This application is related to the contemporaneously filed U.S. patent application Ser. No. 11/207,589 entitled “Method and Apparatus for Responding to End-User Request for Information—Collecting,” filed on Aug. 19, 2005 and issued as U.S. Pat. No. 7,444,358 on Oct. 28, 2008, and U.S. patent application Ser. No. 11/207,592, entitled “Method and Apparatus for Responding to End-User Request for Information—Ranking”, also filed on Aug. 19, 2005, and issued as U.S. Pat. No. 7,836,009 on Nov. 16, 2010.
The present invention relates to an advanced search engine. The advanced search engine may include a client component for monitoring an end-user's browsing activity, a remote server (may comprise one or more computers) for storing and processing data received from the client component, and a module that process web pages and serves search results to end-users. The advanced search engine may collect web pages for keywords of proven interest, fetch web pages requested by end-users, generate snippets or abstracts of the web pages, eliminate duplicate web pages, rank the importance of the web pages, and provide relevant web pages or links to web pages in response to an end-user search request for information regarding one or more keywords, for example. Technical problems solved, measures used and results obtained are discussed below.
One approach to search engines, taken by Google, is to organize the world's information and make it universally accessible and useful. Another approach, once taken by Dogpile, is to have a meta-search engine aggregate the results of other search engines. These approaches create a great haystack of results. For instance, the keyword “cheap travel” returns about 18,000,000 results from Google, about 85,800,000 from Yahoo and 68,377,619 from MSN, as of summer 2005!
Much work has been done to float the “needles” to the top of the results haystack, to devise methods of ranking links returned in response to a query. Google's published patent applications propose, in their titles, to use local inter-connectivity, article information, location awareness and other factors to decide on the position of results. Yahoo, Overture and Microsoft also have worked to refine their presentation of results.
In any set of information, a search term is sometimes not enough to determine what results are sought. In one sense, the search term may be ambiguous, as extensively discussed in Bharat et al., “Generating User Information for Use in Targeted Advertising”, US 2005/0131762 A1 published Jun. 16, 2005 and in Carrasco et al., “Disambiguation of Search Phrases Using Interpreation Clusters”, US 2005/0015366 A1 published Jan. 20, 2005. The term “jaguar” might refer to cars, animals, a football team, or an operating system. Even if a term were unambiguous, different users might prefer to access different information. For instance, teenage travelers, business travelers and luxury travelers look for different travel arrangements and accommodations, potentially using similar search terms.
It is desirable to return the most relevant results, whether in response to a search or, more generally, on an information feed. The growing number of documents published on web sites (and of documents accessible on private servers) invites development of alternative or improved technology to quickly return relevant results responsive to users' queries. In effect, to find the 50 or 100 most relevant web sites for a particular user whose keyword is “cheap travel” and effectively summarize them for the user. This further invites development of technologies that personalize the information returned, whether content, sponsored content or advertising, based on the interests of the user.
The following detailed description is made with reference to the figures. Preferred embodiments are described to illustrate, not to limit the scope of the claims. Those of ordinary skill in the art will recognize a variety of equivalent variations on the description that follows. Persons of ordinary skill in the art will recognize, however, that the embodiments described can be practiced without one or more of the specific details. In other instances, well-known details are not shown or described to avoid obscuring aspects of the embodiment.
Being computer-related, it can be appreciated that the components disclosed herein may be implemented in hardware, software, or a combination of hardware and software e.g., firmware). Software components may be in the form of computer readable program code stored in a computer-readable storage medium, such as memory, mass storage device, or removable storage device. For example, a computer readable medium may comprise computer-readable program code for performing the function of a particular component. Likewise, computer memory may be configured to include one or more components, which may then be executed by a processor. Components may be implemented separately in multiple modules or together in a single module.
Embodiments and aspects of embodiments described below can be applied to solve various technical problems. One problem applies to a large network: how to monitor and usefully aggregate patterns of communication among users, search engines and documents accessed. In one scenario, the users are surfing the Internet at widely disbursed personal computers; the search engines include Baidu, Google, Yahoo! and MSN; the documents are pages posted on web sites around the world. In another, employees use an enterprise intranet with an enterprise search engine to locate reference documents exposed on workgroup servers. Addressing these problems may involve positioning a behavior observing module where it can monitor the communication channels in use and report observations to a server, preferably without disrupting the users' routines. In one embodiment, the behavior observing module may run on the user's personal computer (such as a desktop, laptop or handheld computer or media center device). The module can observe both communications and the status of the user's machine when the communications take place. For example, what search terms and results did a user follow to a particular web site? The module can achieve distributed processing and substantially reduce the resources required to aggregate communication behavior by filtering reports and categorically encoding activity. It may report observations to the server as resources are available or when a user browses to an affiliated domain. As part of the ordinary uploading of cookies to domains accessed, observation cookies can be transmitted to the server. The server can aggregate reported patterns of communication. One technical result is receiving reports from communication monitors positioned across a large network and aggregating patterns, including the status or state of individual computers when communications took place. In turn, the aggregated patterns of communications can be used to pre-organize information for retrieval or publication, in anticipation of a query or contact.
A related technical problem is how to organize over-abundant electronic records based on the current and recent status of a particular terminal connected to a network, to enhance the relevance of the first records presented to a user. The over-abundant electronic records may come from web sites world wide, such as the web sites for “jaguar.” Or, they may be documents stored on workgroup servers. They are over-abundant in the sense that they are too numerous to display on a user's screen without repeatedly pressing “page down” or the like. The current and recent status of the terminal, preferably associated with a particular user, may include web sites visited within the last 24 hours (or some other period) before a search query was submitted. Or, it may include a history of documents retrieved from workgroup servers. Either type of activity may be preprocessed and categorically classified. The period for reporting terminal status may precede a query or request for a personalized electronic journal that selects and filters the information based on the current and recent status of the terminal. The technical method again involves a behavior watching module running on the user's computer. In this embodiment, the module summarizes terminal status, publishes the summary to an electronic record (e.g., a cookie) and communicates the record to a search engine or other site that the user contacts. Reporting categorical summaries of status or activity distributes processing and reduces the need for server-based resources. The search engine uses the information, for instance, to determine what sense of “jaguar” is of interest? A highly involved auto category user who searches for “jaguar” would get Jaguar auto related links, while a person with no relevant category involvement would get a mix of auto, animal, etc. links. Category profiles may be developed to further categorize a user's interests. A new parent in the suburbs might be recognized from content accessed and be assigned to a different category for home accessories or cars than a single gen-X 20-something person. Life change events also might be recognized, such as marriage, home buying or parenthood. Like the “jaguar” example, for a “travel Italy” inquiry, the search engine might determine the style of travel that interests the user and organize the over-abundant electronic records accordingly. The technical result is respond to a query or contact based on an electronic report of the status or recent activity of a terminal, selecting from over-abundant electronic records a particular set of records that are most likely relevant to the current and recent status of the terminal.
Web-wide behavioral targeting differs substantially from site-side behavioral targeting. Practicing site-side behavioral targeting, a group of affiliated sites attempt to identify commercial behaviors. The sites typically serve ads, such as portals and news sites. Messages are displayed on the affiliated sites, responsive to behavior that is recognized from visits to the affiliated sites. The results of site-side behavioral targeting are better than non-behaviorally targeted campaigns, but depend on insight that can be gained from a narrow portion of user's behavior, as illustrated by
Referring now to
A client computer 110 is typically, but not necessarily, a personal computer such as those running the Microsoft Windows™ operating system, far example. A consumer may employ a suitably equipped client computer 110 to get on the Internet and access computers coupled thereto. For example, a client computer 110 may be used to access web pages from a web sever computer 160.
A web server computer 160 may be a server computer hosting a website, which comprises web pages designed to attract consumers surfing on the Internet. A web server computer 160 may include web pages supporting advertisements, downloadable computer programs, products available for online purchase, and so on. As can be appreciated, a website may be on one or more server computers.
A message server computer 140 may include the functionalities of a web server computer 160. In one embodiment, a message server computer 140 further includes a database 170 and a search engine 650. Database 170 may be a commercially available database, such as those available from the Oracle Corporation. Database 170 may store client data received from behavior watching and message delivery programs 120 running in client computers 110. The client data may be transmitted from a client computer 110 to message server computer 140 in a data packet 121. The client data may include navigation and behavioral data obtained by a behavior watching and message delivery program 120 by monitoring a consumer's on-line activities. In the example of
Web server computers 160 and message server computers 140 are typically, but not necessarily, server computers such as those available from Sun Microsystems, Hewlett-Packard, or International Business Machines. A client computer 110 may communicate with a web server computer 160 or a message server computer 140 using client-sever protocol. It is to be noted that client-server computing is well known in the art and will not be further described here.
As shown in
In one embodiment, behavior watching and message delivery program 120 is downloadable from a message server computer 140 or a web server computer 160. Behavior watching and message delivery program 120 may be downloaded to a client computer 110 in conjunction with the downloading of another computer program. For example, behavior watching and message delivery program 120 may be downloaded to client computer 110 along with a utility program 181 that is provided free of charge or at a reduced cost. Utility program 181 may be a wallet or calendar program, for example. Utility program 181 may be provided to a consumer in exchange for the right to deliver advertisements to that consumer's client computer 110 via behavior watching and message delivery program 120. In essence, revenue from advertisements delivered to the consumer helps defray the cost of creating and maintaining the utility program. Behavior watching and message delivery program 120 may also be provided to the consumer along with free or reduced cost access to an online service, for example.
Behavior watching and message delivery program 120 is a client-side program in that it is stored and run in a client computer 110. Behavior watching and message delivery program 120 may comprise computer readable program code for displaying advertisements in a client computer 110 and for monitoring the online activity of a consumer on the client computer 110. It is to be noted that the mechanics of monitoring a consumer's online activity, such as determining where a consumer is navigating to the URL of web pages received in client computer 110, the domain names of websites visited by the consumer, what the consumer is typing on a web page, what keyword the consumer is providing to a search engine, whether the consumer clicked on a link or an advertisement, when the consumer activates a mouse or keyboard, and the like, is, in general, known in the art and not a further described here. For example, behavior watching and message delivery program 120 may learn of consumer online activities by receiving event notifications from web browser 112.
Behavior watching and message delivery program 120 may record the consumer's online activity for reporting to message server computer 140. The recorded consumer online activity is also referred to as “client data,” and provided to message server computer 140 using data packets 121. Message server computer 140 may use the client data to provide targeted advertisements to the consumer. Message server computer 140 may include the advertisement or data for displaying the advertisement in a message unit 141. In the example of
As will be more apparent below, behavior watching and message delivery programs are primarily used to obtain client data far building a search engine index, not necessarily to display presentation vehicles in a client computer 110, That is, a behavior watching and message delivery program does not necessarily have to display advertisements in a client computer 110. This is advantageous in that consumers may be allowed to obtain a free or reduced cost utility program 181 (or other benefits) without having to see advertisements from the provider or sponsor of the utility program.
In the example of
Process Flow
Data Collection
Web usage statistics are collected (407) using behavior watching modules (120) for users searching on selected search engines across the Internet or an enterprise intranet. The modules send back information related to their searches and how effective their searches were on each particular search engine for each particular keyword. The information is captured in a database, which is loaded daily or at some other concurrent frequency. Information available includes what the user saw and how they responded. URLs seen by the user may be displayed in algorithmic or natural sections the results. Pertinent information available for a single search term includes machine id, keyword, search engine where search was performed, resultant URLs, algorithmic URLs, bidded URLs, paid inclusion URLs, whether or not a URL was clicked, number of pages viewed, dwell time, repeat visits and user metrics such as category involvement and search engine sophistication.
