Serial No. 201580051873.8 dated Jun. 21, 2019, 15 pages (Including English Translation). |
Final Office Action received for U.S. Appl. No. 13/887,711 dated Jul. 25, 2019, 24 pages. |
Final Office Action received for U.S. Appl. No. 14/684,407 dated Sep. 20, 2019, 26 pages. |
Final Office Action received for U.S. Appl. No. 14/495,041 dated Aug. 9, 2019, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/834,434 dated Aug. 5, 2019, 19 pages. |
Final Office Action received for U.S. Appl. No. 16/126,175 dated Aug. 2, 2019, 161 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/242,127 dated Jun. 2, 2015, 33 pages. |
Final Office Action received for U.S. Appl. No. 14/242,127 dated Sep. 18, 2015, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/242,127 dated Dec. 28, 2015, 38 pages. |
Final Office Action received for U.S. Appl. No. 14/242,127 dated Mar. 31, 2016, 34 pages. |
Notice of Allowance received for U.S. Appl. No. 14/242,127 dated Apr. 13, 2016, 18 pages. |
Notice of Allowance received for U.S. Appl. No. 14/242,127 dated Sep. 2, 2016, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/206,554 dated Sep. 21, 2016, 36 pages. |
Final Office Action issued for U.S. Appl. No. 15/206,554 dated Feb. 1, 2017, 20 pages. |
Chinese Office Action for Chinese Patent Application No. 201280062500.7 dated Nov. 7, 2016, 9 pages. |
Chinese Office Action for Chinese Patent Application No. 201280062500.7 dated Apr. 17, 2017, 15 pages (Including English translation). |
Japanese Office Action for Japanese Patent Application No. 2014-537253 dated May 16, 2017, 5 pages (Including English translation). |
Seo et al.., “Audio Fingerprinting Based on Normalized Spectral Subband Centroids,” Proc. ICASSP, {U.S.A.), 2005, vol. 3, p. 213-216. Retrieved on May 29, 2017, 4 pages. |
Kunio, “Audio fingerprinting: Techniques and applications”, Acoustical Science and Technology, The Acoustical Society of Japan, Feb. 1, 2010, vol. 66, No. 2, p. 71-76. Retrieved on May 29, 2017, 6 pages. |
European Search Report received for European Patent Application Serial No. 12842495.9, dated Jul. 24, 2015, 7 pages. |
Chinese Search Report dated Mar. 29, 2016 for Chinese Application No. 201280062500.7, 1 page. |
Chinese Office Action dated Apr. 15, 2016 for Chinese Application No. 201280062500.7, 11 pages. |
Japanese Office Action for Japanese Patent Application No. 2014-537253 dated Nov. 15, 2016, 3 pages. |
Japanese Office Action for Japanese Patent Application No. 2014-537253 dated Apr. 26, 2016, 3 pages. |
Communication pursuant to Article 94(3) EPC for EP Application No. 12842495.9 dated Jun. 18, 2018, 4 pages. |
Japanese Office Action for Japanese Patent Application No. 2017-049566 dated Jun. 5, 2018, 7 pages (Including English translation). |
Non-Final Office Action received for U.S. Appl. No. 14/684,407 dated Jul. 8, 2016, 19 pages. |
Final Office Action received for U.S. Appl. No. 14/684,407 dated Jan. 18, 2017, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/684,407 dated Aug. 2, 2017, 36 pages. |
Final Office Action received for U.S. Appl. No. 14/684,407 dated Mar. 12, 2018, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/612,089 dated on May 31, 2017, 21 pages. |
Final Office Action received for U.S. Appl. No. 15/073,407, dated Dec. 20, 2016, 49 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/958,427, dated Nov. 10, 2016, 22 pages. |
Final Office Action received for U.S. Appl. No. 14/219,919, dated Aug. 26, 2016, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/191,329, dated on Feb. 2, 2017, 29 pages. |
Final Office Action received for U.S. Appl. No. 13/887,711, dated Jun. 8, 2017, 33 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/075,648, dated Apr. 21, 2017, 8 pages. |
Final Office Action received for U.S. Appl. No. 14/492,604, dated Mar. 17, 2017, 37 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/495,041, dated Nov. 25, 2016, 35 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/503,894, dated May 16, 2017, 33 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/684,407, dated Sep. 14, 2018, 24 pages. |
Final Office Action received for U.S. Appl. No. 14/834,434, dated May 1, 2017, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/751,589, dated Jun. 13, 2016, 20 pages. |
International Search Report and Written Opinion for PCT/US2016/044552; dated Oct. 17, 2016, 14 pages. |
International Search Report and Written Opinion for PCT/US2016/040194; dated Sep. 19, 2016, 7 pages. |
