This invention relates to medical procedures and apparatus in general, and more particularly to medical procedures and apparatus for restricting flow through an opening in the side wall of a body lumen, and/or for reinforcing a weakness in the side wall of a body lumen, while still maintaining substantially normal flow through the body lumen.
The human body consists of many different anatomical structures. Among these anatomical structures are the blood vessels which circulate blood throughout the body, i.e., the arteries which deliver oxygenated blood to the end tissues and the veins which return oxygen-depleted blood from the end tissues.
In some cases, a blood vessel can become weakened, thereby causing the side wall of the blood vessel to balloon outwardly so as to create an aneurysm. See, for example,
Aneurysms can present a serious threat to the patient, since they may enlarge to the point of rupture, thereby resulting in a rapid and uncontrolled loss of blood. Depending upon the size and location of the aneurysm, the aneurysm can be life-threatening.
By way of example but not limitation, an intracranial aneurysm can be fatal if rupture occurs. Given the life-threatening nature of such intracranial aneurysms, these aneurysms have traditionally been treated with an open craniotomy and microsurgical clipping. This procedure generally involves placing a small titanium clip across the neck of the aneurysm, thus isolating the aneurysm from blood flow and inhibiting subsequent rupture (or re-rupture). This clipping procedure is typically done under direct visualization, using an operating microscope.
More recently, minimally-invasive techniques have also been used to treat both ruptured and un-ruptured brain aneurysms. These minimally-invasive techniques generally employ interventional neuroradiological procedures utilizing digital fluoroscopy. More particularly, these interventional neuroradiological procedures generally use X-ray visualization to allow the surgeon to place a microcatheter within the dome of the aneurysm. With the microcatheter in place, detachable coils are then deployed within the dome of the aneurysm, thereby reducing blood velocity within the dome of the aneurysm and causing thrombosis of the aneurysm so as to prevent subsequent rupture (or re-rupture). However, this coil-depositing procedure has a number of drawbacks, including the risk of coil herniation into the lumen of the blood vessel; the risk of coil migration out of the aneurysm and into the blood vessel, with subsequent downstream migration; the risk of aneurysm rupture; etc.
As a result, a primary object of the present invention is to provide a new and improved device, adapted for minimally-invasive, endoluminal delivery, which may be used to restrict blood flow to an aneurysm while still maintaining substantially normal blood flow through the blood vessel.
Another object of the present invention is to provide an expandable spherical structure, comprising an open frame with a flow-restricting face (i.e., a closed face or a face having a high strut density), which may be used to restrict flow through an opening in a side wall of a blood vessel while still maintaining substantially normal blood flow through the blood vessel.
Another object of the present invention is to provide an expandable spherical structure, comprising an open frame with a flow-restricting face (i.e., a closed face or a face having a high strut density), which may be used to reinforce a weakness in a side wall of a blood vessel while still maintaining substantially normal blood flow through the blood vessel.
Another object of the present invention is to provide an expandable spherical structure, comprising an open frame with a flow-restricting face (i.e., a closed face or a face having a high strut density), which may be used to restrict flow through an opening in the side wall of a lumen other than a blood vessel, and/or so as to reinforce a weakness in a side wall of a lumen other than a blood vessel, while still maintaining substantially normal flow through the lumen.
Another object of the present invention is to provide an expandable spherical structure which may be used to facilitate the deployment of detachable coils and/or other embolic material into the interior of an aneurysm while still maintaining substantially normal flow through the blood vessel.
And another object of the present invention is to provide a method for manufacturing the novel device of the present invention.
These and other objects of the present invention are addressed through the provision and use of a novel expandable spherical structure, and a method for making the same.
In one form of the invention, there is provided an expandable substantially spherical structure for deployment in a blood vessel or other body lumen, comprising:
an open frame formed out of a closed loop of filament and configured to assume (i) a collapsed configuration in the form of a substantially two-dimensional elongated loop structure so as to facilitate insertion into the blood vessel or other body lumen, and (ii) an expanded configuration in the form of a three-dimensional substantially spherical structure so as to facilitate retention at a site in the blood vessel or other body lumen; and
a flow-restricting face carried by the open frame;
wherein the open frame is configured so as to permit substantially normal flow therethrough when the open frame is in its expanded configuration, and further wherein the flow-restricting face is configured so as to restrict flow therethrough.
In another form of the invention, there is provided a system for restricting flow to an opening in the side wall of a blood vessel or other body lumen and/or reinforcing a weakness in the side wall or apex of a bifurcation of the blood vessel or other body lumen, while maintaining substantially normal flow through the blood vessel or other body lumen, comprising:
an expandable substantially spherical structure for deployment in the blood vessel or other body lumen, comprising:
an installation tool for carrying the expandable substantially spherical structure to a deployment site, wherein the installation tool comprises:
In another form of the invention, there is provided a method for restricting flow to an opening in the side wall of a body lumen while maintaining substantially normal flow through the body lumen, comprising:
providing an expandable substantially spherical structure for deployment in the body lumen, comprising:
delivering the expandable substantially spherical structure to a therapy site within the body lumen while the open frame is in its collapsed configuration; and
transforming the expandable substantially spherical structure from its collapsed configuration to its expanded configuration so that the expandable substantially spherical structure is securely lodged in the body lumen, with the flow-restricting face of the expandable substantially spherical structure positioned so as to restrict flow to the opening in the side wall of the body lumen and with the open frame permitting flow through the body lumen.
In another form of the invention there is provided an expandable substantially spherical structure for deployment in a blood vessel or other body lumen, comprising:
an open frame configured to assume a collapsed configuration and an expanded configuration;
a flow-restricting face carried by the open frame; and
a plurality of stabilizing legs attached to, and extending away from, the open frame;
wherein the open frame and the plurality of stabilizing legs are configured so as to permit substantially normal flow therethrough when the open frame is in its expanded configuration, and further wherein the flow-restricting face is configured so as to restrict flow therethrough.
In another form of the invention, there is provided a method for restricting flow through an opening in the side wall of a body lumen while maintaining substantially normal flow through the body lumen, comprising:
providing an expandable substantially spherical structure for deployment in the body lumen, comprising:
delivering the expandable substantially spherical structure to a therapy site within the body lumen while the open frame is in its collapsed configuration and the plurality of stabilizing legs are in a collapsed configuration; and
transforming the expandable substantially spherical structure from its collapsed configuration to its expanded configuration, and transforming the plurality of stabilizing legs from their collapsed configuration to an expanded configuration, so that the expandable substantially spherical structure is securely lodged in the body lumen, with the flow-restricting face of the expandable substantially spherical structure positioned so as to restrict flow to the opening in the side wall of the body lumen and with the open frame and the plurality of stabilizing legs permitting flow through the body lumen.
In another form of the invention, there is provided a method for making a device for causing thrombosis of an aneurysm, wherein said device comprises a single elastic filament configurable between (i) an elongated, substantially linear configuration, and (ii) a longitudinally-contracted, substantially three-dimensional configuration, said method comprising:
providing a sheet of shape memory material;
producing a single filament, two-dimensional interim structure from said sheet of shape memory material;
mounting said single filament, two-dimensional interim structure to a fixture so that said single filament, two-dimensional interim structure is transformed into said longitudinally-contracted, substantially three-dimensional configuration; and
heat treating said single filament, two-dimensional interim structure while it is mounted to said fixture so as to produce said device in its longitudinally-contracted, substantially three-dimensional configuration.