Some statistics from U.S. users can bring to life the analytical reach of data collection and ranking. The one million most frequently used keywords presently account for just more than half of the searches conducted on the major search engines, 53% of the searches. The 10,000 most frequent searches account for 38%. The distribution of keywords entered as searches can be represented by a Zipf distribution, which plots as a straight line on a graph with logarithmic scale on both axes. See, e.g., Jacob Nielson, “Diversity is Power for Specialized Sites”, Alertbox (Jun. 16, 2003) accessed Aug. 13, 2005 at http://www.useit.com/alertbox/20030616.html. It is estimated that 2,000 behavior watching modules will generate enough data to rank the 10,000 most frequent searches. A larger group of behavior watching modules will cover the most frequent searches. A base of 40 million behavior watching modules may capture 30 billion rows of data per month, filtered from 150 billion page views observed. Among the page views observed, on the order of 8 billion commercial events per month are noted, including more than 2.5 million purchases. These numbers and even a passing familiarity with statistics should excite the reader to aggregating the intelligence and behavior of a multiplicity of searchers, and presenting by popular acclaim the most significant web sites on the first page of results from a search engine. A search engine that uses aggregated consumer behavior is well-positioned to rate the authority and popularity of pages/documents as responsive to a search request.
With the categorical coding of recency and frequency in mind, we turn to
The behavior watcher module 120 preferably sorts the category history information in
The statistics returned regarding web usage may or may not distinguish between commercial and non-commercial keyword searches. This distinction is made at the time of loading into the database where keywords are checked against the ever-changing list of commercial terms, for instance, terms bidded by Overture. If a keyword is determined to be commercial, then it is assigned a keyword id, which may be compatible with the Overture keyword id list. If the keyword is not deemed commercial, then another id is assigned in the data loading process.
These two types of data (commercial and non-commercial) are loaded into separate sections of a data warehouse. At the time of a new search engine loading run, keyword data is extracted from both the commercial and non-commercial tables. The results are joined and unique keyword ids are assigned from a master table. A keyword can sometimes be found in both the commercial and non-commercial contexts. For instance, if the commercial nature of a keyword is tied to whether it's being bidded upon, a keyword which is not commercial today may become a commercial tomorrow, if it receives a bid. This duality of keywords creates non-unique keyword ids as the same keyword may have both a keyword id created by a bidding process and a second one created through the load process. To eliminate this, it is preferred to create and-maintain a single unique keyword id for every keyword. This list is updated when new keywords are discovered, and assigns existing ids to keywords already in the system.
Some preprocessing may be performed by the behavior watching module to simplify the URLs reported. URLs are unwrapped and cleaned in a separate process. URLs are often wrapped by search engines to enable the serving search engine to track clicks on served URLs. There are many different forms of URL wrapping. For example, a wrapped URL from yahoo.com might be: http://rds.yahoo.com/S=2766679/K=bmw/v=2/SID=w/1=WS1/R=2/SS=100040736/H=1/SHE=0/*-http://www.bmwmotorcycles.com/. Unwrapping the URL produces http://www.bmwmotorcycles.com
From the server's perspective, the process begins with receipt (401) of behavioral information. The server uses whatever information it receives. From the user's perspective, the behavior watching module will report its observations and the user will receive search results ordered aggregating the user's information with others and/or will receive personalized to the user's recent behavior.
De-duping may also occur at the URL level. Information for two URLs which are identical is aggregated into one single URL. If two URLs differ even slightly however, (e.g., by a slash) then the two distinct versions are kept and another attempt at de-duplication is made as described below, for instance, using a combination of title and generated snippet.
Conversion data can be associated to a specific search by an algorithm that ties a search URL click to a specific conversion event, which occurred within a predetermined window. Usage and conversion data are matched for advertiser domains (URLs) that have clicks at the machine id, query time, advertiser domain level. For a particular machine with a click on a particular advertiser domain, if a conversion stat is observed within a predetermined window, then the conversion is attributed to that search click. If the conversion falls outside of the predetermined window, then the search click is not attributed.
For machine id-advertiser domain pairs that have a conversion stat attributed, subsequent future conversions are attributed as repeat conversions. These attributes also may be carried along and are available for use by a ranking algorithm (404). Metrics included with search data include number of visits, time spent (dwell time) and pages viewed.
Domain event data are joined to user data (with conversion metrics) at the machine id-advertiser domain level across sources, for combining search behavior for U.S. machines at google.com, msn.com, and yahoo.com. These results are put into time series order within machine id and advertiser domain. Domain events which occur within a predetermined time period following a search click are assigned as post-click metrics for that search click on that particular advertiser domain. If post-click metrics cannot be assigned to a particular search-click, the record is thrown out.
Several of the domain event data elements are subject to inaccuracies manifested in the client-sent stats. Both time spent and pages viewed are occasionally misreported, and at other times, accurately reported, but in need of logically driven limits to be imposed.
Time spent can be misrepresented by machines having bad or inaccurate clocks. It can be accurately represented but in need of caps in such a case when a machine is left on a particular domain for an extended period of time. In order to cap outliers and to maintain a reasonable threshold for time spent on a site post click, a time limit of 30 minutes has been employed. A cap for pages viewed has also been implemented and set at 5. Other time and pages viewed caps may be substituted. These caps can be implemented on the behavior watching client side or after data are received at a host. In addition, user activity can be monitored by the behavior watching module so that extended periods of inactivity are not counted as dwell time.
When data are joined and aggregated at the machine-id, keyword, and URL level, the resulting data structure may include: machine-id, keyword, keyword_id, URL, URL_ID, domainid (corresponds to the domain of the URL), clicks, dwell_per_click, pages_per click, conversions_per_click, rank_position (from search results list viewed by the user). Optionally, only keywords of predetermined interest (402 may be processed. For instance, keywords having commercial interest, such as bidded keywords, may be processed.
Outliers optionally may be removed (403), to avoid scoring anomalies. One example of an outlier is a link that is returned only once by a search engine and followed with enthusiasm by the user when was returned. A single strong sample point can give a link an unbeatable average score. A link that appeared just before a keyword was rescored could potentially be ranked in the top position for that keyword on the basis of a single sample! Accordingly, one example of optionally removing outliers is to not rank links unless they have been followed a predetermined number of times. For instance, if a link has not been selected by users and followed at least 10 or 100 times, it might remain unranked until its activity level reached the predetermined level or threshold
Ranking Algorithm
A URL ranking algorithm (404) has been developed to identify and rank links for any given keyword. Many variations on combining the aggregated observations have merit, as discussed below. One combination uses URL click rate and dwell time metrics (time spent at the domain and/or number of pages viewed), to select and rank URLs.
Optionally, user responses can be normalized for the position of a URL in a search result set. Position produces an inherent bias in URL click data for search results, which may be desirable or not. URLs occupying higher ranks gamer higher clicks. In order to account for this bias, a normalization algorithm was developed to put clicks on links in disparate positions on equal footing.
Data is aggregated for each position and average click through rates, average time spent, and average pages viewed are calculated. For each rank position (1-n), there are at least three average aggregate measures of that position's importance: click through rate, time spent and pages viewed. Normalization of these measures can be expressed as:
This embodiment calculates and ranks top URLs for any keyword (404) based upon observed user metrics.
This embodiment may re-rank results based upon a time share metric, which corresponds to an individual machine's percentage vote. The algorithm takes into account user web surfing patterns and effectively places users on equal voting for relevant links. The premise is that a user has a certain amount of time which is spent on a site post a search click. These times are totaled to form the individual user's total time value which was spent viewing sites post search clicks. Percentages of the total time are then calculated for each URL click made by that particular user, resulting in a time fraction vote.
In using this methodology, users who in general spend less time surfing the Web have the same voting power as users who tend to spend longer amounts of time. This evens the playing field across all categories. Alternatively, other embodiments may take into account other factors which make up an individual user's profile. Users identified as category experts may have a higher vote. For example, a user highly involved in the electronics category may have his vote count more for links clicked than a user who is new to the category. The voting blocks may take place within a particular category, and not across all categories as a whole.
The following detailed computational example applies to a specific keyword-URL pair through the aggregation and cleansing process.
Links in higher positions garner higher clicks and hence possess higher click through rates. It follows that users also tend to spend longer amounts of time and view more pages at URLs occupying these higher ranks. In order to account for this bias, a normalization process is applied.
Average clicks, average dwell time, and average pages viewed are calculated for each position regardless of keyword or URL combinations. These numbers are shown below as Position Averages. Average fraction clicks, dwell time and page views are also shown for this keyword, URL combination. These average fractions correspond to the percentage of each metric devoted by all machines to each keyword, URL, position grouping.
Inflation factors are calculated for each position and applied to the appropriate observed metrics, normalizing them for position. The normalizing equation:
Clicks, dwell time, and page views in lower positions are factored up by the appropriate inflation factor observed for that particular position. In the example below, the average fraction dwell time for position 7 pre-normalization was 0.32. After the application of the inflation factor, the average fraction dwell time was 0.53. This number is now a normalized dwell time.
Weighted averages are calculated for each metric at each position, and totals are calculated across the positions for clicks, and all of the weighted average fraction measurements; clicks, time and page views.
Over time, with new reports of web usage from behavior watching modules, URLs for a particular keyword will adjust their positions. A URL in position 1 this week may be in position 7 the next. Adjusting for position is therefore a cleanup and adjustment process.
The final result is the Weighted Average of Normalized Totals for Keyword 01, URL 101, at any position. Computed for every keyword, URL combination a single score is calculated for each metric needed for the ranking algorithm. These metrics are now normalized for position, and for multiple rank occurrences.
Ranks for scoring can be based on time that a user spends viewing pages on the domain. The information received from the behavior watching module may limit the maximum amount of time that will be assigned for any viewing session or it may track the user's behavior, such as window navigation between programs, mouse clicks or mouse movement, and disregard periods of inactivity when calculating dwell time.
Ranking may ignore links that were selected by users less than a predetermined number of times, which may be predetermined as a fixed number or a function of traffic for the keyword or category. Ignoring outlier links may avoid giving a high ranking to a link that was rarely presented by the search engines and followed only once or twice.
Ranks for scoring also can be based on a combination of click through rate, dwell time and the number of pages or documents viewed after following the link. Combining these factors, in some instances one of the factors will dominate: all or more than two thirds of the ranking weight may be assigned to just one of click through rate, dwell time or number of pages or documents viewed. Alternatively, they may be equally weighted, plus or minus 10%, or the factors may be assigned weighting ratios of approximately 2-1-1, plus or minus 10%, so that one factor is given approximately half of the combined weighting.
Another factor that can be used in ranking is return visits. If the user returns to the domain within a predetermined time after leaving it or within a predetermined number of navigation events, the user's return to the site can be assigned significance. Return to the site may reflect a favorable impression after considering other sites.
Conversion from browser to buyer or registered lead can considered to be particularly worthwhile as a factor. Again, conversion may include both a purchase in the domain and a registration. In some instances, such as car or home purchases, registration may be more realistic measure, because the purchase may be impractical or infrequently completed at a web site. Return conversion also may be taken into account.
Results may be segregated for analysis by search engine and ranks scored. Then, the separate rank scores may be combined into an overall ranking.
Statistical or other analysis can be applied within categories or keywords to determine which combination of ranking factors best attracts users to follow a link responsive to a search. It is anticipated that ranking information will be used differently among categories of keywords. Time spent will be important in the auto is category. Conversions will be much more important music downloads category.