International Search Report and Written Opinion for PCT/US2015/051582; dated Feb. 26, 2016, 12 pages. |
International Search Report and Written Opinion for PCT/US2015/051106; dated Jan. 28, 2016, 9 pages. |
International Search Report and Written Opinion for PCT/US2015/047616; dated Jul. 1, 2016, 7 pages. |
European Patent Office Extended Search Report for EP 14 83 2247; dated Feb. 23, 2017, 11 pages. |
European Patent Office Extended Search Report for EP 14 79 4212; dated Nov. 9, 2016, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/483,150 dated Dec. 18, 2015, 33 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/503,894, dated Dec. 30, 2015, 42 pages. |
Non-Final Office Action—dated Jan. 29, 2016 U.S. Appl. No. 14/219,919, 17 pages. |
Non-Final Office Action dated Nov. 5, 2015 U.S. Appl. No. 13/887,711, 19 pages. |
Final Office Action dated Feb. 24, 2016 U.S. Appl. No. 13/887,711, 23 pages. |
International Search Report and Written Opinion for PCT/US2015/051355; dated Dec. 15, 2015, 9 pages. |
International Search Report and Written Opinion for PCT/US2015/047428; dated Nov. 27, 2015, 6 pages. |
International Search Report and Written Opinion for PCT/US2015/050570; dated Dec. 17, 2015, 8 pages. |
International Search Report and Written Opinion for PCT/US2015/014581; dated May 14, 2015, 7 pages. |
Non-Final Office Action dated Jun. 13, 2016 in U.S. Appl. No. 15/073,407, 49 pages. |
Final Office Action dated Nov. 28, 2014 in U.S. Appl. No. 13/849,698, 21 pages. |
Non-Final Office Action dated Jun. 24, 2014 in U.S. Appl. No. 13/849,698, 21 pages. |
Non-Final Office Action dated Oct. 16, 2014 in U.S. Appl. No. 13/780,494, 10 pages. |
U.S. Appl. No. 13/958,427, filed Aug. 2, 2013, titled: “Capture of Vibro-Acoustic Data Used to Determine Touch Types.” 45 pages. |
U.S. Appl. No. 14/191,329, filed Feb. 26, 2014, titled: “Using Capacitive Images for Touch Type Classification.” 42 pages. |
U.S. Appl. No. 13/887,711, filed May 6, 2013, titled: “Using Finger Touch Types to Interact with Electronic Devices” 42 pages. |
U.S. Appl. No. 14/492,604, filed Sep. 22, 2014, titled: “Method and Apparatus for Mproving Accuracy of Touch Screen Event Analysis by Use of Edge Classification.” 35 pages. |
U.S. Appl. No. 14/495,041, filed Sep. 24, 2014, titled: “Method for Improving Accuracy of Touch Screen Event Analysis by Use of Spatiotemporal Touch Patterns.” 34 pages. |
U.S. Appl. No. 14/483,150, filed Sep. 11, 2014, titled: “Method and Apparatus for Differentiating Touch Screen Users Based on Touch Event Analysis.” 38 pages. |
U.S. Appl. No. 14/242,127, filed Apr. 1, 2014, titled: “Method and Apparatus for Classifying D Touch Events on a Touch Sensitive Surface ”, 36 pages. |
U.S. Appl. No. 13/849,698, filed Mar. 23, 2013, titled: “Method and System for Activating Different Interactive Functions Using Different Types of Finger Contacts.” 52 pages. |
Final Office Action dated Jul. 12, 2017 in U.S. Appl. No. 14/495,041, 14 pages. |
Final Office Action dated Jul. 18, 2017 in U.S. Appl. No. 14/191,329, 17 pages. |
Final Office Action dated Jun. 8, 2016 in U.S. Appl. No. 14/495,041, 16 pages. |
Final Office Action dated Jun. 30, 2017 in U.S. Appl. No. 13/958,427, 15 pages. |
Final Office Action dated Mar. 7, 2018 in U.S. Appl. No. 14/219,919, 21 pages. |
Final Office Action dated Mar. 28, 2016 in U.S. Appl. No. 13/958,427, 16 pages. |
Final Office Action dated May 6, 2016 in U.S. Appl. No. 14/191,329, 17 pages. |
Final Office Action dated May 13, 2016 in U.S. Appl. No. 14/390,831, 6 pages. |
Final Office Action dated May 20, 2016 in U.S. Appl. No. 14/503,894, 17 pages. |
Final Office Action dated Nov. 9, 2016 in U.S. Appl. No. 14/612,089, 11 pages. |
Final Office Action dated Nov. 23, 2015 in U.S. Appl. No. 14/668,870, 14 pages. |
International Search Report and Written Opinion dated Jul. 8, 2013 in International Application No. PCT/CA2013/000292, 9 pages. |
International Search Report and Written Opinion dated Jun. 6, 2012 in International Patent Application No. PCT/CA2012/050127, 10 pages. |
“Making it Easier to Share With Who You Want,” Facebook, Aug. 23, 2011, last updated on Dec. 12, 2012 retrieved from https://www .facebook.com/notes/facebook/making-it-easier -to-share-with-who-you-want/10150251867797131/, retrieved on Jun. 1, 2018, 14 pages. |