In another form of the invention, there is provided a device for positioning in a blood vessel adjacent to an aneurysm for causing thrombosis of the aneurysm while maintaining substantially normal flow through the blood vessel, said device comprising:
a single elastic filament configurable between:
(i) an elongated, substantially linear configuration, whereby to facilitate movement along a blood vessel; and
(ii) a longitudinally-contracted, substantially three-dimensional configuration for lodging within the blood vessel, said longitudinally-contracted, substantially three-dimensional configuration providing (a) a face for positioning adjacent the aneurysm, said face comprising a plurality of lengths of said elastic filament in close proximity to one another so as to restrict blood flow to the aneurysm and thereby cause thrombosis of the aneurysm, and (b) a substantially open frame for holding said face adjacent the aneurysm, said substantially open frame configured so as to maintain substantially normal flow through the blood vessel;
wherein said single elastic filament has a width which varies along its length.
In another form of the invention, there is provided a method for making a device for causing thrombosis of an aneurysm, wherein said device comprises a single elastic filament configurable between (i) an elongated, substantially linear configuration, and (ii) a longitudinally-contracted, substantially three-dimensional configuration, said method comprising:
providing a filament of shape memory material;
mounting said filament of shape memory material to a fixture so that said filament is transformed into said longitudinally-contracted, substantially three-dimensional configuration; and
heat treating said filament so as to produce said device in its longitudinally-contracted, substantially three-dimensional configuration.
These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts, and further wherein:
Looking now at
Expandable spherical structure 5 generally comprises a spherical body comprising an open frame 10 with a flow-restricting face 15 (i.e., a closed face or a face having a high strut density). Preferably open frame 10 and flow-restricting face 15 together define the entire exterior shape of the spherical body, with open frame 10 making up the majority of the exterior shape of the spherical body.
In one preferred form of the invention, open frame 10 defines approximately 90% of the exterior shape of the spherical body and flow-restricting face 15 defines approximately 10% of the exterior shape of the spherical body. In another preferred form of the invention, open frame 10 defines approximately 80% of the exterior shape of the spherical body and flow-restricting face 15 defines approximately 20% of the exterior shape of the spherical body. In yet another preferred form of the invention, open frame 10 comprises approximately 70% of the exterior shape of the spherical body and flow-restricting face 15 defines approximately 30% of the exterior shape of the spherical body. And in yet another preferred form of the invention, open frame 10 comprises approximately 60% of the exterior shape of the spherical body and flow-restricting face 15 comprises approximately 40% of the exterior shape of the spherical body.
Expandable spherical structure 5 is constructed so that it may be deployed in a blood vessel or other body lumen, by (i) collapsing the expandable spherical structure into a configuration of reduced dimension, (ii) moving the collapsed structure through the blood vessel or other body lumen to a therapy site, and (iii) expanding the collapsed structure to an enlarged dimension at the therapy site, whereby to secure the expandable spherical structure in the blood vessel or body lumen so that its flow-restricting face 15 is presented to a side wall of the blood vessel or other body lumen, whereby to restrict flow to an aneurysm or other opening in the side wall of the blood vessel or other body lumen, or to otherwise reinforce a weakness in the side wall of the blood vessel or other body lumen, without significantly impeding normal flow through the blood vessel or other body lumen.
Significantly, by forming expandable spherical structure 5 in the shape of a spherical body, the endoluminal device is readily centered on the neck of an aneurysm or other opening in a body lumen, with flow-restricting face 15 projecting into the neck of the aneurysm or other opening in a body lumen and reliably restricting flow into the aneurysm or other opening in a body lumen.
Furthermore, by forming expandable spherical structure 5 so that it can expand at the therapy site and lodge itself in the blood vessel or other body lumen with its flow-restricting face 15 presented to a side wall of the blood vessel or other body lumen, expandable spherical structure 5 is effectively self-sizing, since it can be expanded to the degree necessary to span the blood vessel or other body lumen.
More particularly, expandable spherical structure 5 generally comprises an open frame 10 which has a flow restricting face 15 (i.e., a closed face or a face having a high strut density) carried thereon. Open frame 10 is formed so that it can assume a first, collapsed configuration of reduced dimension (
Significantly, by forming the endoluminal device as an expandable spherical structure, the device can be collapsed to a reduced dimension for minimally-invasive, endoluminal delivery into a blood vessel or other body lumen, yet can thereafter be expanded to the required dimension for secure lodgement at the therapy site, whereby to restrict flow to an opening in a body lumen and/or to reinforce a weakness in the side wall of the body lumen. Furthermore, by forming expandable spherical structure 5 in the shape of a spherical body, the endoluminal device is readily centered on the neck of an aneurysm or other opening in a body lumen, with flow-restricting face 15 projecting into the neck of the aneurysm or other opening in a body lumen and reliably restricting flow into the aneurysm or other opening in a body lumen. And by forming expandable spherical structure 5 so that it can expand at the therapy site and lodge itself in the blood vessel or other body lumen with its flow-restricting face 15 presented to a side wall of the blood vessel or other body lumen, expandable spherical structure 5 is effectively self-sizing, since it expands to the degree necessary to span the blood vessel or other body lumen. Additionally, by forming open frame 10 as an open structure, expandable spherical structure 5 can be disposed in the blood vessel or body lumen without significantly impeding normal flow through the blood vessel or other body lumen (
As noted above, (i) expandable spherical structure 5 generally comprises a spherical body comprising an open frame 10 with a flow-restricting face 15 (i.e., a closed face or a face having a high strut density); (ii) open frame 10 and flow-restricting face 15 together preferably define the entire exterior shape of the spherical body, with open frame 10 making up the majority of the exterior shape of the spherical body; (iii) open frame 10 is capable of being collapsed in dimension for easy delivery of expandable spherical structure 5 to the therapy site and thereafter expanded in dimension at the therapy site so as to hold flow-restricting face 15 against a side wall of a blood vessel or other body lumen; and (iv) open frame 10 is configured so that it does not significantly impede normal flow through the blood vessel or lumen within which it is deployed.
To this end, open frame 10 is preferably formed with an expandable strut construction, so that it can (i) first assume a configuration of reduced dimension, so that expandable spherical body 5 can move easily through the body to the therapy site, and (ii) thereafter assume a configuration of expanded dimension, so that it can be securely retained at the desired location in the blood vessel or other body lumen and press flow-restricting face 15 securely against the side wall of the blood vessel or body lumen, whereby to restrict flow to an aneurysm or other opening in the blood vessel or other body lumen, or to otherwise reinforce the side wall of the blood vessel or other body lumen. And by forming open frame 10 with an expandable strut construction, open frame 10 is effectively self-sizing, since it expands to the degree necessary to span the blood vessel or other body lumen.
Significantly, by forming open frame 10 with an expandable strut construction, open frame 10 does not significantly impede normal flow through the blood vessel or other body lumen when open frame 10 is in its expanded configuration within the blood vessel or other body lumen.