Optionally, click segmentation bands may be applied. These bands give precedence to URLs with high numbers of clicks. Employing these bands may improve the resultant links on selected algorithms.
Segmentation bands are identified based upon total clicks received by a particular URL. For instance:
URLs for a particular keyword are first put into the appropriate segmentation band. Once the band is identified, these URLs are set in descending order by rank score.
A predetermined number of links, such as the top 15 links (4XX), may be selected for data collection, to be followed by a spider engine (4XX).
Three tables are generated as output from the rank process:
Following Links
Traditional crawling programs at other search engines (ex: Slurp at Yahoo!, Googlebot at Google, MSNBot at MSN) crawl the entire web in search of relevant pages to index to be used in determining the rank order of links to display for a given keyword. The embodiment disclosed here, in contrast, is given a succinct number of URLs to crawl, which may optionally be selected (405) from links reported by the behavior watching module. These links are pre-ranked, hence this information retrieval process needs not determine the relative importance of a given URL from its connections to others, but rather to obtain the best possible descriptive information from the URL.
This embodiment takes a specific set of URLs and performs several specific tasks: It strips out all HTML tags and returns first 100k or another predetermined chunk of the text on the page to a file. It takes and stores a mapping from the text object's value into a uniform scalar space to be used as a text signature or text fingerprint. It calculates an MD5 or other fingerprint of the document (with or without html tags). It calculates a summary count of the characters within the text extracted from the document.
This method may be implemented by a Java application which operates in a Linux environment as illustrated by
Total threads working for a single broker can be arrived at by the following equation: With i number of spiders each having j number of workers (threads):
The dual-broker model (1821, 1822) can segregate keywords by keyword velocity. General keywords are funneled through a robust, heavy duty version of the ranking algorithm. Fast moving keywords (e.g., news, current events) can be processed through a nimble, express version of the ranking algorithm, which uses less history. Keyword velocity is a measure of how quickly the popularity of a keyword changes. The highest velocity keywords can be selected by comparing the number of keyword searches in the last 24 hours (day 0) against the 24 hours before that (day-1). A different time span, such as four or eight hours, can be used, of course. How far the ratio day 0/day-1 varies from “1” is the keyword velocity. If the ratio is less than 1, the keyword is becoming less popular, “old news.” If the ratio is much more than 1, the keyword may relate to a new story. Generally, a predetermined number of relatively high velocity keywords are re-indexed at a predetermined interval or as resources permit. In one embodiment, the top 10,000 keywords are re-indexed each day. While one metric of keyword velocity or volatility has been described, variations are anticipated.
The heavy duty version handles the ranked keyword URL pairs. These ranked keywords URL pairs are made available through an Oracle table on a database. The URL_TABLE includes: DOMAINID, URLID, URL, LENGTH, SIGNATURE_H, SIGNATURE_T, SPIDER_DATE and HOST
The DOMAINID, URLID, and URL fields are populated from a reference database prior to following the links. After the link-following process for a specific URL, the LENGTH, SIGNATURE_H, SIGNATURE_T, SPIDERDATE, and HOST fields are written back to the database.
Brokers use Java Database Connectivity (JDBC) to connect in to the Oracle database. The broker accesses the URL_TABLE from the ranking-process. The broker makes a request for 1/100th of the total number of domains which are available in the URL table for which SPIDER_DATE is null. All URLs associated with these domains are extracted by the broker where they are grouped by domain. Individual spider boxes talk to the Broker via Remote Method Invocation (RMI) requesting URLs for domains 1,000 domains at a time. Domains are then passed from the spider to a worker who takes all of the URLs associated with its domain and operates upon those URLs.
URLs are passed to the workers grouped by domain in order to accommodate generally accepted crawling or link following practices so as not to swamp domains with thousands of requests simultaneously. It is a generally accepted practice to not access a single domain with more than one request at a time. The link following process (406) respects this generally accepted principle by assigning each worker all URLs associated with a given domain.
The link following process (406) is a robust, scalable, application which fetches content and calculates statistics from a specific URL. Once a worker receives a domain and its associated URLs, it accesses that URL using HTTP protocols. If a good response code is received, a link following worker goes to work on that page. The worker receives a 200 response code (status OK) more than 98% of the time. If the page returns an HTTP code indicating a redirect (codes 301, 302, 303 and 307), further action must be taken by the worker or system in order to obtain information about that URL. A worker will follow up to 5 redirects from an initial URL before abandoning. Once the worker reaches an end point, the following tasks take place: Acquire HTTP return code from the URL. If a good response code is acquired: Identify title meta tag if available; calculate an MD5 fingerprint of the entire document (both HTML and text); parse HTML from the page; and write back first 1,000 k of text to disk.
Once the content is parsed and written back to the disk, a subsequent operator takes over. This operator makes several calculations used for the document fingerprint and writes those and other statistics back to the Oracle database. The system writes back the following fields to Oracle: URL_TABLE, DOMAINID, URLID, URL, LENGTH, SIGNATURE_H, SIGNATURE_T, SPIDER_DATE and HOST.
LENGTH is a count of characters in the text of the document (first 1,000 k). This feature can be used for de-duping URLs later in the process (408). SIGNATURE_H is the MD5 hash code signature. SIGNATURE_T is a CRC32 checksum code of the text (first 1000 k). SPIDER_DATE indicates the date and time that the particular URL was accessed. HOST pertains to which spider machine stored the text of the URL.
The following system may create three different measures designed to aid in document de-duplication (409). This de-duplication process aims at identifying documents that are identical or very similar within a given keyword result set. In a prior step not separately shown, URLs are de-duped at the URL level. Easily identified duplicates such as two occurrences of the exact same URL are eliminated. The system attempts to eliminate URLs that do not appear to point to the same page, but in fact do. In one embodiment, mathematical signatures (fingerprints) are taken for each URL and compared to other URLs within a given keyword result set. Three exemplary signatures are a length signature, an MD5 signature and a CRC32 checksum. Other signatures may be substituted.
For the length signature, the character length of the text document is calculated. This measure aids in the de-duping process to aid in giving context to a page which has been identified as a duplicate. For instance, if two sites show identical MD5 and CRC32 signatures, but have very disparate URLs, the signature is analyzed. If the length signature is low, meaning the page is small, it is likely that these two URLs share, for instance, a standard warning screen as would be found prior to entering an adult content site.
An MD5 signature typically is a way to verify data integrity. The MD5 algorithm takes as input a message of arbitrary length and produces as output a 128-bit “fingerprint” or “message digest” of the input. The MD5 algorithm is intended for digital signature applications, where a large file must be “compressed” in a secure manner. The system computes an MD5 signature for the entire document, reducing the identity comparison process to a 128-bit comparison, for instance.
A CRC32 checksum generates the cyclic redundancy checksum polynomial of 32-bit lengths. This is usually used to validate the integrity of data being transmitted. The CRC is a “digital fingerprint” of a file, With CRC32 you can “melt down” a huge 20 MB (or even much bigger) file to have a small, handy reference to it, a single 32-bit number like 7d9c42fb (hexadecimal notation) which reflects the entire contents of this huge file. The system computes a CRC32 signature of the text of the document, giving insights into the text content of the page.
Another signature that can be calculated and used is Rabin's fingerprinting algorithm, for instance Broeder's implementation, which produces a compact checksum.
Any of the checksums or fingerprints can be applied to the whole document, the whole document less HTML tags stripped away, the selected chunk of the document that is cached, the title and snippets or some other predetermined excerpt from the document. More or less than 1,000 k of the document can be used.
The process completes a run for a particular URL with data being written to an Oracle database and a spider box. The Oracle database receives fingerprint information (length, MD5, crc32), spider date/time, and host location information written to URL_TABLE and a spider date/time stamp written to KEYWORD table. The spider box receives files for data links that it followed: URL, title (if it was obtained during the initial fetch from the URL) and text of the document (first 1,000 k) to be used for snippet generation. The text contains elements of the meta description and the body of the document
Snippet Generation
A snippet generation process generates titles and snippets for display (407). The snippet process takes a keyword phrase and URL combination, comes up with the best title describing that URL, and creates the best snippet (i.e., abstract, description) for that URL outlining in a 200 character space the information contained in the URL that pertains to the keyword. Snippet generation follows the link following process. Snippets are created from the text of the document retrieved from the chosen URL.
The keyword “somec bicycles” produces the following sample text for display:
In this example, the title is “Upland Sports . . . Frames”. The snippet is the two lines following the title. The URL is on the bottom line.
Titles are usually generated from the title of the page retrieved when a link is followed. Most sites annotate the title of the page for search engines through the use of HTML meta tags. A tag identifying the title is present on over 97% of all URLs.
In the 3% of URLs for which the HTML tags do not supply a title, the process composes a title. If there is text available for the URL, the process takes the first approximately 70 characters of text (respecting word boundaries) and creates a title. If there was no text generated from the URL, the domain name is stripped from the URL (all information between www and .com) and displayed as the title.
Snippet generation is a mix of art and science. The process creates snippets leveraging mathematical equations and linguistic science. In one embodiment, snippets can be comprised of 1 single sub-snippet, or up to 3 sub-snippets separated by ellipses (. . . ). A scoring algorithm decides which sub-snippets when combined (or not in the case of a single sub-snippet) produce the best score.
The snippet scoring algorithm is a multi-step process which scores various portions of the document's text. In four parts, it includes keyword tokenization, window scoring, window trading and final determination.
Keyword tokenization is applied because keywords are not always single words. Keywords are often multi-word phrases. The process tokenizes or single outs individual words within a phrase. Identifying individual word tokens typically includes searching for word separators such as spaces, periods, commas, or colon/semicolons. Once the tokenization of the keyword phrase is complete, the window scoring routine can commence.
In one version of window scoring, windows of three different sizes are calculated within the text of the document, for instance, for sub-snippet of lengths 200 characters, 100 characters and 66 characters.
When the process is complete, there may exist:
i windows of length 200 (where i=document length−200)
j windows of length 100 (where j=document length−100)
k windows of length 66 (where k=document length−66)
Window scoring may be based on one or more metrics, such as the number of unique tokens found within the window, the total number of tokens found within the window, and/or the longest string of tokens found within the window. A formula for each window is computed from a combination of these metrics and assigned to that window.
In the case where there is one 200 character snippet, the window with the highest score is chosen. The two highest scoring windows of length 100 are chosen for the two sub-snippet model. The three highest scoring windows of length 66 are chosen for the three sub-snippet model.
The best scores are calculated for each model (1, 2, or 3 sub-snippets). A final algorithm may be applied when 2 or 3 windows are eligible for a snippet. If the global window score can be increased by one window giving up characters to another, then that action is seen as a gain and it is taken. If the global window score cannot be raised in this manner, the snippets are used without trading.
The output from snippet generation may include 5 different scores: Score of single sub-snippet model; score of non-traded two sub-snippet model; score of traded two sub-snippet model; score of the non-traded three sub-snippet model; and/or score of the traded three sub-snippet model. Of these, the single highest score is chosen and that sub-snippet model is applied to that keyword, URL combination.
For a sample keyword=“red dog run”, the following steps may be followed:
Step 1: Tokenize keyword into three tokens:
Step 2a: Locate instances of the tokens within the text document
Step 2b: Score the windows and identify the top ones. In this example, the three sub-snippet model, the best 3 windows were calculated.