Cheng, B. et aL, “SilentSense: Silent User Identification via Dynamics of Touch and Movement Behavioral Biometrics,” Cryptography and Security (cs CR); Human-Computer Interaction, pp. 9, Aug. 31, 2013, 9 pages. |
S. Furui, “Digital Speech Processing, synthesis, and recognition” Marcel Dekker, Inc. 2001. 40 pages. |
English Translation of Chinese Office Action dated Nov. 3, 2017 in Chinese Application No. 201480002856.0, 12 pages. |
English Translation of Final Rejection dated Apr. 27, 2015 in Korean Patent Application No. 10-2014-0027979, 3 pages. |
English Translation of Final Rejection dated Dec. 12, 2014 in Korean Patent Application No. 10-2014-0027979, 3 pages. |
English Translation of First Office Action dated Feb. 27, 2017 in Chinese Application No. 201480002879.1, 13 pages. |
English Translation of First Office Action dated May 2, 2017 in Chinese Patent Application No. 201580000833.0, 9 pages. |
English Translation of First Office Action dated Oct. 11, 2017 in Chinese Patent Application No. 20150209998.0, 10 pages. |
English Translation of Notification of Reason for Refusal dated Jul. 10, 2014 in Korean patent application No. 10-2014-0027979, 3 pages. |
Final Office Action dated Jan. 5, 2018 in U.S. Appl. No. 14/503,894, 16 pages. |
English Translation of Second Office Action dated Jul. 6, 2017 in Chinese Application No. 201480002879.1, 14 pages. |
English Translation of Third Office Action dated Oct. 16, 2017 in Chinese Application No. 201480002879.1, 4 pages. |
Communication pursuant to Article 94(3) EPC dated Feb. 26, 2018 in European Patent Application No. 14785422.8, 7 pages. |
Communication pursuant to Article 94(3) EPC dated Mar. 5, 2018 in European Patent Application No. 14794212.2, 5 pages. |
Extended European Search Report dated Apr. 16, 2018 in European Application No. 15845310.0, 7 pages. |
Extended European Search Report dated Aug. 11, 2016 in European Patent Application No. 14785422.8, 8 pages. |
Extended European Search Report dated Aug. 25, 2017 in European Patent Application No. 157 48667.1, 10 pages. |
Extended European Search Report dated Jul. 22, 2014 in European Patent Application No. 12755563.9, 5 pages. |
Extended European Search Report dated Mar. 16, 2018 in European Patent Application No. 15842839.1, 7 pages. |
Extended European Search Report dated Mar. 19, 2018 in European Patent Application No. 15840819.5, 9 pages. |
European Office Action for European Patent Application Serial No. 15 842 839.1-1221 dated Apr. 9, 2019, 7 pages. |
U.S. Appl. No. 13/958,427, CTFR—Final Rejection, dated Oct. 3, 2019, 2 pgs. |
U.S. Appl. No. 13/958,427, Non-Final Rejection, dated Apr. 6, 2020, 13 pgs. |
U.S. Appl. No. 14/486,800, Non-Final Rejection, dated Feb. 21, 2020, 26 pgs. |
U.S. Appl. No. 14/495,041, USPTO e-Office Action: Notice of Allowance and Fees Due (Ptol-85), dated Nov. 22, 2019, 9 pgs. |
Chinese Office Action (including English translation) for App. No. CN201810617137.X, dated Oct. 28, 2020, 12 pages. |
Final Office Action dated Feb. 9, 2016 in U.S. Appl. No. 14/486,800, 14 pages. |
Final Office Action dated Sep. 6, 2017 in U.S. Appl. No. 14/486,800, 17 pages. |
Hinckley et al., “Manual Deskterity: An Exploration of Simultaneous Pen+ Touch Direct Input”, Proceedings of CHI, 2010, pp. 2793-2802. |
Non-Final Office Action dated Jun. 26, 2018 in U.S. Appl. No. 14/486,800, 25 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/486,800, dated Dec. 1, 2016, 29 pages. |
Non-Final Office Action—dated Oct. 2, 2015 U.S. Appl. No. 14/486,800, filed Sep. 15, 2014, 21 pages. |
Notice of Allowance dated Mar. 9, 2021 for U.S. Appl. No. 16/798,139 (pp. 1-8). |
U.S. Appl. No. 13/780,494, filed Feb. 28, 2013, titled: “Input Tools Having Viobro-Acoustically Distinct Regions and Computing Device for Use With the Same.” 34 pages. |
U.S. Appl. No. 14/483,150, filed Sep. 11, 2014, titled: “Method and Apparatus for Differentiating Touch Screen Users Based on Touch Event Analysis.” |
U.S. Appl. No. 14/492,604, filed Sep. 22, 2014, titled: “Method and Apparatus for Improving Accuracy of Touch Screen Event Analysis by Use of Edge Classification.” |
U.S. Appl. No. 14/495,041, filed Sep. 24, 2014, titled: “Method for Improving Accuracy of Touch Screen Event Analysis by Use of Spatiotemporal Touch Patterns.” |
Office Action (Final Rejection) dated May 9, 2022 for U.S. Appl. No. 13/958,427 (pp. 1-23). |
Office Action dated Aug. 3, 2021 for U.S. Appl. No. 13/958,427 (pp. 1-23). |
Number | Date | Country | |
---|---|---|---|
20160077664 A1 | Mar 2016 | US |