Thus, for example, in the configuration shown in
In one preferred construction, open frame 10 may be formed out of a shape memory alloy (SMA) such as Nitinol, and a temperature transition may be used to change the configuration of open frame 10. By way of example but not limitation, open frame 10 can be formed so that when it is cooled to a temperature below body temperature, the open frame assumes a collapsed configuration (
Alternatively, open frame 10 can be formed out of a resilient material which can be forcibly compressed into a collapsed configuration, restrained in this collapsed configuration, and thereafter released so that it elastically returns to its expanded configuration. By way of example but not limitation, in this form of the invention, expandable spherical structure 5 might be compressed into a configuration of a reduced dimension, restrained within a sleeve, delivered to the therapy site within the sleeve, and then released from the sleeve so that it elastically returns to an expanded configuration at the therapy site, whereby to lodge itself in the blood vessel or other body lumen, with its flow-restricting face pressed against the side wall of the blood vessel or other body lumen. By way of further example but not limitation, open frame 10 can be formed out of a shape memory alloy (SMA) engineered to form stress-induced martensite (SIM) and thereby exhibit superelastic properties, whereby to permit large shape deformations with elastic return. By way of still further example but not limitation, open frame 10 can be formed out of a suitable polymer which exhibits the desired elastic properties.
In another preferred form of the present invention, open frame 10 is formed with a structure which can be collapsed for delivery to the deployment site and thereafter enlarged to an expanded configuration through the use of an expansion device, e.g., an internal balloon, where the balloon is inflated at the therapy site so as to reconfigure open frame 10 to an expanded condition. This arrangement can be advantageous, since it does not require the open frame to rely on temperature transition or elasticity to expand to its fully expanded configuration (or to any desired expanded configuration less than its fully expanded configuration). Thus, a wide range of well known biocompatible materials (e.g., medical grade stainless steel) may be used to form open frame 10.
Flow-restricting face 15 is carried by (e.g., mounted on, formed integral with, or otherwise connected to) open frame 10 so that flow-restricting face 15 can be pressed securely against the side wall of the blood vessel or other body lumen within which expandable spherical structure 5 is deployed.
Flow-restricting face 15 may comprise a closed face, in the sense that it comprises a substantially complete surface or barrier which is capable of closing off an aneurysm or other opening in side wall of a blood vessel or other body lumen, and/or for reinforcing a weakness in the side wall of the blood vessel or other body lumen. See
Alternatively, and as will be discussed in detail below, flow-restricting face 15 may comprise a face having a high strut density which is capable of restricting flow to an aneurysm or other opening in a side wall of a blood vessel or other body lumen, and/or for reinforcing a weakness in the side wall of the blood vessel or other body lumen. In this case, flow-restricting face 15 may not constitute a substantially complete surface, or flow-restricting face 15 may not constitute a substantially fluid-impervious surface, but flow-restricting face 15 will have a strut density sufficiently high to restrict flow through that face, e.g., so as to cause an aneurysm to thrombose.
Flow-restricting face 15 may be formed so as to be substantially rigid or it may be formed so as to be flexible.
Flow-restricting face 15 preferably has the convex configuration shown in
If desired, expandable spherical structure 5 can have some or all of its elements formed out of an absorbable material, so that some or all of the elements are removed from the therapy site after some period of time has elapsed.
By way of example but not limitation, open frame 10 can be formed out of an absorbable material, and flow-restricting face 15 can be formed out of a non-absorbable material, so that only flow-restricting face 15 is retained at the therapy site after some period of time has passed. See
It is also possible for the entire expandable spherical structure 5 to be formed out of absorbable material(s), i.e., with both open frame 10 and flow-restricting face 15 being formed out of absorbable materials. This type of construction can be advantageous where flow-restricting face 15 only needs to be held against the side wall of the blood vessel or other body lumen for a limited period of time, e.g., until aneurysm thrombosis/scarring is complete, or to reinforce the side wall of the blood vessel or other body lumen while healing occurs, etc.
It should also be appreciated that, where both open frame 10 and flow-restricting face 15 are absorbable, they may be engineered so as to have different absorption rates, so that they are removed from the therapy site at different times. This may be done by making the various elements out of different materials, or by making the various elements out of different blends of the same materials, etc.
As noted above, expandable spherical structure 5 can be used to restrict flow to various types of aneurysms.
Thus, for example,
However, it should also be appreciated that expandable spherical structure 5 may be used to restrict flow to a bifurcation aneurysm as well. Thus, for example,
It is also anticipated that expandable spherical structure 5 may be used to restrict flow to other types of aneurysms as well, e.g., certain forms of fusiform aneurysms. Where expandable spherical structure 5 is to be used to restrict flow to a fusiform aneurysm, flow-restricting face 15 may comprise a significantly enlarged surface area, or flow-restricting face 15 may comprise two or more separated segments disposed about the lateral portions of open frame 10, etc.
It should be appreciated that open frame 10 can be formed with a variety of different configurations without departing from the scope of the present invention.
In one form of the invention, open frame 10 may be formed out of a plurality of struts arranged in a polygonal array. See, for example,
It is also possible to form open frame 10 with a non-polygonal structure.
Thus, for example, open frame 10 may be formed with a spherical spiral structure, e.g., such as is shown in
It will be appreciated that, with the construction shown in
Various installation tools may be provided to deploy expandable spherical structure 5 within a blood vessel or other body lumen.
Thus, for example, in
As noted above, expandable spherical structure 5 of
If desired, installation tool 100 can be provided with a gripper mechanism to releasably secure expandable spherical structure 5 to installation tool 100, e.g., so as to releasably secure expandable spherical structure 5 to installation tool 100 until after expandable spherical structure 5 has been advanced to the therapy site and has returned to its enlarged configuration, so that it is ready to be left at the therapy site. This gripper mechanism ensures complete control of expandable spherical structure 5 as it is moved out of the installation tool and erected within the body, and also facilitates more precise positioning (e.g., with proper rotation, etc.) of the expandable structure against the side wall of the body lumen.
More particularly, and looking now at
As noted above, expandable spherical structure 5 of
If desired, installation tool 100 can be provided with an expansion balloon for expanding the expandable spherical structure from its reduced configuration to its enlarged configuration. More particularly, and looking now at
In
It should also be appreciated that it is possible to form the entire expandable spherical structure 5 out of a single superelastic wire, e.g., a shape memory alloy constructed so as to form stress-induced martensite at body temperatures. By way of example but not limitation, an appropriately blended and treated Nitinol wire may be used. In this form of the invention, the expandable spherical structure 5 can be (i) deformed into a collapsed configuration wherein a single path of the wire is constrained within a restraining cannula, and (ii) thereafter reformed in situ by simply pushing the wire out of the distal end of the restraining cannula, whereupon expandable spherical structure 5 reforms in the blood vessel or other body lumen. This form of the invention is particularly well suited to constructions where flow-restricting face 15 is formed with a single, patterned strut arranged to have a high strut density, e.g., with a strut density sufficiently high to restrict flow to the mouth of an aneurysm, and/or a strut density sufficiently high to reinforce the side wall of a blood vessel or other body lumen, and/or a strut density sufficiently high to achieve some other desired purpose. See, for example,
As noted above, conventional minimally-invasive techniques for treating brain aneurysms generally involve depositing thrombosis-inducing coils within the dome of the aneurysm. If desired, the expandable spherical structure 5 of the present invention may be used in conjunction with thrombosis-inducing coils, i.e., the thrombosis-inducing coils may be deposited within the dome of an aneurysm after positioning the expandable spherical structure against the mouth of the aneurysm so as to restrict flow into the aneurysm, i.e., by introducing the thrombosis-inducing coils through the face having a high strut density and into the dome of the aneurysm. Alternatively, the thrombosis-inducing coils may be deposited within the dome of the aneurysm before positioning the expandable spherical structure against the mouth of the aneurysm so as to restrict flow into the aneurysm. Significantly, it is believed that this approach will both facilitate thrombosis formation and also prevent coil migration out of the aneurysm.