Step 3: Allow for trading to occur. In this case, if window I can give up some of the non-token containing characters within it's left edge to window 3. This allows window 3 to expand and include the final token ‘run’, increasing the overall global score of the snippet.
In an alternative embodiment, the snippet generation process may involve the creation of an approximately 200 byte field used as a descriptor for the associated link. Snippet generation takes place post spidering and is created from the complete text of the document associated with the chosen URL or at least the portion of the document stored.
Personalization (410) and Ranking
Within the ranking algorithm, there is the ability to select anonymous users who, based upon their behavioral profile, would have their votes for particular categories of links count more than other users.
Users who are heavy searchers (based upon their observed search behavior) would have their votes count more on links that they click more than the votes of novice searchers on that same link. In this way, the search experts would help produce more relevant ranking results.
Similarly, users who are highly involved in a particular category would have their votes count higher in that category than users who have no involvement in that category. Using behavior watching modules, one can identify users who are highly involved in various categories such as digital cameras, fantasy sports, or automobiles. For example, a user identified as being highly involved in the digital camera category would have his vote count more for links he clicked after a search for ‘Cannon G3’ than a user who is new to the category searching on that same keyword.
Identification of a user's category involvement status also drives personalization. A user with a high degree of involvement in a particular category would get different results from a user identified as less involved. This personalized results serving would require the presence of a cookie like object available on a particular machine. This lifestyle cookie would provide the search engine with a behavioral profile of the user, obtained from the users category navigational patterns. These category specific navigational patterns would be obtained from information contained in a categorization structure that also can be used for targeted advertising. For commercial purposes, a budget category or likely budget can be inferred from sites visited. Visitors to IKEA and Target are likely to have a different budget for apparel than visitors to Sachs Fifth Avenue or Bloomingdale's. Similarly, Hyatt Hotels are in a different budget category than youth hostels.
Personalization based on observed communications is much more powerful than user-entered customization, because research shows that only 8-14 percent of users manually personalized their content. Personalization highly correlates with pages viewed at a domain: users who personalize have been reported to view 130 percent more pages at the domain than users who do not personalize.
Sometimes different behavioral profiles can be leveraged to make a difference in search results (411). Other times, differences between two users' behavioral profiles does not help in the context of a particular search keyword.
Some examples are helpful. First, an ambiguous search terms example: A highly involved auto category user who searches for “jaguar” would get more Jaguar auto related links than jaguar animal related links as compared to a normal mix of auto and animal related links for someone with no identifiable category involvement. Identification and usage of these behaviorally profiles could slant results, without completely replacing results. In the example above, the auto category involved user could get 100% auto results, or just a larger percentage of auto results than found among popular websites.
Next, a sub-category identification example: Three users search for the keyword “rental, car”. Three separate sets of results come up, each personalized for the users. Each user has a particular behavioral profile obtained from their past navigational patterns observed within the travel category. These behaviors are readily identifiable from the observed communications.
User 1: Frequent business traveler—his rental car results would be slanted toward the business traveler car rental results, possibly more about frequent rental points, etc.
User 2: Budget traveler—his rental car results would be slanted toward the budget traveler; rent-a-wreck type results, specials on sub-compact cars etc.
User 3: Luxury Traveler—his rental car results would be slanted toward the high-end luxury traveler; sports car rentals, classic car rentals, etc.
Return visit data from the behavior watching module can assist an advertiser in measuring the effectiveness of a particular ad. User differentiation by box can further be associated with selection of ads and evaluation of ad effectiveness.
Cross-browsing of users also can be reported. Users can be selected by follow-through, for instance all click-throughs or all users with conversions. The users with a conversion at a particular domain (or vendor or brand, for instance) can be rated by the frequency of their visits to competitors' domains (or vendors or brands).
Some Particular Embodiments
The present invention may be practiced as a method or device adapted to practice the method. The same method can be viewed from the perspective of a user at their terminal or personal computer or on the server side, collecting information from users. The invention may be an article of manufacture such as media impressed with logic to carry out computer-assisted method.
A device embodiment, from the user perspective, may be embodied in a module running on the user's computer and collecting behavioral observations, coupled to a server that responds to the behavioral observations with information personalized to the user.
While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is understood that these examples are intended in an illustrative rather than in a limiting sense. Computer-assisted processing is implicated in the described embodiments. Accordingly, the present invention may be embodied in methods aggregating of communication patterns, pre-processing links responsive to keyword searches, responding to keyword searches using aggregated communication patterns to rank the responsive links, and responding to keyword searches using recent and current navigation information systems to resolve ambiguities and/or personalize responses based on user characteristics. Other embodiments, as devices, include logic and resources to carry out thes methods. As systems, still other embodiments include behavior watching modules on terminals, servers that process or respond to the behavioral data, or both. Other embodiments include media impressed with logic to carry out the methods, data streams impressed with logic to carry out the methods, or computer-accessible services that carry out the methods. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.
A further embodiment is a method resolving ambiguity in a keyword search terms submitted by user to a search engine. This method includes receiving, from a behavior watching module operating on the user's computer, information regarding the user's recent navigation behavior. The navigation behavior includes accessing documents that are not all associated with a particular server-side behavior data collection network and further includes at least one of a mouse click-through, enter key stroke or other selection action and at least one keyword derived from context of the selection action. The server determines a plurality of interest categories to which the search term plausibly belongs and selects among the plurality of interest categories using the recent navigation information.
One aspect of the behavior watching modules operation is that it may categorize behaviors by interest categories and recency. The documents accessed may be web pages and the server-side behavior data collection network may be an advertising network.
From this perspective of the behavior watching module, this embodiment may be practiced as a method of supplementing a search request with information that reflects a user's recent navigation behavior among documents accessible via a network. This method includes operating a behavior watching module on the users computer, collecting information regarding the users recent navigation behavior. The recent navigation behavior information includes at least identifying documents electronically accessed by the user; categorizing the documents accessed; and indicating when documents in the categories were accessed. The behavior watching module submits at least a summary of the recent navigation behavior information along with a query to one or more servers including a search engine. The user receives from the search engine a set of results by asked to an interest category corresponding to the submitted recent navigation behavior information. Alternatively, the user may receive from the search engine a set of results by us to a budget category corresponding to the submitted recent navigation behavior information. More generally, any category that can be discerned from the recent navigation behavior can be reflected in a bias of search engine results received in response to the query.
