This invention relates to the field of subsurface safety valves and, more particularly, to a subsurface safety valve having a spring housing with an integrated flapper mount and hard seat in which a soft seat sealing component is installed and retained by a retaining ring into the spring housing.
Subsurface safety valves are well known in the art. They are used in a well, such as an oil or gas well, to provide a safety shut off in the event of a well failure. A subsurface safety valve is typically installed in a production tubing string and run downhole into the well. The valve is typically a normally-closed valve, in that the valve automatically shuts under default conditions, such as when the hydraulic control fluid to the valve is interrupted. When shut, the safety valve does not allow contents from below the safety valve, such as production fluids, to continue flowing to the surface of the well. Uncontrolled flowing production fluid, such as gas or other hydrocarbons, may cause explosions or otherwise damage surface facilities and/or cause environmental damage in the event of a well failure.
Referring to
A subsurface safety valve with a spring housing containing a flapper mount, hard seat and a sealing component is typically manufactured in several pieces. The spring housing usually forms one piece, and it contains the flow tube with an upwardly biasing spring, and an adjacent piston. The flapper mount, which includes the flapper and hinge, and a sealing component, generally form one or more other pieces. The flapper mount attaches to the lower end of the spring housing through a variety of connection methods, usually a threaded connection, which screw together. The sealing component is usually trapped between the hard seat and the flapper mount. When the flapper is closed, the outer perimeter of the flapper presses against an annular opening of the main bore of the safety valve to seal the well. The contact area between the flapper and the main bore of the safety valve usually comprises both a “hard seat,” which is a metal-to-metal contact between the flapper and the bore, and a “soft seat,” which is a metal-to-non-metal contact between the flapper and the sealing component.
Safety valves thus comprised have several leakage paths. One path is through the hard seat/soft seat interface when the flapper is closed. Another leakage path is through the connection between the flapper mount and the spring housing. A third leakage path is through the connection between the hard seat and spring housing or flapper mount.
When the components of the safety valve assembly (the flapper mount, hard seat and spring housing) are individual components, the tolerance of the connections between the components interacts with the design tolerances of the flapper, making the overall flapper design less reliable and its manufacture more difficult. One way to eliminate the leakage paths through these connections and the interaction (or stack up) of the tolerances between the flapper mount, hard seat and the spring housing is to integrate the flapper mount, hard seat and spring housing designs creating one piece. Removing the connection between the flapper mount, hard seat and the spring housing increases the reliability of the seal by removing multiple leak paths and eliminates the interaction of tolerances between the individual components and the flapper design.
The apparatus of the present invention integrates the flapper mount, the hard seat and the spring housing into a single assembly. To accommodate a “soft seat” in the assembly, a special retainer ring and soft seat seal are provided. The soft seat seal preferably fits over a conical protruding surface that surrounds the main bore of the safety valve at the bottom of the spring housing (hard seat). The retainer ring preferably fits over the soft seat seal and holds it into place against the conical surface. According to one embodiment, the retainer ring has tabs that fit into mating slots on the bottom of the spring housing. During assembly, the tabs rotate into grooves adjacent to the mating slots to hold the soft seat seal into place. The soft seat seal may have a flanged upper end that fits into a circular, milled slot at the base of the hard seat on the spring housing. Notches along the perimeter of the flanged upper end of the seal prevent gases, such as nitrogen during testing, from becoming trapped behind the seal and potentially damaging it when the pressure below a closed flapper is rapidly bled, resulting in trapped gases rushing out from behind the seal and deforming it. A gap between the upper flanged end of the seal and the bottom side of the spring housing allows for thermal expansion of the seal at elevated temperatures as well as allowing the seal to move up and down the conical protruding surface as the flapper opens and closes, reducing compression of the seal and the risk of a compression set due to repeated openings and closings of the flapper.
The apparatus of the present invention further includes a method of sealing the central bore of production tubing against fluid flowing from a wellbore towards the surface. The disclosed method comprises the step of attaching a safety valve assembly to the production tubing, the safety valve assembly comprising a spring housing having a lower portion that exhibits a generally conical shape, a non-metallic sealing ring concentrically located around the generally conically-shaped portion of the spring housing, a retainer ring adapted to retain the non-metallic sealing ring around the generally conically-shaped portion of the spring housing, and a flapper connected to the lower portion of the spring housing, the flapper operable to rotate between an open and closed position. The disclosed method further comprises the step of placing the safety valve assembly and the production tubing in a wellbore. Finally, the disclosed method comprises the step of closing the flapper such that the flapper seals against the generally conically-shaped portion of the spring housing and the non-metallic sealing ring thereby substantially preventing fluid from flowing from the wellbore towards the surface through the central bore of the production tubing.
Referring in particular to
Referring to
Referring now to
The soft seat material may be made of any suitable elastomeric or non-elastomeric material such as TEFLON®. The retaining ring is made of a metallic material that conforms with the requirements of NACE MR0175.
It will be apparent to one of skill in the art that described herein is a novel method and apparatus for sealing a subsurface valve. While the invention has been described with references to specific preferred and exemplary embodiments, it is not limited to these embodiments. The invention may be modified or varied in many ways and such modifications and variations as would be obvious to one of skill in the art are within the scope and spirit of the invention.
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/839,365, filed on Aug. 22, 2006, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3375874 | Cherry et al. | Apr 1968 | A |
4356867 | Carmody | Nov 1982 | A |
4444266 | Pringle | Apr 1984 | A |
4674575 | Guess | Jun 1987 | A |
5125457 | Meaders | Jun 1992 | A |
5201371 | Allen | Apr 1993 | A |
6003605 | Dickson et al. | Dec 1999 | A |
6079497 | Johnston et al. | Jun 2000 | A |
6296061 | Leismer | Oct 2001 | B1 |
6328109 | Pringle et al. | Dec 2001 | B1 |
6425413 | Davis et al. | Jul 2002 | B2 |
7152688 | Richards | Dec 2006 | B2 |
7360600 | MacDougall et al. | Apr 2008 | B2 |
Number | Date | Country |
---|---|---|
2248464 | Apr 1992 | GB |
2272922 | Jun 1994 | GB |
Number | Date | Country | |
---|---|---|---|
20080047713 A1 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
60839365 | Aug 2006 | US |