It should also be appreciated that expandable spherical structure 5 may be deployed within the body of an aneurysm so that its flow-restricting face 15 confronts the lumen, rather than being within the lumen so that its flow-restricting face confronts the body of the aneurysm. See, for example,
Again, the expandable spherical structure 5 may be positioned within the interior of a lateral aneurysm (
It is also possible to provide expandable spherical structure 5 with stabilizing legs. Such a construction may be adapted for use with both lateral aneurysms and with bifurcation aneurysms.
More particularly, and looking now at
Preferably, and as seen in
As seen in
If the comet-shaped structure subsequently needs to be repositioned or removed from a deployment site, tension wire 210 may be used to pull the comet-shaped structure retrograde, e.g., within the blood vessel or all the way back into containment sheath 200. To this end, and looking now at
If desired, and looking now at
It will be appreciated that, where flow-restricting face 15 covers only a portion of the circumference of open frame 10, it can be important for the clinician to ensure the rotational disposition of the comet-shaped structure so that flow-restricting face 15 is properly aligned with the mouth of the lateral aneurysm. For this reason, and looking now at
Looking now at
In the foregoing description, the expandable spherical structure 5 of
Looking next at
In the preceding description, expandable spherical structure 5 is described as comprising an open frame 10 having a flow-restricting face 15 carried thereon. More particularly, in some embodiments of the invention, flow-restricting face 15 comprises a substantially complete surface or barrier. See, for example,
In the preceding description, it was noted that it is possible to form the entire expandable spherical structure 5 out of a single superelastic wire, e.g., a shape-memory alloy constructed so as to form stress-induced martensite at body temperatures. It was also noted that, in this form of the invention, the expandable spherical structure 5 can be (i) deformed into a collapsed configuration wherein a single path of the wire is constrained within a constraining cannula, and (ii) thereafter reformed in situ by simply pushing the wire out of the distal end of the restraining cannula, whereupon expandable spherical structure 5 reforms in the blood vessel or other body lumen. It was further noted that this form of the invention is particularly well suited to constructions wherein closed face 15 is formed with a single, patterned strut arranged to have a high strut density, e.g., with a strut density sufficiently high to restrict the flow of blood through the mouth of an aneurysm (i.e., to cause thrombosis of the aneurysm), and/or a strut density sufficiently high to reinforce the side wall of a blood vessel or other body lumen, and/or a strut density sufficiently high to achieve some other desired purpose. Again, however, flow-restricting face 15 will still have a significantly higher strut density than that of open frame 10. See, for example,
In accordance with the present invention, there is now disclosed a further construction wherein expandable spherical structure 5 is formed out of a closed loop of filament such as highly flexible wire (e.g., Nitinol) which has been worked (e.g., on a mandrel) so that its numerous turns approximate the shape of a sphere or ellipsoid when the loop is in its relaxed condition. One face of the sphere (i.e., flow-restricting face 15) has a higher turn density than the remainder of the sphere (i.e., open frame 10) so that the high density face can restrict blood flow while the remainder of the sphere easily passes blood flow. The closed loop of filament may be transformed from its spherical shape into another shape by applying physical forces (e.g., tension) to the closed loop of filament. Thus, the closed loop of filament may be transformed from its three-dimensional substantially spherical configuration into a substantially two-dimensional “elongated loop” configuration (e.g., by applying two opposing forces to the interior of the loop) in order that the closed loop of filament may be advanced endoluminally to the site of an aneurysm. Once at the site of the aneurysm, the tension on the elongated loop may be released so that the closed loop of filament returns to its spherical shape, whereby to lodge in the blood vessel with the high density face (i.e., flow-restricting face 15) diverting the flow of blood away from the aneurysm (i.e., to cause thrombosis within the aneurysm) while the remainder of the sphere (i.e., open frame 10) easily passes blood flowing through the parent vessel. If the sphere subsequently needs to be re-positioned within the blood vessel, the tension is re-applied to the sphere so as to transform it part or all the way back to its elongated loop configuration, the position of the device is adjusted, and then the foregoing process repeated so as to set the sphere at a new position within the blood vessel. Furthermore, if the sphere needs to be removed from the blood vessel, the tension is re-applied to the sphere so as to transform it back to its elongated loop configuration, and then the loop is removed from the patient. Significantly, this construction has the advantages of (i) ease of positioning, (ii) reliably maintaining its deployed position within the vessel, (iii) ease of re-positioning within the body, and (iv) where necessary, removal from the body.
By way of example but not limitation,
In use, and as shown in
If, after deployment, the closed loop expandable spherical structure needs to be re-positioned within the blood vessel, inserter 300 is used to re-apply tension to the sphere so as to transform the sphere part or all the way back to its loop configuration, the position of the device is adjusted, and then the foregoing process is repeated so as to set the sphere at a new position within the blood vessel.
Furthermore, if, after deployment, the closed loop expandable spherical structure 5 needs to be removed from the blood vessel, inserter 300 is used to re-apply tension to the sphere so as to transform it back to its loop configuration, and then the loop is removed from the patient.
Significantly, this construction has the advantages of (i) ease of positioning, (ii) reliably maintaining its deployed position within the vessel, (iii) ease of re-positioning within the body, and (iv) where necessary, removal from the body.
In the foregoing disclosure, expandable spherical structure 5 is described as comprising a spherical body. In this regard, it should be appreciated that the term “spherical” is intended to mean a true spherical shape, and/or a substantially spherical shape, and/or a near spherical shape (including but not limited to an ellipsoid shape or a substantially ellipsoid shape or a near ellipsoid shape), and/or an effectively spherical shape, and/or a generally spherical shape, and/or a polyhedron which approximates a sphere, and/or a shape which approximates a sphere, and/or a structure comprising a substantial portion of any of the foregoing, and/or a structure comprising a combination of any of the foregoing, etc.
Thus, for example, expandable spherical structure 5 may include a first section that constitutes a portion of a sphere and a second section which roughly approximates the remaining portion of a sphere.