Another embodiment is a method of personalizing content in response to a keyword search term submitted by a user to a search engine. As with the disambiguation method above, this method includes receiving, from a behavior watching module operating on the user's computer, information regarding the user's recent navigation behavior. The navigation behavior includes accessing documents that are not all associated with a particular server-side behavior data collection network and further includes at least one of a mouse click-through, enter key stroke or other selection action and at least one keyword derived from context of the selection action. The server determines a plurality of likely budget categories to which results belong and selects among the likely budget categories using the recent navigation information.
For embodiments using recent navigation behavior, the navigation behavior may reflect recent navigations, including navigations with in the last hour and the last day. Alternatively, it may include recent navigations within periods of time determined to correlate to user responsiveness to information. The user navigation information may be summarized into interest categories were likely budget categories when it is received or after it is received. More generally, any category that can be discerned from the recent navigation behavior can be reflected in a bias of search engine results received in response to the query.
The embodiments and various aspects of the embodiments described above may be practiced as a machine readable memory including instructions to carry out the methods and aspects of methods described or a data stream including the machine-readable instructions. Further, a device may include one or more servers, personal computers or other computer devices having logic and resources adapted to practice the methods and aspects of methods described.
This application claims the benefit of U.S. provisional Patent Application Nos. 60/603,140 entitled “Method and Apparatus for Responding to End-User Request for Information” by Westover et al. filed on Aug. 19, 2004; 60/637,684 entitled “Method and Device Publishing Cross-Network User Behavioral Data” by Wohlers et al. filed on Dec. 20, 2004; 60/662,680 entitled “Method and Device for Publishing Behavioral Observations to Customers” by Eagle et al. filed on Mar. 17, 2005; and 60/660,798 entitled “Method and Apparatus for Responding to End-User Requests for Information” by Westover et al. filed on Mar. 11, 2005. This application continues-in-part the disclosure of U.S. patent application Ser. No. 11/015,583 entitled “Search Engine for a Computer Network” by Anthony G. Martin filed on Dec. 17, 2004. These identified applications are incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4455083 | Elmes | Jun 1984 | A |
4575579 | Simon et al. | Mar 1986 | A |
4719567 | Whittington et al. | Jan 1988 | A |
4775935 | Yourick | Oct 1988 | A |
4782449 | Brinker et al. | Nov 1988 | A |
4799146 | Chauvel | Jan 1989 | A |
4850007 | Marino et al. | Jul 1989 | A |
4977594 | Shear | Dec 1990 | A |
5027400 | Baji et al. | Jun 1991 | A |
5029104 | Dodson et al. | Jul 1991 | A |
5093718 | Hoarty et al. | Mar 1992 | A |
5099420 | Barlow et al. | Mar 1992 | A |
5105184 | Pirani et al. | Apr 1992 | A |
5159669 | Trigg et al. | Oct 1992 | A |
5165012 | Crandall et al. | Nov 1992 | A |
5196838 | Meier et al. | Mar 1993 | A |
5202961 | Mills et al. | Apr 1993 | A |
5220420 | Hoarty et al. | Jun 1993 | A |
5220516 | Dodson et al. | Jun 1993 | A |
5220564 | Tuch et al. | Jun 1993 | A |
5231499 | Trytko | Jul 1993 | A |
5247517 | Ross et al. | Sep 1993 | A |
5253341 | Rozmanith et al. | Oct 1993 | A |
5268963 | Monroe et al. | Dec 1993 | A |
5283639 | Esch et al. | Feb 1994 | A |
5283731 | Lalonde et al. | Feb 1994 | A |
5285442 | Iwamura et al. | Feb 1994 | A |
5297249 | Bernstein et al. | Mar 1994 | A |
5305195 | Murphy | Apr 1994 | A |
5307456 | MacKay | Apr 1994 | A |
5313455 | van der Wal et al. | May 1994 | A |
5315580 | Phaal | May 1994 | A |
5319455 | Hoarty et al. | Jun 1994 | A |
5321740 | Gregorek et al. | Jun 1994 | A |
5325423 | Lewis | Jun 1994 | A |
5325483 | Ise et al. | Jun 1994 | A |
5327554 | Palazzi et al. | Jul 1994 | A |
5333237 | Stefanopoulos et al. | Jul 1994 | A |
5347632 | Filepp et al. | Sep 1994 | A |
5355472 | Lewis | Oct 1994 | A |
5355501 | Gross et al. | Oct 1994 | A |
5361091 | Hoarty et al. | Nov 1994 | A |
5361199 | Shoquist et al. | Nov 1994 | A |
5361393 | Rossillo | Nov 1994 | A |
5367621 | Cohen et al. | Nov 1994 | A |
5373375 | Weldy | Dec 1994 | A |
5392447 | Schlack et al. | Feb 1995 | A |
5412720 | Hoarty | May 1995 | A |
5418549 | Anderson et al. | May 1995 | A |
5438518 | Bianco et al. | Aug 1995 | A |
5442771 | Filepp et al. | Aug 1995 | A |
5446919 | Wilkins | Aug 1995 | A |
5469553 | Patrick | Nov 1995 | A |
5481741 | McKaskle et al. | Jan 1996 | A |
5483466 | Kawahara et al. | Jan 1996 | A |
5491785 | Robson et al. | Feb 1996 | A |
5499340 | Barritz | Mar 1996 | A |
5500890 | Rogge et al. | Mar 1996 | A |
5515098 | Carles | May 1996 | A |
5515270 | Weinblatt | May 1996 | A |
5515490 | Buchanan et al. | May 1996 | A |
5517612 | Dwin et al. | May 1996 | A |
5524195 | Clanton, III et al. | Jun 1996 | A |
5524197 | Uya et al. | Jun 1996 | A |
5530472 | Bregman et al. | Jun 1996 | A |
5530759 | Braudaway et al. | Jun 1996 | A |
5530852 | Meske et al. | Jun 1996 | A |
5532735 | Blahut et al. | Jul 1996 | A |
5541986 | Hou | Jul 1996 | A |
5544302 | Nguyen | Aug 1996 | A |
5544320 | Konrad | Aug 1996 | A |
5548745 | Egan et al. | Aug 1996 | A |
5563804 | Mortensen et al. | Oct 1996 | A |
5564043 | Siefert | Oct 1996 | A |
5572643 | Judson | Nov 1996 | A |
5579381 | Courville et al. | Nov 1996 | A |
5583560 | Florin et al. | Dec 1996 | A |
5583763 | Atcheson et al. | Dec 1996 | A |
5584025 | Keithley et al. | Dec 1996 | A |
5590046 | Anderson et al. | Dec 1996 | A |
5594509 | Florin et al. | Jan 1997 | A |
5594779 | Goodman | Jan 1997 | A |
5596718 | Boebert et al. | Jan 1997 | A |
5602905 | Mettke | Feb 1997 | A |
5604542 | Dedrick | Feb 1997 | A |
5606359 | Youden et al. | Feb 1997 | A |
5608850 | Robertson | Mar 1997 | A |
5615131 | Mortensen et al. | Mar 1997 | A |
5615325 | Peden | Mar 1997 | A |
5617526 | Oran et al. | Apr 1997 | A |
5621456 | Florin et al. | Apr 1997 | A |
5627886 | Bowman | May 1997 | A |
5629978 | Blumhardt et al. | May 1997 | A |
5630081 | Rybicki et al. | May 1997 | A |
5635979 | Kostreski et al. | Jun 1997 | A |
5638443 | Stefik et al. | Jun 1997 | A |
5642484 | Harrison, III et al. | Jun 1997 | A |
5649186 | Ferguson | Jul 1997 | A |
5657450 | Rao et al. | Aug 1997 | A |
5664948 | Dimitriadis et al. | Sep 1997 | A |
5673322 | Pepe et al. | Sep 1997 | A |
5675510 | Coffey et al. | Oct 1997 | A |
5680562 | Conrad et al. | Oct 1997 | A |
5682525 | Bouve et al. | Oct 1997 | A |
5684715 | Palmer | Nov 1997 | A |
5684969 | Ishida | Nov 1997 | A |
5701451 | Rogers et al. | Dec 1997 | A |
5704017 | Heckerman et al. | Dec 1997 | A |
5706434 | Kremen et al. | Jan 1998 | A |
5706502 | Foley et al. | Jan 1998 | A |
5708709 | Rose | Jan 1998 | A |
5708780 | Levergood et al. | Jan 1998 | A |
5710884 | Dedrick | Jan 1998 | A |
5710918 | Lagarde et al. | Jan 1998 | A |
5712979 | Graber et al. | Jan 1998 | A |
5715453 | Stewart | Feb 1998 | A |
5717860 | Graber et al. | Feb 1998 | A |
5717923 | Dedrick | Feb 1998 | A |
5721827 | Logan et al. | Feb 1998 | A |
5721908 | Lagarde et al. | Feb 1998 | A |
5724521 | Dedrick | Mar 1998 | A |
5724556 | Souder et al. | Mar 1998 | A |
5724567 | Rose et al. | Mar 1998 | A |
5727129 | Barrett et al. | Mar 1998 | A |
5727159 | Kikinis | Mar 1998 | A |
5734863 | Kodosky et al. | Mar 1998 | A |
5737619 | Judson | Apr 1998 | A |
5737739 | Shirley et al. | Apr 1998 | A |
5740252 | Minor et al. | Apr 1998 | A |
5740549 | Reilly et al. | Apr 1998 | A |
5742768 | Gennaro et al. | Apr 1998 | A |
5742905 | Pepe et al. | Apr 1998 | A |
5745681 | Levine et al. | Apr 1998 | A |
5751956 | Kirsch | May 1998 | A |
5754830 | Butts et al. | May 1998 | A |
5754938 | Herz et al. | May 1998 | A |
5754939 | Herz et al. | May 1998 | A |
5758111 | Shiratori et al. | May 1998 | A |
5758257 | Herz et al. | May 1998 | A |
5760767 | Shore et al. | Jun 1998 | A |
5761601 | Nemirofsky et al. | Jun 1998 | A |
5761662 | Dasan | Jun 1998 | A |
5768508 | Eikeland | Jun 1998 | A |
5768510 | Gish | Jun 1998 | A |
5781894 | Petrecca et al. | Jul 1998 | A |
5787253 | McCreery et al. | Jul 1998 | A |
5787254 | Maddalozzo, Jr. et al. | Jul 1998 | A |
5793972 | Shane | Aug 1998 | A |
5794210 | Goldhaber et al. | Aug 1998 | A |
5794259 | Kikinis | Aug 1998 | A |
5796952 | Davis et al. | Aug 1998 | A |
5801685 | Miller et al. | Sep 1998 | A |
5802320 | Baehr et al. | Sep 1998 | A |
5805735 | Chen et al. | Sep 1998 | A |
5805815 | Hill | Sep 1998 | A |
5809242 | Shaw et al. | Sep 1998 | A |
5809481 | Baron et al. | Sep 1998 | A |
5809512 | Kato | Sep 1998 | A |
5812642 | Leroy | Sep 1998 | A |
5812769 | Graber et al. | Sep 1998 | A |
5819047 | Bauer et al. | Oct 1998 | A |
5819092 | Ferguson et al. | Oct 1998 | A |
5822526 | Waskiewicz | Oct 1998 | A |
5832502 | Durham et al. | Nov 1998 | A |
5835087 | Herz et al. | Nov 1998 | A |
5835092 | Boudreau et al. | Nov 1998 | A |
5835722 | Bradshaw et al. | Nov 1998 | A |
5838458 | Tsai | Nov 1998 | A |
5848246 | Gish | Dec 1998 | A |
5848396 | Gerace | Dec 1998 | A |
5848397 | Marsh et al. | Dec 1998 | A |
5850352 | Moezzi et al. | Dec 1998 | A |
5850433 | Rondeau | Dec 1998 | A |
5854897 | Radziewicz et al. | Dec 1998 | A |
5855008 | Goldhaber et al. | Dec 1998 | A |
5861880 | Shimizu et al. | Jan 1999 | A |
5861883 | Cuomo et al. | Jan 1999 | A |
5862260 | Rhoads | Jan 1999 | A |
5862325 | Reed et al. | Jan 1999 | A |
5864823 | Levitan | Jan 1999 | A |
5870769 | Freund | Feb 1999 | A |
5872850 | Klein et al. | Feb 1999 | A |
5875296 | Shi et al. | Feb 1999 | A |
5877766 | Bates et al. | Mar 1999 | A |
5878231 | Baehr et al. | Mar 1999 | A |
5883955 | Ronning | Mar 1999 | A |
5884025 | Baehr et al. | Mar 1999 | A |
5886683 | Tognazzini et al. | Mar 1999 | A |
5887133 | Brown et al. | Mar 1999 | A |
5890152 | Rapaport et al. | Mar 1999 | A |
5892917 | Myerson | Apr 1999 | A |
5893053 | Trueblood | Apr 1999 | A |
5893118 | Sonderegger | Apr 1999 | A |
5894554 | Lowery et al. | Apr 1999 | A |
5897622 | Blinn et al. | Apr 1999 | A |
5898434 | Small et al. | Apr 1999 | A |
5901287 | Bull et al. | May 1999 | A |
5903892 | Hoffert et al. | May 1999 | A |
5905492 | Straub et al. | May 1999 | A |
5905800 | Moskowitz et al. | May 1999 | A |
5907838 | Miyasaka et al. | May 1999 | A |
5913040 | Rakavy et al. | Jun 1999 | A |
5918012 | Astiz et al. | Jun 1999 | A |
5918013 | Mighdoll et al. | Jun 1999 | A |
5918014 | Robinson | Jun 1999 | A |
5918214 | Perkowski | Jun 1999 | A |
5920697 | Masters et al. | Jul 1999 | A |
5923845 | Kamiya et al. | Jul 1999 | A |
5923853 | Danneels | Jul 1999 | A |
5929850 | Broadwin et al. | Jul 1999 | A |
5930446 | Kanda | Jul 1999 | A |
5930700 | Pepper et al. | Jul 1999 | A |
5930801 | Falkenhainer et al. | Jul 1999 | A |
5931901 | Wolfe et al. | Aug 1999 | A |
5931907 | Davies et al. | Aug 1999 | A |
5933811 | Angles et al. | Aug 1999 | A |
5933832 | Suzuoka et al. | Aug 1999 | A |
5936679 | Kasahara et al. | Aug 1999 | A |
5937037 | Kamel et al. | Aug 1999 | A |
5937390 | Hyodo | Aug 1999 | A |
5937392 | Alberts | Aug 1999 | A |
5937411 | Becker | Aug 1999 | A |
5943478 | Aggarwal et al. | Aug 1999 | A |
5944791 | Scherpbier | Aug 1999 | A |
5946646 | Schena et al. | Aug 1999 | A |
5946664 | Ebisawa | Aug 1999 | A |
5946697 | Shen | Aug 1999 | A |
5948061 | Merriman et al. | Sep 1999 | A |
5951300 | Brown | Sep 1999 | A |
5956693 | Geerlings | Sep 1999 | A |
5956716 | Kenner et al. | Sep 1999 | A |
5958008 | Pogrebisky et al. | Sep 1999 | A |
5958015 | Dascalu | Sep 1999 | A |
5959621 | Nawaz et al. | Sep 1999 | A |
5959623 | van Hoff et al. | Sep 1999 | A |
5960409 | Wexler | Sep 1999 | A |
5961593 | Gabber et al. | Oct 1999 | A |
5961602 | Thompson et al. | Oct 1999 | A |
5961603 | Kunkel et al. | Oct 1999 | A |
5963909 | Warren et al. | Oct 1999 | A |
5963915 | Kirsch | Oct 1999 | A |
5966121 | Hubbell et al. | Oct 1999 | A |
5970473 | Gerszber et al. | Oct 1999 | A |
5974219 | Fujita et al. | Oct 1999 | A |
5974451 | Simmons | Oct 1999 | A |
5978807 | Mano et al. | Nov 1999 | A |
5978833 | Pashley et al. | Nov 1999 | A |
5978836 | Ouchi | Nov 1999 | A |
5978841 | Berger | Nov 1999 | A |
5978842 | Noble et al. | Nov 1999 | A |
5983227 | Nazem et al. | Nov 1999 | A |
5983244 | Nation | Nov 1999 | A |
5983268 | Freivald et al. | Nov 1999 | A |
5987466 | Greer et al. | Nov 1999 | A |
5987606 | Cirasole et al. | Nov 1999 | A |
5991735 | Gerace | Nov 1999 | A |
5991799 | Yen et al. | Nov 1999 | A |
5995597 | Woltz et al. | Nov 1999 | A |
5995943 | Bull et al. | Nov 1999 | A |
5996007 | Klug et al. | Nov 1999 | A |
5996011 | Humes | Nov 1999 | A |
5999526 | Garland et al. | Dec 1999 | A |
5999731 | Yellin et al. | Dec 1999 | A |
5999740 | Rowley | Dec 1999 | A |
5999912 | Wodarz et al. | Dec 1999 | A |
6002401 | Baker | Dec 1999 | A |
6006241 | Purnaveja et al. | Dec 1999 | A |
6006252 | Wolfe | Dec 1999 | A |
6006265 | Rangan et al. | Dec 1999 | A |
6009236 | Mishima et al. | Dec 1999 | A |
6009409 | Adler et al. | Dec 1999 | A |
6009410 | LeMole et al. | Dec 1999 | A |
6011537 | Slotznick | Jan 2000 | A |
6012083 | Savitzky et al. | Jan 2000 | A |
6014502 | Moraes | Jan 2000 | A |
6014638 | Burge et al. | Jan 2000 | A |
6014698 | Griffiths | Jan 2000 | A |
6014711 | Brown | Jan 2000 | A |
6016509 | Dedrick | Jan 2000 | A |
6020884 | MacNaughton et al. | Feb 2000 | A |
6023726 | Saksena | Feb 2000 | A |
6025837 | Matthews, III et al. | Feb 2000 | A |
6025886 | Koda | Feb 2000 | A |
6026368 | Brown et al. | Feb 2000 | A |
6026413 | Challenger et al. | Feb 2000 | A |
6026433 | D'Arlach et al. | Feb 2000 | A |
6026933 | King et al. | Feb 2000 | A |
6029045 | Picco et al. | Feb 2000 | A |
6029141 | Bezos et al. | Feb 2000 | A |
6029145 | Barritz | Feb 2000 | A |
6029182 | Nehab et al. | Feb 2000 | A |
6029195 | Herz | Feb 2000 | A |
6035332 | Ingrassia, Jr. et al. | Mar 2000 | A |
6047318 | Becker et al. | Apr 2000 | A |
6047327 | Tso et al. | Apr 2000 | A |
6049821 | Theriault et al. | Apr 2000 | A |
6052709 | Paul | Apr 2000 | A |
6052717 | Reynolds et al. | Apr 2000 | A |
6052730 | Felciano et al. | Apr 2000 | A |
6055572 | Saksena | Apr 2000 | A |
6058141 | Barger et al. | May 2000 | A |
6061054 | Jolly | May 2000 | A |
6061659 | Murray | May 2000 | A |
6061716 | Moncreiff | May 2000 | A |
6065024 | Renshaw | May 2000 | A |
6065056 | Bradshaw et al. | May 2000 | A |
6067559 | Allard et al. | May 2000 | A |
6067561 | Dillon | May 2000 | A |
6067565 | Horvitz | May 2000 | A |
6070140 | Tran | May 2000 | A |
6073105 | Sutcliffe et al. | Jun 2000 | A |
6073167 | Poulton et al. | Jun 2000 | A |
6073241 | Rosenberg et al. | Jun 2000 | A |
6076166 | Moshfeghi et al. | Jun 2000 | A |
6078916 | Culliss | Jun 2000 | A |
6081840 | Zhao | Jun 2000 | A |
6084581 | Hunt | Jul 2000 | A |
6085193 | Malkin et al. | Jul 2000 | A |
6085226 | Horvitz | Jul 2000 | A |
6085242 | Chandra | Jul 2000 | A |
6088731 | Kiraly et al. | Jul 2000 | A |
6091411 | Straub et al. | Jul 2000 | A |
6092196 | Reiche | Jul 2000 | A |
6094655 | Rogers et al. | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6098064 | Pirolli et al. | Aug 2000 | A |
6098065 | Skillen et al. | Aug 2000 | A |
6101510 | Stone et al. | Aug 2000 | A |
6108637 | Blumenau | Aug 2000 | A |
6108691 | Lee et al. | Aug 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6112215 | Kaply | Aug 2000 | A |
6112246 | Horbal et al. | Aug 2000 | A |
6115680 | Coffee et al. | Sep 2000 | A |
6119098 | Guyot et al. | Sep 2000 | A |
6119165 | Li et al. | Sep 2000 | A |
6122632 | Botts et al. | Sep 2000 | A |
6125388 | Reisman | Sep 2000 | A |
6128655 | Fields et al. | Oct 2000 | A |
6128663 | Thomas | Oct 2000 | A |
6133912 | Montero | Oct 2000 | A |
6133918 | Conrad et al. | Oct 2000 | A |
6134380 | Kushizaki | Oct 2000 | A |
6134532 | Lazarus et al. | Oct 2000 | A |
6138146 | Moon et al. | Oct 2000 | A |
6138155 | Davis et al. | Oct 2000 | A |
6141010 | Hoyle | Oct 2000 | A |
6144944 | Kurtzman et al. | Nov 2000 | A |
6151596 | Hosomi | Nov 2000 | A |
6154738 | Call | Nov 2000 | A |
6154771 | Rangan et al. | Nov 2000 | A |
6157924 | Austin | Dec 2000 | A |
6157946 | Itakura et al. | Dec 2000 | A |
6161112 | Cragun et al. | Dec 2000 | A |
6163778 | Fogg et al. | Dec 2000 | A |
6167438 | Yates et al. | Dec 2000 | A |
6167453 | Becker et al. | Dec 2000 | A |
6178443 | Lin | Jan 2001 | B1 |
6178461 | Chan et al. | Jan 2001 | B1 |
6182066 | Marques | Jan 2001 | B1 |
6182097 | Hansen et al. | Jan 2001 | B1 |
6182122 | Berstis | Jan 2001 | B1 |
6182133 | Horvitz | Jan 2001 | B1 |
6183366 | Goldberg et al. | Feb 2001 | B1 |
6185558 | Bowman et al. | Feb 2001 | B1 |
6185586 | Judson | Feb 2001 | B1 |
6185614 | Cuomo et al. | Feb 2001 | B1 |
6191782 | Mori et al. | Feb 2001 | B1 |
6192380 | Light et al. | Feb 2001 | B1 |
6195622 | Altschuler et al. | Feb 2001 | B1 |
6198906 | Boetje et al. | Mar 2001 | B1 |
6199079 | Gupta et al. | Mar 2001 | B1 |
6202093 | Bolam et al. | Mar 2001 | B1 |
6204840 | Petelycky et al. | Mar 2001 | B1 |
6208339 | Atlas et al. | Mar 2001 | B1 |
6216141 | Straub et al. | Apr 2001 | B1 |
6216212 | Challenger et al. | Apr 2001 | B1 |
6219676 | Reiner | Apr 2001 | B1 |
6222520 | Gerszberg et al. | Apr 2001 | B1 |
6223215 | Hunt et al. | Apr 2001 | B1 |
6233564 | Schulze, Jr. | May 2001 | B1 |
6237022 | Bruck et al. | May 2001 | B1 |
6249284 | Bogdan | Jun 2001 | B1 |
6253188 | Witek et al. | Jun 2001 | B1 |
6253208 | Wittgreffe et al. | Jun 2001 | B1 |
6266058 | Meyer | Jul 2001 | B1 |
6269361 | Davis et al. | Jul 2001 | B1 |
6275854 | Himmel et al. | Aug 2001 | B1 |
6279112 | O'Toole, Jr. et al. | Aug 2001 | B1 |
6280043 | Ohkawa | Aug 2001 | B1 |