In the foregoing disclosure, there is disclosed a novel device for, among other things, positioning in a blood vessel (or vessels) adjacent to the mouth of an aneurysm and for causing thrombosis of the aneurysm by restricting blood flow to the aneurysm while maintaining substantially normal blood flow through the blood vessel (or vessels) which receive(s) the device, wherein the device comprises a single elastic filament configurable between: (i) a longitudinally-expanded, substantially linear configuration, whereby to facilitate movement of the device along the vascular system of the patient to the site of the aneurysm; and (ii) a longitudinally-contracted, substantially three-dimensional configuration for lodging within the central lumen of the blood vessel (or vessels) adjacent to the mouth of the aneurysm, the longitudinally-contracted, substantially three-dimensional configuration providing (a) a flow-restricting face for positioning at the mouth of the aneurysm, the flow-restricting face comprising a plurality of lengths of the single elastic filament disposed in close proximity to one another so as to significantly restrict blood flow to the aneurysm and thereby cause thrombosis of the aneurysm, and (b) a substantially open frame for holding the flow-restricting face adjacent to the mouth of the aneurysm, the substantially open frame being configured so as to maintain substantially normal blood flow through the central lumen of the blood vessel (or vessels) which receive(s) the device.
In one preferred form of the present invention, the novel device is formed out of a single elastic filament having distinct first and second ends, and the longitudinally-expanded, substantially linear configuration is formed by disposing the first and second ends oppositely away from one another. In another preferred form of the present invention, the device is formed out of a single elastic filament having its first and second ends unified with one another (e.g., by welding, by banding, etc.) so as to effectively form a continuous, closed loop of elastic filament, and the longitudinally-expanded, substantially linear configuration is formed by disposing the continuous, closed loop of elastic filament so that it essentially consists of two parallel lengths of the single elastic filament.
And in one preferred form of the present invention, the longitudinally-contracted, substantially three-dimensional configuration is substantially spherical, or substantially ellipsoid, or some other three-dimensional shape appropriate for holding the flow-restricting face of the device against the mouth of the aneurysm while maintaining substantially normal blood flow through the central lumen of the blood vessel (or vessels) which receive(s) the device.
And in one preferred form of the present invention, the single elastic filament comprises a shape memory material, e.g., Nitinol, with the elastic filament transforming between its longitudinally-expanded, substantially linear configuration and its longitudinally-contracted, substantially three-dimensional configuration by temperature transition or by superelasticity.
And in one preferred form of the present invention, the shape memory material may comprise an appropriate nickel titanium alloy (e.g., Nitinol), an appropriate copper-based alloy (e.g., Cu—Zn—Al, Cu—Al—Ni, Cu—Al—Mn, Cu—Al—Be, etc.), and an appropriate iron-based alloy (e.g., Fe—Mn—Si, Fe—Cr—Ni—Mn—Si—Co, Fe—Ni—Mn, Fe—Ni—C, Fe—Pt, Fe—Pd, etc.), etc. Additionally, the shape memory material may comprise a shape memory polymer.
In order for a shape memory material to be capable of automatically transforming between a “first shape” and a “second shape” by temperature transition or by superelasticity, it is necessary to first process the shape memory material in a particular manner. More particularly, the shape memory material is initially formed with the “first shape”, then it is mechanically transformed to the desired “second shape” and then, while mechanically held in the desired “second shape” (e.g., by a fixture), the shape memory material is heat treated, i.e., it is brought to an elevated temperature for a controlled length of time and then rapidly quenched so as to return the shape memory material to ambient temperature. This processing causes the shape memory material to retain its aforementioned “second shape”, even after the device is released from the fixture. Thereafter, the shape memory material may be transformed from its “second shape” to its “first shape” (e.g., by temperature transition or by mechanical deformation) and then, when desired, automatically returned to its “second shape” (e.g., by a different temperature transition or by releasing the mechanical deformation).
Thus it will be seen that, in connection with the present invention, when the novel device is to be formed out of a shape memory material, with the “second shape” being the aforementioned longitudinally-contracted, substantially three-dimensional configuration and the “first shape” being the aforementioned longitudinally-expanded, substantially linear configuration, the device must be held in its “second shape” on a fixture while the shape memory material is appropriately heat treated (e.g., heated and then rapidly quenched) so that the device will thereafter retain its “second shape” when it is released from the fixture.
In one preferred form of the present invention, the elastic filament comprises shape memory material wire (e.g., Nitinol wire), and the novel device is formed by first winding the elastic filament around a plurality of surface features (e.g., posts) disposed on (or in) a three-dimensional body (i.e., “the fixture”), and then appropriately heat treating the elastic filament while it is retained on the fixture so that the elastic filament will retain the desired “second shape” (i.e., the aforementioned longitudinally-contracted, substantially three-dimensional configuration) when the device is released from the fixture. See, for example,
The foregoing manufacturing approach, which may sometimes be referred to herein as the “winding” approach, is highly advantageous since it allows the elastic filament to be formed out of shape memory material wire (e.g., Nitinol wire), which is well known in the art. As a result, it is possible to take advantage of the substantial body of general knowledge which already exists with respect fabricating, handling and heat treating shape memory material wire (e.g., Nitinol wire).
However, as noted above, this “winding” approach requires that the elastic filament be wound around surface features (e.g., posts) disposed on (or in) a three-dimensional body (i.e., “the fixture”).
In another preferred form of the present invention, there is provided an alternative manufacturing approach, which may sometimes be referred to herein as the “flat-to-3D” approach. Generally described, with this “flat-to-3D” approach, and looking now at
More particularly, the aforementioned longitudinally-contracted, substantially three-dimensional configuration 435 of the device (
In one preferred form of the invention, and looking now at
Thereafter, the single filament, two-dimensional interim structure 425 is dismounted from the flat sheet 420 of shape memory material (e.g., by severing the one or more attachment tabs 430 holding the single filament, two-dimensional interim structure 425 to the flat sheet 420 of shape memory material), and then the freed single filament, two-dimensional interim structure 425 is mounted on an appropriate three-dimensional fixture so that the single filament, two-dimensional interim structure 425 assumes the desired “second shape”, i.e., the aforementioned longitudinally-contracted, substantially three-dimensional configuration.
See, for example,
With the single filament, two-dimensional interim structure 425 restrained in the desired “second shape” (i.e., the aforementioned longitudinally-contracted, substantially three-dimensional configuration), the device is heat treated (i.e., it is appropriately heated and then rapidly quenched to ambient temperature) so as to “train” the device to assume the desired “second shape” (i.e., the longitudinally-contracted, substantially three-dimensional configuration). The device may thereafter be dismounted from the three-dimensional fixture, whereby to provide the structure 435 shown in
In connection with the foregoing, the following additional points should be appreciated.
Device Design.
In certain circumstances, it may be desirable to form certain portions of the novel device with a stiffer characteristic than other portions of the device, which may require a more flexible characteristic. By way of example but not limitation, by forming certain portions of the device with a stiffer characteristic, the ability of the device to return to its longitudinally-contracted, substantially three-dimensional configuration 435 (
One way of providing regions of greater or lesser stiffness is by forming the elastic filament with regions of thicker or thinner dimensions. This is relatively easy to do with the “flat-to-3D” approach of the present invention, where the single filament, two-dimensional interim structure 425 is being formed out of a large flat sheet 420 of shape memory material. In this case, the regions of greater stiffness are formed thicker (e.g., wider) and the regions of lesser stiffness are formed thinner (e.g., narrower).
By way of example but not limitation, where etching is used to fabricate the single filament, two-dimensional interim structure 425 from a flat sheet 420 of shape memory material, the process is essentially a substractive process where material is etched away. As a result, different thicknesses (e.g., widths) may be provided for the elastic filament by etching away more or less material from flat sheet 420. See, for example,
Another way of forming regions of greater or lesser stiffness is by forming the elastic filament with regions of differing cross-section. By way of example but not limitation, where the device has a round cross-section, the device will tend to bend equally well in all directions when the bend occurs at that cross-section, but where the device has a rectangular cross-section, the device will tend to bend preferentially in certain directions when the bend occurs at that cross-section. Accordingly, it is possible to form regions of greater or lesser stiffness by intentionally varying the cross-section of the device along its length, whereby to provide the device with the mechanical properties desired for various segments of the device. Again, this is relatively easy to do with the “flat-to-3D” approach of the present invention, where the single filament, two-dimensional interim structure 425 is being formed out of a large flat sheet 420 of shape memory material via a subtractive process, since the subtractive process can be used to provide various cross-sections at different points along the device.
Furthermore, the material (e.g., metallurgical) properties of the flat sheet 420 of shape memory material are not necessarily the same in all directions. By way of example but not limitation, the shape memory material may be stronger in one direction than in another direction, e.g., the shape memory material may be stronger in the direction in which it is rolled during the manufacturing process than in the opposing direction. By taking such factors into account when forming the single filament, two-dimensional interim structure 425 from the flat sheet 420 of shape memory material, it is possible to take advantage of varying material properties, e.g., so as to construct devices which can be better stretched or compressed in selected directions.
Etching.
Etching may be conducted from one side of flat sheet 420 or from both sides of flat sheet 420, either concurrently or serially. Where etching is effected from both sides of flat sheet 420, the resulting cross-sectional shape of the elastic filament may somewhat resemble a hexagon.
As a general rule, the etching process requires the provision of a space between the “solid” portions (i.e., the filament runs) of the device, where this space is approximately equal to the thickness of the flat sheet 420.
In one preferred form of the invention, flat sheet 420 is approximately 0.004 inch thick. In another form of the invention, flat sheet 420 is approximately 0.0053 inch thick.
Electro-Polishing.
As noted above, electro-polishing is a “reverse plating” process which electrochemically removes material. It preferentially takes material away from sharp corners, where the electrical fields are the strongest. Rounding sharp corners is believed to be beneficial for the present invention, since it provides a gentle radius where the device touches tissue, and it reduces stress concentrations in the elastic filament. In addition, the rounding of corners will tend to bring the cross-section of the elastic filament to a near-circular shape, which will tend to increase ease of bending in any direction.
Electro-polishing removes material thickness as well. As a simple rule of thumb, electro-polishing creates about a 2× corner radius for a 1× decrease in material thickness. As a result, a 0.0005 inch thickness decrease results in a 0.001 inch radius on an outside corner.
Electro-polishing can also change the surface properties of the shape memory material. By way of example but not limitation, flat sheet 420 typically has machining marks and other marks from the Nitinol sheet fabrication process. These marks may be minimized or diminished in the electro-polishing process.
Electro-polishing can also change the surface finish of the device. Generally, the electro-polishing smooths the surface and makes it more corrosion resistant.
Tailoring the Cross-Section of the Device.
It should be appreciated that the cross-section of the device can affect the mechanical properties of the device when the device is subjected to various forces. By way of example but not limitation, where the device has a round cross-section, the device will tend to bend equally well in all directions when the bend occurs at that cross-section. By way of further example but not limitation, where the device has a rectangular cross-section, the device will tend to bend preferentially in certain directions when the bend occurs at that cross-section. Accordingly, in one form of the present invention, the device has a cross-section which is intentionally varied along its length in accordance with the mechanical properties desired for various segments of the device.
It will be appreciated that a desired cross-section can be achieved by appropriately selecting and implementing a specific manufacturing process, e.g., where etching is used to form the device, various etching parameters (including masking) can be adjusted so as to form a desired cross-section, and/or where electro-polishing is used to form the device, various electro-polishing parameters (including masking) can be adjusted so as to form a desired cross-section, etc.
Forming the Final Three-Dimensional Structure from the Two-Dimensional Interim Structure.
As noted above, the present invention comprises transforming the two-dimensional interim structure 425 (
It will be appreciated that still further embodiments of the present invention will be apparent to those skilled in the art in view of the present disclosure. It is to be understood that the present invention is by no means limited to the particular constructions herein disclosed and/or shown in the drawings, but also comprises any modifications or equivalents within the scope of the invention.