6285987 | Roth et al. | Sep 2001 | B1 |
6286043 | Cuomo et al. | Sep 2001 | B1 |
6286045 | Griffiths et al. | Sep 2001 | B1 |
6295061 | Park et al. | Sep 2001 | B1 |
6297819 | Furst | Oct 2001 | B1 |
6304844 | Pan et al. | Oct 2001 | B1 |
6308202 | Cohn et al. | Oct 2001 | B1 |
6311194 | Sheth et al. | Oct 2001 | B1 |
6314451 | Landsman et al. | Nov 2001 | B1 |
6314457 | Schema et al. | Nov 2001 | B1 |
6317761 | Landsman et al. | Nov 2001 | B1 |
6321209 | Pasquali | Nov 2001 | B1 |
6321256 | Himmel et al. | Nov 2001 | B1 |
6324553 | Cragun et al. | Nov 2001 | B1 |
6324569 | Ogilvie et al. | Nov 2001 | B1 |
6324583 | Stevens | Nov 2001 | B1 |
6327574 | Kramer et al. | Dec 2001 | B1 |
6327617 | Fawcett | Dec 2001 | B1 |
6332127 | Bandera | Dec 2001 | B1 |
6334111 | Carrott | Dec 2001 | B1 |
6335963 | Bosco | Jan 2002 | B1 |
6336131 | Wolfe | Jan 2002 | B1 |
6338059 | Fields et al. | Jan 2002 | B1 |
6338066 | Martin et al. | Jan 2002 | B1 |
6341305 | Wolfe | Jan 2002 | B2 |
6347398 | Parthasarathy et al. | Feb 2002 | B1 |
6351279 | Sawyer | Feb 2002 | B1 |
6351745 | Itakura et al. | Feb 2002 | B1 |
6353834 | Wong et al. | Mar 2002 | B1 |
6356898 | Cohen et al. | Mar 2002 | B2 |
6356908 | Brown et al. | Mar 2002 | B1 |
6360221 | Gough et al. | Mar 2002 | B1 |
6366298 | Haitsuka et al. | Apr 2002 | B1 |
6370527 | Singhal | Apr 2002 | B1 |
6377983 | Cohen et al. | Apr 2002 | B1 |
6378075 | Goldstein et al. | Apr 2002 | B1 |
6381735 | Hunt | Apr 2002 | B1 |
6381742 | Forbes et al. | Apr 2002 | B2 |
6385592 | Angles et al. | May 2002 | B1 |
6392668 | Murray | May 2002 | B1 |
6393407 | Middleton et al. | May 2002 | B1 |
6393415 | Getchius et al. | May 2002 | B1 |
6397228 | Lamburt et al. | May 2002 | B1 |
6401075 | Mason et al. | Jun 2002 | B1 |
6415322 | Jaye | Jul 2002 | B1 |
6418440 | Kuo et al. | Jul 2002 | B1 |
6418471 | Shelton et al. | Jul 2002 | B1 |
6421675 | Ryan et al. | Jul 2002 | B1 |
6421724 | Nickerson et al. | Jul 2002 | B1 |
6421729 | Paltenghe et al. | Jul 2002 | B1 |
6434745 | Conley, Jr. et al. | Aug 2002 | B1 |
6437802 | Kenny | Aug 2002 | B1 |
6438215 | Skladman et al. | Aug 2002 | B1 |
6438578 | Schmid et al. | Aug 2002 | B1 |
6438579 | Hosken | Aug 2002 | B1 |
6441832 | Tao et al. | Aug 2002 | B1 |
6442529 | Krishan et al. | Aug 2002 | B1 |
6446128 | Woods et al. | Sep 2002 | B1 |
6449657 | Stanbach, Jr. et al. | Sep 2002 | B2 |
6452612 | Holtz et al. | Sep 2002 | B1 |
6457009 | Bollay | Sep 2002 | B1 |
6459440 | Monnes et al. | Oct 2002 | B1 |
6460036 | Herz | Oct 2002 | B1 |
6460042 | Hitchcock et al. | Oct 2002 | B1 |
6460060 | Maddalozzo et al. | Oct 2002 | B1 |
6466970 | Lee et al. | Oct 2002 | B1 |
6477550 | Balasubramaniam et al. | Nov 2002 | B1 |
6477575 | Koeppel et al. | Nov 2002 | B1 |
6480837 | Dutta | Nov 2002 | B1 |
6484148 | Boyd | Nov 2002 | B1 |
6487538 | Gupta et al. | Nov 2002 | B1 |
6490722 | Barton et al. | Dec 2002 | B1 |
6493702 | Adar et al. | Dec 2002 | B1 |
6496931 | Rajchel et al. | Dec 2002 | B1 |
6499052 | Hoang et al. | Dec 2002 | B1 |
6502076 | Smith | Dec 2002 | B1 |
6505201 | Haitsuka | Jan 2003 | B1 |
6513052 | Binder | Jan 2003 | B1 |
6513060 | Nixon et al. | Jan 2003 | B1 |
6516312 | Kraft et al. | Feb 2003 | B1 |
6523021 | Monberg et al. | Feb 2003 | B1 |
6526411 | Ward | Feb 2003 | B1 |
6529903 | Smith et al. | Mar 2003 | B2 |
6539375 | Kawasaki et al. | Mar 2003 | B2 |
6539424 | Dutta | Mar 2003 | B1 |
6564202 | Schuetze et al. | May 2003 | B1 |
6567850 | Freishtat et al. | May 2003 | B1 |
6567854 | Olshansky et al. | May 2003 | B1 |
6570595 | Porter | May 2003 | B2 |
6572662 | Manohar et al. | Jun 2003 | B2 |
6584479 | Chang et al. | Jun 2003 | B2 |
6584492 | Cezar et al. | Jun 2003 | B1 |
6584505 | Howard et al. | Jun 2003 | B1 |
6594654 | Salam et al. | Jul 2003 | B1 |
6601041 | Brown et al. | Jul 2003 | B1 |
6601057 | Underwood et al. | Jul 2003 | B1 |
6601100 | Lee et al. | Jul 2003 | B2 |
6604103 | Wolfe | Aug 2003 | B1 |
6606652 | Cohn et al. | Aug 2003 | B1 |
6615247 | Murphy | Sep 2003 | B1 |
6622168 | Datta | Sep 2003 | B1 |
6631360 | Cook | Oct 2003 | B1 |
6642944 | Conrad et al. | Nov 2003 | B2 |
6643696 | Davis et al. | Nov 2003 | B2 |
6665656 | Carter | Dec 2003 | B1 |
6665838 | Brown et al. | Dec 2003 | B1 |
6678731 | Howard et al. | Jan 2004 | B1 |
6678866 | Sugimoto et al. | Jan 2004 | B1 |
6681223 | Sundaresan | Jan 2004 | B1 |
6681247 | Payton | Jan 2004 | B1 |
6686931 | Bodnar | Feb 2004 | B1 |
6687737 | Landsman et al. | Feb 2004 | B2 |
6691106 | Sathyanarayan | Feb 2004 | B1 |
6697825 | Underwood et al. | Feb 2004 | B1 |
6701362 | Subramonian | Mar 2004 | B1 |
6701363 | Chiu et al. | Mar 2004 | B1 |
6714975 | Aggarwal et al. | Mar 2004 | B1 |
6718365 | Dutta | Apr 2004 | B1 |
6721741 | Eyal et al. | Apr 2004 | B1 |
6721795 | Eldreth | Apr 2004 | B1 |
6725269 | Megiddo | Apr 2004 | B1 |
6725303 | Hoguta et al. | Apr 2004 | B1 |
6741967 | Wu et al. | May 2004 | B1 |
6757661 | Blaser et al. | Jun 2004 | B1 |
6760746 | Schneider | Jul 2004 | B1 |
6760916 | Holtz et al. | Jul 2004 | B2 |
6763379 | Shuster | Jul 2004 | B1 |
6763386 | Davis et al. | Jul 2004 | B2 |
6771290 | Hoyle | Aug 2004 | B1 |
6772200 | Bakshi et al. | Aug 2004 | B1 |
6785659 | Landsman et al. | Aug 2004 | B1 |
6785723 | Genty et al. | Aug 2004 | B1 |
6801906 | Bates et al. | Oct 2004 | B1 |
6801909 | Delgado et al. | Oct 2004 | B2 |
6826534 | Gupta et al. | Nov 2004 | B1 |
6826546 | Shuster | Nov 2004 | B1 |
6827669 | Cohen et al. | Dec 2004 | B2 |
6847969 | Mathai et al. | Jan 2005 | B1 |
6848004 | Chang et al. | Jan 2005 | B1 |
6850967 | Spencer et al. | Feb 2005 | B1 |
6853982 | Smith et al. | Feb 2005 | B2 |
6857024 | Chen et al. | Feb 2005 | B1 |
6874018 | Wu | Mar 2005 | B2 |
6877027 | Spencer et al. | Apr 2005 | B1 |
6880123 | Landsman | Apr 2005 | B1 |
6882981 | Philippe et al. | Apr 2005 | B2 |
6892181 | Megiddo et al. | May 2005 | B1 |
6892223 | Kawabata et al. | May 2005 | B1 |
6892226 | Tso et al. | May 2005 | B1 |
6892354 | Servan-Schreiber et al. | May 2005 | B1 |
6904408 | McCarthy et al. | Jun 2005 | B1 |
6910179 | Pennell et al. | Jun 2005 | B1 |
6934736 | Sears et al. | Aug 2005 | B2 |
6938027 | Barritz | Aug 2005 | B1 |
6957390 | Tamir et al. | Oct 2005 | B2 |
6958759 | Safadi et al. | Oct 2005 | B2 |
6968507 | Pennell et al. | Nov 2005 | B2 |
6973478 | Ketonen et al. | Dec 2005 | B1 |
6976053 | Tripp et al. | Dec 2005 | B1 |
6976090 | Ben-Shaul et al. | Dec 2005 | B2 |
6990633 | Miyasaka | Jan 2006 | B1 |
6993532 | Platt et al. | Jan 2006 | B1 |
7003734 | Gardner et al. | Feb 2006 | B1 |
7016887 | Stockfisch | Mar 2006 | B2 |
7039599 | Merriman et al. | May 2006 | B2 |
7043526 | Wolfe | May 2006 | B1 |
7051084 | Hayton et al. | May 2006 | B1 |
7054900 | Goldston | May 2006 | B1 |
7065550 | Raghunandan | Jun 2006 | B2 |
7069515 | Eagle et al. | Jun 2006 | B1 |
7076546 | Bates et al. | Jul 2006 | B1 |
7085682 | Heller et al. | Aug 2006 | B1 |
7100111 | McElfresh et al. | Aug 2006 | B2 |
7133924 | Rosenberg et al. | Nov 2006 | B1 |
7136875 | Anderson et al. | Nov 2006 | B2 |
7149791 | Sears et al. | Dec 2006 | B2 |
7155729 | Andrew et al. | Dec 2006 | B1 |
7162739 | Cowden et al. | Jan 2007 | B2 |
7181415 | Blaser et al. | Feb 2007 | B2 |
7181488 | Martin et al. | Feb 2007 | B2 |
7194425 | Nyhan | Mar 2007 | B2 |
7254547 | Beck et al. | Aug 2007 | B1 |
7283992 | Liu et al. | Oct 2007 | B2 |
7346606 | Bharat | Mar 2008 | B2 |
7349827 | Heller et al. | Mar 2008 | B1 |
7363291 | Page | Apr 2008 | B1 |
7421432 | Hoelzle et al. | Sep 2008 | B1 |
7424708 | Andersson et al. | Sep 2008 | B2 |
7451065 | Pednault et al. | Nov 2008 | B2 |
7454364 | Shkedi | Nov 2008 | B2 |
7464155 | Mousavi et al. | Dec 2008 | B2 |
7512603 | Veteska et al. | Mar 2009 | B1 |
7630986 | Herz | Dec 2009 | B1 |
7743340 | Horvitz et al. | Jun 2010 | B2 |
7844488 | Merriman et al. | Nov 2010 | B2 |
20010011226 | Greer et al. | Aug 2001 | A1 |
20010029527 | Goshen | Oct 2001 | A1 |
20010030970 | Wiryaman et al. | Oct 2001 | A1 |
20010032115 | Goldstein | Oct 2001 | A1 |
20010037240 | Marks et al. | Nov 2001 | A1 |
20010037325 | Biderman et al. | Nov 2001 | A1 |
20010037488 | Lee | Nov 2001 | A1 |
20010044795 | Cohen et al. | Nov 2001 | A1 |
20010047354 | Davis et al. | Nov 2001 | A1 |
20010049320 | Cohen et al. | Dec 2001 | A1 |
20010049321 | Cohen et al. | Dec 2001 | A1 |
20010049620 | Blasko | Dec 2001 | A1 |
20010049716 | Wolfe | Dec 2001 | A1 |
20010051559 | Cohen et al. | Dec 2001 | A1 |
20010053735 | Cohen et al. | Dec 2001 | A1 |
20010054020 | Barth et al. | Dec 2001 | A1 |
20020002483 | Siegel et al. | Jan 2002 | A1 |
20020002538 | Ling | Jan 2002 | A1 |
20020004754 | Gardenswartz | Jan 2002 | A1 |
20020007307 | Miller | Jan 2002 | A1 |
20020007309 | Reynar | Jan 2002 | A1 |
20020007317 | Callaghan et al. | Jan 2002 | A1 |
20020008703 | Merrill et al. | Jan 2002 | A1 |
20020010626 | Agmoni | Jan 2002 | A1 |
20020010757 | Granik et al. | Jan 2002 | A1 |
20020010776 | Lerner | Jan 2002 | A1 |
20020016736 | Cannon et al. | Feb 2002 | A1 |
20020019763 | Linden et al. | Feb 2002 | A1 |
20020019834 | Vilcauskas, Jr. et al. | Feb 2002 | A1 |
20020023159 | Vange et al. | Feb 2002 | A1 |