This patent application is a continuation of pending prior U.S. patent application Ser. No. 13/437,777, filed Apr. 2, 2012 by Howard Riina et al. for METHOD AND APPARATUS FOR RESTRICTING FLOW THROUGH AN OPENING IN THE SIDE WALL OF A BODY LUMEN, AND/OR FOR REINFORCING A WEAKNESS IN THE SIDE WALL OF A BODY LUMEN, WHILE STILL MAINTAINING SUBSTANTIALLY NORMAL FLOW THROUGH THE BODY LUMEN, which (i) is a continuation-in-part of prior U.S. patent application Ser. No. 12/657,598, filed Jan. 22, 2010 by Howard Riina et al. for METHOD AND APPARATUS FOR RESTRICTING FLOW THROUGH AN OPENING IN THE SIDE WALL OF A BODY LUMEN, AND/OR FOR REINFORCING A WEAKNESS IN THE SIDE WALL OF A BODY LUMEN, WHILE STILL MAINTAINING SUBSTANTIALLY NORMAL FLOW THROUGH THE BODY LUMEN, which patent application (a) is in turn a continuation-in-part of prior U.S. patent application Ser. No. 12/332,727, filed Dec. 11, 2008 by Howard Riina et al. for METHOD AND APPARATUS FOR SEALING AN OPENING IN THE SIDE WALL OF A BODY LUMEN, AND/OR FOR REINFORCING A WEAKNESS IN THE SIDE WALL OF A BODY LUMEN, WHILE MAINTAINING SUBSTANTIALLY NORMAL FLOW THROUGH THE BODY LUMEN, which in turn claims benefit of prior U.S. Provisional Patent Application Ser. No. 61/007,189, filed Dec. 11, 2007 by Howard Riina et al. for DEPLOYABLE BLOCKING SPHERE;(b) claims benefit of prior U.S. Provisional Patent Application Ser. No. 61/205,683, filed Jan. 22, 2009 by Jeffrey Milsom et al. for METHOD AND APPARATUS FOR SEALING AN OPENING IN THE SIDE WALL OF A BODY LUMEN, AND/OR FOR REINFORCING A WEAKNESS IN THE SIDE WALL OF A BODY LUMEN, WHILE MAINTAINING SUBSTANTIALLY NORMAL FLOW THROUGH THE BODY LUMEN; and(c) claims benefit of prior U.S. Provisional Patent Application Ser. No. 61/277,415, filed Sep. 24, 2009 by Howard Riina et al. for METHOD AND APPARATUS FOR RESTRICTING AN OPENING IN THE SIDE WALL OF A BODY LUMEN, AND/OR FOR REINFORCING A WEAKNESS IN THE SIDE WALL OF A BODY LUMEN, WHILE MAINTAINING SUBSTANTIALLY NORMAL FLOW THROUGH THE BODY LUMEN; and (ii) claims benefit of prior U.S. Provisional Patent Application Ser. No. 61/470,733, filed Apr. 1, 2011 by Howard Riina et al. for FLOW DIVERTERS. The above-identified patent applications are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3431906 | Taylor | Mar 1969 | A |
4619246 | Molgaard-nielsen et al. | Oct 1986 | A |
4994069 | Ritchart | Feb 1991 | A |
4994096 | Klein et al. | Feb 1991 | A |
5092894 | Kenny | Mar 1992 | A |
5314444 | Gianturco | May 1994 | A |
5350398 | Pavcnik | Sep 1994 | A |
5607445 | Summers | Mar 1997 | A |
5609627 | Goicoechea et al. | Mar 1997 | A |
5645558 | Horton | Jul 1997 | A |
5649949 | Wallace | Jul 1997 | A |
5669933 | Simon et al. | Sep 1997 | A |
5749891 | Ken | May 1998 | A |
5766219 | Horton | Jun 1998 | A |
5772668 | Summers et al. | Jun 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5830222 | Makower | Nov 1998 | A |
5836968 | Simon et al. | Nov 1998 | A |
5851537 | Alberts et al. | Dec 1998 | A |
5911731 | Pham | Jun 1999 | A |
5925060 | Forber | Jul 1999 | A |
5951599 | McCrory | Sep 1999 | A |
6013854 | Moriuchi | Jan 2000 | A |
6033423 | Ken et al. | Mar 2000 | A |
6063111 | Hieshima et al. | May 2000 | A |
6068638 | Makower | May 2000 | A |
6090125 | Horton | Jul 2000 | A |
6093199 | Brown | Jul 2000 | A |
6136015 | Kurz et al. | Oct 2000 | A |
6159165 | Ferrera et al. | Dec 2000 | A |
6159225 | Makower | Dec 2000 | A |
6165194 | Denardo | Dec 2000 | A |
6165198 | McGurk et al. | Dec 2000 | A |
6171326 | Ferrera et al. | Jan 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6190402 | Horton | Feb 2001 | B1 |
6221086 | Forber | Apr 2001 | B1 |
6231587 | Makower | May 2001 | B1 |
6261305 | Marotta et al. | Jul 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6283983 | Makower et al. | Sep 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6309415 | Pulnev et al. | Oct 2001 | B1 |
6322576 | Wallace et al. | Nov 2001 | B1 |
6325820 | Khosravi et al. | Dec 2001 | B1 |
6330884 | Kim | Dec 2001 | B1 |
6344041 | Kupiecki | Feb 2002 | B1 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6368338 | Konya et al. | Apr 2002 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6379319 | Garibotto et al. | Apr 2002 | B1 |
6428558 | Jones et al. | Aug 2002 | B1 |
6432127 | Kim et al. | Aug 2002 | B1 |
6482222 | Bruckheimer et al. | Nov 2002 | B1 |
6540657 | Cross, III et al. | Apr 2003 | B2 |
6544230 | Flaherty et al. | Apr 2003 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6551344 | Thill | Apr 2003 | B2 |
6569179 | Teoh et al. | May 2003 | B2 |
6579311 | Makower | Jun 2003 | B1 |
6585748 | Jeffree | Jul 2003 | B1 |
6585756 | Strecker | Jul 2003 | B1 |
6589265 | Palmer et al. | Jul 2003 | B1 |
6592605 | Lenker et al. | Jul 2003 | B2 |
6605111 | Bose et al. | Aug 2003 | B2 |
6613074 | Mitelberg et al. | Sep 2003 | B1 |
6613081 | Kim et al. | Sep 2003 | B2 |
6616617 | Ferrera et al. | Sep 2003 | B1 |
6616675 | Evard et al. | Sep 2003 | B1 |
6632241 | Hancock et al. | Oct 2003 | B1 |
6635069 | Teoh et al. | Oct 2003 | B1 |
6638291 | Ferrera et al. | Oct 2003 | B1 |
6638293 | Makower et al. | Oct 2003 | B1 |
6652555 | Van Tassel et al. | Nov 2003 | B1 |
6652556 | Van Tassel et al. | Nov 2003 | B1 |
6655386 | Makower et al. | Dec 2003 | B1 |
6656218 | Denardo et al. | Dec 2003 | B1 |
6660024 | Flaherty et al. | Dec 2003 | B1 |
6669717 | Marotta et al. | Dec 2003 | B2 |
6676696 | Marotta et al. | Jan 2004 | B1 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6689150 | Van Tassel et al. | Feb 2004 | B1 |
6695876 | Marotta et al. | Feb 2004 | B1 |
6709444 | Makower | Mar 2004 | B1 |
6726677 | Flaherty et al. | Apr 2004 | B1 |
6730108 | Van Tassel et al. | May 2004 | B2 |
6746464 | Makower | Jun 2004 | B1 |
6746468 | Sepetka et al. | Jun 2004 | B1 |
6790218 | Jayaraman | Sep 2004 | B2 |
6811560 | Jones et al. | Nov 2004 | B2 |
6855155 | Denardo et al. | Feb 2005 | B2 |
6860893 | Wallace et al. | Mar 2005 | B2 |
6863684 | Kim et al. | Mar 2005 | B2 |
6872218 | Ferrera et al. | Mar 2005 | B2 |
6878163 | Denardo et al. | Apr 2005 | B2 |
6894092 | Sylvester | May 2005 | B2 |
6913618 | Denardo et al. | Jul 2005 | B2 |
6929009 | Makower et al. | Aug 2005 | B2 |
6929654 | Teoh et al. | Aug 2005 | B2 |
6949113 | Van Tassel et al. | Sep 2005 | B2 |