20020026390 | Ulenas et al. | Feb 2002 | A1 |
20020032592 | Krasnick et al. | Mar 2002 | A1 |
20020035568 | Benthin | Mar 2002 | A1 |
20020038363 | MacLean | Mar 2002 | A1 |
20020040374 | Kent | Apr 2002 | A1 |
20020042750 | Morrison | Apr 2002 | A1 |
20020046099 | Frengut et al. | Apr 2002 | A1 |
20020049633 | Pasquali | Apr 2002 | A1 |
20020052785 | Tenenbaum | May 2002 | A1 |
20020052925 | Kim et al. | May 2002 | A1 |
20020053078 | Holtz et al. | May 2002 | A1 |
20020054089 | Nicholas | May 2002 | A1 |
20020055912 | Buck | May 2002 | A1 |
20020057285 | Nicholas, III | May 2002 | A1 |
20020059094 | Hosea et al. | May 2002 | A1 |
20020059099 | Coletta | May 2002 | A1 |
20020065802 | Uchiyama | May 2002 | A1 |
20020068500 | Gabai et al. | Jun 2002 | A1 |
20020069105 | do Rosario Botelho et al. | Jun 2002 | A1 |
20020073079 | Terheggen | Jun 2002 | A1 |
20020077219 | Cohen et al. | Jun 2002 | A1 |
20020078076 | Evans | Jun 2002 | A1 |
20020078192 | Kopsell et al. | Jun 2002 | A1 |
20020087499 | Stockfisch | Jul 2002 | A1 |
20020087621 | Hendriks | Jul 2002 | A1 |
20020091700 | Steele et al. | Jul 2002 | A1 |
20020091875 | Fujiwara et al. | Jul 2002 | A1 |
20020094868 | Tuck et al. | Jul 2002 | A1 |
20020099605 | Weitzman et al. | Jul 2002 | A1 |
20020099767 | Cohen et al. | Jul 2002 | A1 |
20020099812 | Davis et al. | Jul 2002 | A1 |
20020099824 | Bender et al. | Jul 2002 | A1 |
20020103811 | Fankhauser et al. | Aug 2002 | A1 |
20020107847 | Johnson | Aug 2002 | A1 |
20020107858 | Lundahl et al. | Aug 2002 | A1 |
20020111910 | Walsh | Aug 2002 | A1 |
20020111994 | Raghunandan | Aug 2002 | A1 |
20020112035 | Carey et al. | Aug 2002 | A1 |
20020112048 | Gruyer et al. | Aug 2002 | A1 |
20020116494 | Kocol | Aug 2002 | A1 |
20020120648 | Ball et al. | Aug 2002 | A1 |
02002122065 | Segal et al. | Sep 2002 | |
20020123912 | Subramanian et al. | Sep 2002 | A1 |
20020128904 | Carruthers et al. | Sep 2002 | A1 |
20020128908 | Levin et al. | Sep 2002 | A1 |
20020128925 | Angeles | Sep 2002 | A1 |
20020152121 | Hiroshi | Oct 2002 | A1 |
20020152126 | Lieu et al. | Oct 2002 | A1 |
20020152222 | Holbrook | Oct 2002 | A1 |
20020154163 | Melchner | Oct 2002 | A1 |
20020156781 | Cordray et al. | Oct 2002 | A1 |
20020156812 | Krasnoiarov et al. | Oct 2002 | A1 |
20020169670 | Barsade et al. | Nov 2002 | A1 |
20020169762 | Cardona | Nov 2002 | A1 |
20020170068 | Rafey et al. | Nov 2002 | A1 |
20020171682 | Frank et al. | Nov 2002 | A1 |
20020175947 | Conrad et al. | Nov 2002 | A1 |
20020194151 | Fenton et al. | Dec 2002 | A1 |
20020198778 | Landsman et al. | Dec 2002 | A1 |
20030004804 | Landsman et al. | Jan 2003 | A1 |
20030005000 | Landsman et al. | Jan 2003 | A1 |
20030005067 | Martin et al. | Jan 2003 | A1 |
20030005134 | Martin et al. | Jan 2003 | A1 |
20030011639 | Webb | Jan 2003 | A1 |
20030014304 | Calvert et al. | Jan 2003 | A1 |
20030014399 | Hansen et al. | Jan 2003 | A1 |
20030018778 | Martin et al. | Jan 2003 | A1 |
20030018885 | Landsman et al. | Jan 2003 | A1 |
20030023481 | Calvert et al. | Jan 2003 | A1 |
20030023488 | Landsman et al. | Jan 2003 | A1 |
20030023698 | Dieberger et al. | Jan 2003 | A1 |
20030028529 | Cheung et al. | Feb 2003 | A1 |
20030028565 | Landsman et al. | Feb 2003 | A1 |
20030028870 | Weisman et al. | Feb 2003 | A1 |
20030032409 | Hutcheson et al. | Feb 2003 | A1 |
20030033155 | Peerson et al. | Feb 2003 | A1 |
20030040958 | Fernandes | Feb 2003 | A1 |
20030041050 | Smith et al. | Feb 2003 | A1 |
20030046150 | Ader et al. | Mar 2003 | A1 |
20030050863 | Radwin | Mar 2003 | A1 |
20030052913 | Barile | Mar 2003 | A1 |
20030074448 | Kinebuchi | Apr 2003 | A1 |
20030088554 | Ryan et al. | May 2003 | A1 |
20030105589 | Liu et al. | Jun 2003 | A1 |
20030110079 | Weisman et al. | Jun 2003 | A1 |
20030110080 | Tsutani et al. | Jun 2003 | A1 |
20030115157 | Circenis | Jun 2003 | A1 |
20030120593 | Bansal et al. | Jun 2003 | A1 |
20030120654 | Edlund et al. | Jun 2003 | A1 |
20030131100 | Godon et al. | Jul 2003 | A1 |
20030135490 | Barrett et al. | Jul 2003 | A1 |
20030135853 | Goldman et al. | Jul 2003 | A1 |
20030154168 | Lautenbacher | Aug 2003 | A1 |
20030171990 | Rao et al. | Sep 2003 | A1 |
20030172075 | Reisman | Sep 2003 | A1 |
20030176931 | Pednault et al. | Sep 2003 | A1 |
20030182184 | Strasnick et al. | Sep 2003 | A1 |
20030195837 | Kostic et al. | Oct 2003 | A1 |
20030195877 | Ford et al. | Oct 2003 | A1 |
20030206720 | Abecassis | Nov 2003 | A1 |
20030208472 | Pham | Nov 2003 | A1 |
20030220091 | Farrand et al. | Nov 2003 | A1 |
20030221167 | Goldstein et al. | Nov 2003 | A1 |
20030229542 | Morrisroe | Dec 2003 | A1 |
20040002896 | Alanen et al. | Jan 2004 | A1 |
20040024756 | Rickard | Feb 2004 | A1 |
20040030798 | Andersson et al. | Feb 2004 | A1 |
20040044677 | Huper-Graff et al. | Mar 2004 | A1 |
20040068486 | Chidlovskii | Apr 2004 | A1 |
20040073485 | Liu et al. | Apr 2004 | A1 |
20040078294 | Rollins et al. | Apr 2004 | A1 |
20040095376 | Graham et al. | May 2004 | A1 |
20040098229 | Error et al. | May 2004 | A1 |
20040098449 | Bar-Lavi et al. | May 2004 | A1 |
20040117353 | Ishag | Jun 2004 | A1 |
20040133845 | Forstall et al. | Jul 2004 | A1 |
20040162738 | Sanders et al. | Aug 2004 | A1 |
20040162759 | Willis | Aug 2004 | A1 |
20040163101 | Swix et al. | Aug 2004 | A1 |
20040163107 | Crystal | Aug 2004 | A1 |
20040167928 | Anderson et al. | Aug 2004 | A1 |
20040181525 | Itzhak et al. | Sep 2004 | A1 |
20040181604 | Immonen | Sep 2004 | A1 |
20040193488 | Khoo et al. | Sep 2004 | A1 |
20040210533 | Picker et al. | Oct 2004 | A1 |
20040225716 | Shamir et al. | Nov 2004 | A1 |
20040247748 | Bronkema | Dec 2004 | A1 |
20040249709 | Donovan et al. | Dec 2004 | A1 |
20040249938 | Bunch | Dec 2004 | A1 |
20040254810 | Yamaga et al. | Dec 2004 | A1 |
20040267723 | Bharat | Dec 2004 | A1 |
20050015366 | Carrasco et al. | Jan 2005 | A1 |
20050021397 | Cui et al. | Jan 2005 | A1 |
20050027821 | Alexander et al. | Feb 2005 | A1 |
20050027822 | Plaza | Feb 2005 | A1 |
20050033657 | Herrington et al. | Feb 2005 | A1 |
20050038819 | Hicken et al. | Feb 2005 | A1 |
20050080772 | Bem | Apr 2005 | A1 |
20050086109 | McFadden et al. | Apr 2005 | A1 |
20050091106 | Reller et al. | Apr 2005 | A1 |
20050091111 | Green et al. | Apr 2005 | A1 |
20050097088 | Bennett et al. | May 2005 | A1 |
20050102202 | Linden et al. | May 2005 | A1 |
20050102282 | Linden | May 2005 | A1 |
20050125382 | Karnawat et al. | Jun 2005 | A1 |
20050131762 | Bharat et al. | Jun 2005 | A1 |
20050132267 | Aviv | Jun 2005 | A1 |
20050149404 | Barnett et al. | Jul 2005 | A1 |
20050155031 | Wang et al. | Jul 2005 | A1 |
20050182773 | Feinsmith | Aug 2005 | A1 |
20050187823 | Howes | Aug 2005 | A1 |
20050203796 | Anand et al. | Sep 2005 | A1 |
20050204148 | Mayo | Sep 2005 | A1 |
20050216572 | Tso et al. | Sep 2005 | A1 |
20050222901 | Agarwal et al. | Oct 2005 | A1 |
20050222982 | Paczkowski et al. | Oct 2005 | A1 |
20050240599 | Sears | Oct 2005 | A1 |
20050273463 | Zohar et al. | Dec 2005 | A1 |
20050283469 | Veteska et al. | Dec 2005 | A1 |
20050289120 | Soulanille et al. | Dec 2005 | A9 |
20060015390 | Rijsinghani et al. | Jan 2006 | A1 |
20060026233 | Tenembaum et al. | Feb 2006 | A1 |
20060031253 | Newbold et al. | Feb 2006 | A1 |
20060053230 | Montero | Mar 2006 | A1 |
20060136524 | Wohlers et al. | Jun 2006 | A1 |
20060136528 | Martin et al. | Jun 2006 | A1 |
20060136728 | Gentry et al. | Jun 2006 | A1 |
20060235965 | Bennett et al. | Oct 2006 | A1 |
20060253432 | Eagle et al. | Nov 2006 | A1 |
20070016469 | Bae et al. | Jan 2007 | A1 |
20070038956 | Morris | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
0631231 | Dec 1994 | EP |
0822535 | Feb 1998 | EP |
1045547 | Oct 2000 | EP |
1154611 | Nov 2001 | EP |
1 207 468 | May 2002 | EP |
1207468 | May 2002 | EP |
343825 | Feb 1991 | JP |
11066099 | Mar 1999 | JP |
2001084256 | Mar 2001 | JP |
2001147894 | May 2001 | JP |
20010222535 | Aug 2001 | JP |
2001312482 | Nov 2001 | JP |
2002024221 | Jan 2002 | JP |
2002032401 | Jan 2002 | JP |
2002073545 | Mar 2002 | JP |
2002092284 | Mar 2002 | JP |
2002524782 | Aug 2002 | JP |
2002259371 | Sep 2002 | JP |
2002334104 | Nov 2002 | JP |
2002334104 | Nov 2002 | JP |
2003058572 | Feb 2003 | JP |
2003141155 | May 2003 | JP |
2003178092 | Jun 2003 | JP |
2003242411 | Aug 2003 | JP |
20030271647 | Sep 2003 | JP |
2004-355376 | Dec 2004 | JP |
WO 9847090 | Oct 1998 | WO |
WO 9938321 | Jul 1999 | WO |
WO 9944159 | Sep 1999 | WO |
WO 9946701 | Sep 1999 | WO |
WO 9955066 | Oct 1999 | WO |
WO 9959097 | Nov 1999 | WO |
WO 0004434 | Jan 2000 | WO |
WO 0054201 | Sep 2000 | WO |
WO 0103028 | Jan 2001 | WO |
WO 0115052 | Mar 2001 | WO |
WO 0139024 | May 2001 | WO |
WO 0144992 | Jun 2001 | WO |
WO 0163472 | Aug 2001 | WO |
WO 0169929 | Sep 2001 | WO |
WO 0190917 | Nov 2001 | WO |
WO 0244869 | Jun 2002 | WO |
WO 03010685 | Feb 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060041550 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
60603140 | Aug 2004 | US | |
60637684 | Dec 2004 | US | |
60660798 | Mar 2005 | US | |
60662680 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11015583 | Dec 2004 | US |
Child | 11207590 | US |