6953472 | Palmer et al. | Oct 2005 | B2 |
6969401 | Marotta et al. | Nov 2005 | B1 |
6984240 | Ken et al. | Jan 2006 | B1 |
7029486 | Schaefer | Apr 2006 | B2 |
7059330 | Makower et al. | Jun 2006 | B1 |
7094230 | Flaherty et al. | Aug 2006 | B2 |
7134438 | Makower et al. | Nov 2006 | B2 |
7159592 | Makower et al. | Jan 2007 | B1 |
7179270 | Makower | Feb 2007 | B2 |
7211107 | Bruckheimer et al. | May 2007 | B2 |
7229472 | DePalma et al. | Jun 2007 | B2 |
7241310 | Taylor et al. | Jul 2007 | B2 |
7279000 | Cartier et al. | Oct 2007 | B2 |
7288112 | Denardo et al. | Oct 2007 | B2 |
7303571 | Makower et al. | Dec 2007 | B2 |
7306622 | Jones et al. | Dec 2007 | B2 |
7306624 | Yodfat et al. | Dec 2007 | B2 |
7316655 | Garibotto et al. | Jan 2008 | B2 |
7316701 | Ferrera et al. | Jan 2008 | B2 |
7326225 | Ferrera et al. | Feb 2008 | B2 |
7331974 | Schaefer et al. | Feb 2008 | B2 |
7407506 | Makower | Aug 2008 | B2 |
7473275 | Marquez | Jan 2009 | B2 |
7485123 | Porter | Feb 2009 | B2 |
7488332 | Teoh | Feb 2009 | B2 |
7572288 | Cox | Aug 2009 | B2 |
7879064 | Monstadt | Feb 2011 | B2 |
8007509 | Buiser et al. | Aug 2011 | B2 |
8066036 | Monetti | Nov 2011 | B2 |
8088171 | Brenneman | Jan 2012 | B2 |
8092515 | Johnson et al. | Jan 2012 | B2 |
8142456 | Rosqueta et al. | Mar 2012 | B2 |
8226660 | Teoh et al. | Jul 2012 | B2 |
8372110 | Monstadt et al. | Feb 2013 | B2 |
8545530 | Eskridge et al. | Oct 2013 | B2 |
9056024 | Tippett et al. | Jun 2015 | B2 |
20010012961 | Deem et al. | Aug 2001 | A1 |
20020058986 | Landau et al. | May 2002 | A1 |
20020169473 | Sepetka et al. | Nov 2002 | A1 |
20020193812 | Patel et al. | Dec 2002 | A1 |
20020193813 | Helkowski et al. | Dec 2002 | A1 |
20030040771 | Hyodoh | Feb 2003 | A1 |
20030055451 | Jones et al. | Mar 2003 | A1 |
20030109917 | Rudin et al. | Jun 2003 | A1 |
20030125603 | Zunker | Jul 2003 | A1 |
20030125790 | Fastovsky et al. | Jul 2003 | A1 |
20030139802 | Wulfman et al. | Jul 2003 | A1 |
20030216804 | DeBeer et al. | Nov 2003 | A1 |
20040006383 | Zilla et al. | Jan 2004 | A1 |
20040014253 | Gupta et al. | Jan 2004 | A1 |
20040025984 | Holemans | Feb 2004 | A1 |
20040034386 | Fulton et al. | Feb 2004 | A1 |
20040087998 | Lee et al. | May 2004 | A1 |
20040098030 | Makower et al. | May 2004 | A1 |
20040153142 | Klumb et al. | Aug 2004 | A1 |
20040172056 | Guterman et al. | Sep 2004 | A1 |
20040181253 | Sepetka et al. | Sep 2004 | A1 |
20040210298 | Rabkin et al. | Oct 2004 | A1 |
20040260384 | Allen | Dec 2004 | A1 |
20050107823 | Leone et al. | May 2005 | A1 |
20050187564 | Jayaraman | Aug 2005 | A1 |
20050192618 | Porter | Sep 2005 | A1 |
20050192619 | Teoh et al. | Sep 2005 | A1 |
20050192620 | Cully et al. | Sep 2005 | A1 |
20050283235 | Kugler | Dec 2005 | A1 |
20060047299 | Ferguson | Mar 2006 | A1 |
20060052816 | Bates et al. | Mar 2006 | A1 |
20060095110 | Moberg et al. | May 2006 | A1 |
20060116625 | Renati et al. | Jun 2006 | A1 |
20060116709 | Sepetka et al. | Jun 2006 | A1 |
20060116712 | Sepetka et al. | Jun 2006 | A1 |
20060135947 | Soltesz et al. | Jun 2006 | A1 |
20060142845 | Molaei et al. | Jun 2006 | A1 |
20060200234 | Hines | Sep 2006 | A1 |
20060224183 | Freudenthal | Oct 2006 | A1 |
20060229718 | Marquez | Oct 2006 | A1 |
20060241686 | Ferrera et al. | Oct 2006 | A1 |
20060267247 | Anukhin et al. | Nov 2006 | A1 |
20070014831 | Sung et al. | Jan 2007 | A1 |
20070060994 | Gobran et al. | Mar 2007 | A1 |
20070061006 | Desatnik et al. | Mar 2007 | A1 |
20070083226 | Buiser | Apr 2007 | A1 |
20070083257 | Pal et al. | Apr 2007 | A1 |
20070162108 | Carlson | Jul 2007 | A1 |
20070198075 | Levy | Aug 2007 | A1 |
20070219619 | Dieck et al. | Sep 2007 | A1 |
20070239261 | Bose et al. | Oct 2007 | A1 |
20070270902 | Slazas et al. | Nov 2007 | A1 |
20070299367 | Melsheimer et al. | Dec 2007 | A1 |
20080004640 | Ellingwood | Jan 2008 | A1 |
20080035158 | Pflueger et al. | Feb 2008 | A1 |
20080039933 | Yodfat et al. | Feb 2008 | A1 |
20080045995 | Guterman et al. | Feb 2008 | A1 |
20080114391 | Dieck et al. | May 2008 | A1 |
20080114436 | Dieck et al. | May 2008 | A1 |
20080221554 | O'Connor | Sep 2008 | A1 |
20080221600 | Dieck et al. | Sep 2008 | A1 |
20080281350 | Sepetka et al. | Nov 2008 | A1 |
20090062834 | Moftakhar et al. | Mar 2009 | A1 |
20090065009 | Gurtner | Mar 2009 | A1 |
20090069836 | Labdag | Mar 2009 | A1 |
20090112050 | Farnan et al. | Apr 2009 | A1 |
20090125053 | Ferrera et al. | May 2009 | A1 |
20090170349 | Sakamoto | Jul 2009 | A1 |
20090287241 | Berez et al. | Nov 2009 | A1 |
20090297582 | Meyer | Dec 2009 | A1 |
20100010533 | Burke | Jan 2010 | A1 |
20100268260 | Riina et al. | Oct 2010 | A1 |
20110022149 | Cox et al. | Jan 2011 | A1 |
20110060194 | Risto | Mar 2011 | A1 |
20110172692 | Wu | Jul 2011 | A1 |
20120029612 | Grandt | Feb 2012 | A1 |
20120029623 | Baillargeon | Feb 2012 | A1 |
20120239136 | Bruzzi | Sep 2012 | A1 |
20130018409 | Le | Jan 2013 | A1 |
20130268046 | Gerberding et al. | Oct 2013 | A1 |
20140142608 | Eskridge et al. | May 2014 | A1 |
20150313737 | Tippett et al. | Nov 2015 | A1 |
20150342762 | Tippett et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
1216929 | May 1999 | CN |
1 129 666 | Sep 2001 | EP |
2001-212152 | Aug 2001 | JP |
2007-536943 | Dec 2007 | JP |
WO 9727893 | Aug 1997 | WO |
WO 2005072196 | Aug 2005 | WO |
WO 2006032289 | Mar 2006 | WO |
WO 2006091195 | Aug 2006 | WO |
WO 2007076480 | Apr 2007 | WO |
WO 2007076480 | Jul 2007 | WO |
WO 2008022327 | Feb 2008 | WO |
WO 2008151204 | Dec 2008 | WO |
WO 2009076515 | Jun 2009 | WO |
WO 2014066982 | May 2014 | WO |
Entry |
---|
Henkes et al., Endovascular Coil Occlusion of Intracranial Aneurysms Assisted by a Novel Self-Expandable Nitinol Microstent (Neuroform), Interventional Neuroradiology, 2002, 8: 107-119. |
Number | Date | Country | |
---|---|---|---|
20150216534 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61007189 | Dec 2007 | US | |
61205683 | Jan 2009 | US | |
61277415 | Sep 2009 | US | |
61470733 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13437777 | Apr 2012 | US |
Child | 14622250 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12657598 | Jan 2010 | US |
Child | 13437777 | US | |
Parent | 12332727 | Dec 2008 | US |
Child | 12657598 | US |