Not applicable
Not applicable
1. Field of the Invention
The present invention relates to a method and apparatus of salvaging underwater tubular elongated objects such as pipe/pipelines in a marine environment. More particularly, the present invention relates to an improved method and apparatus for removing pipelines and like objects from an underwater environment, the method employing a specially configured cutting apparatus having one or more hydraulic cylinders that push a moving v-shaped notched blade toward a fixed v-shaped notched blade, the blades overlapping during cutting and wherein structural rails or guides holds the moving blade in between the fixed blade and the rails or guides and wherein each blade has a beveled cutting edge that faces away from the beveled cutting edge of the other blade.
2. General Background of the Invention
In the offshore oil and gas industry and in other marine environments, there are a number of old, damaged or abandoned pipelines or sections of pipe that scatter the seabed. At times, catastrophic events such as hurricanes damage pipelines beyond repair so that they must be removed from the seabed with a salvage operation. Pipelines can be scattered over miles and in very deep water making salvage operations difficult and expensive.
The following possibly related U.S. patents are incorporated herein by reference:
The present invention provides an improved method and apparatus for salvaging an abandoned, old, or damaged pipeline or section(s) of pipe in a marine environment. The method provides a frame having a perimeter that surrounds a pair of opposed v-shaped cutter blades. The frame has a gate that enables the frame to be selectively placed around or removed from a section of pipeline to be cut. In the preferred embodiment, a blade can be mounted on the gate.
As part of the method, the frame is placed on the pipeline by first opening the gate and then closing the gate. In some cases, the member to be cut is fed through the opening surrounded by the blades, without opening the gate. When the gate is in a closed position, the pipeline is positioned in between the two v-shaped cutting blades. Hydraulic cylinders are used to move one of the v-shaped cutting blades toward the other until they overlap, cutting the pipe. Each cutter blade has a first side that is flat and planar and a second side having a beveled edge. During cutting, the flat, planar sides of the blades abut and are held in such abutting relationship. The beveled edges face away from each other.
Each cutting blade has a notched, v-shaped cutting edge. The pipeline is thus automatically centered within the respective notched v-shaped blade edges prior to be being severed and as the blades advance relative to one another.
At least one of the blades has a v-shaped blade that defines an angle of about 90-170 degrees.
For each cutting blade, the beveled blade edge defines an acute angle of between about 10 and 45 degrees with the flat, planar surface of the blade.
One blade can be advanced toward the other using one, preferably two hydraulic cylinders. Thus, one of the blades moves and the other is fixed. Each hydraulic cylinder is preferably attached to the moving blade with a pinned connection.
The moving blade travels in opposed slots on the frame. Rails prevent the moving blade from deflecting laterally as it travels upon a selected guided path.
The two guides or rails also prevent deflection of the fixed blade.
For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein:
Hinge 13 forms a pivoting connection between frame 11 and gate 12. Gate 12 can be closed and secured in the closed position with pinned connection 14. When the gate 12 is in a closed position (see
A pair of hydraulic cylinders 19, 20 are mounted to the frame 11 at the closed end portion 17. Each cylinder 19, 20 provides a moving pushrod. The cylinder 19 has a pushrod 21. The cylinder 20 has a pushrod 22. Moving blade 23 is attached to each of the pushrods 21, 22, preferably with pinned connections. The moving blade 23 provides a pair of cutting edges 24, 25 that form a “v” shape. Each edge 24, 25 provides a beveled surface 26.
Similarly, a fixed blade 27 is provided that has a pair of cutting edges 28, 29. As with the moving blade 23, the edges 28, 29 provide a “v” shape. The “v” shape for each of the blades 23, 27 forms a “v” that defines an acute angle 31 of about 90 degrees. Each beveled surface 26, 30 is beveled at an acute angle with respect to the plane of travel of the moving blade 23.
Each of the blades 23, 27 has a flat, planar surface. The blade 23 provides flat, planar surface 23A. The blade 27 provides flat, planar surface 27A. These flat, planar surfaces engage and abut, being positioned very closely together when cutting occurs. Each blade 23, 27 provides the beveled surface 26, 30 of each blade 23, 27 opposite the flat, planar surfaces 23A, 27A of the blades 23, 27. The blade 23 thus provides a beveled surface 26 opposite flat, planar surface 23A. Similarly, the blade 27 provides a beveled edge 30 opposite the planar, flat surface 27A. The flat, planar surfaces 23A, 27A can slide upon one another or be very closely spaced such as abutting or less than one millimeter apart during cutting.
When the moving blade 23 moves toward the fixed blade 27, it travels in slots on the frame. Guides 32, 33 are so positioned that they prevent lateral deflection of the blades 23, 27 when cutting occurs. This arrangement provides a very substantial, structurally robust construction that prevents deflection of either blade 23, 27 relative to the frame 11 in a transverse direction, i.e. a direction that is perpendicular to the path of travel 50 (see
The two hydraulic cylinders 19, 20 can be powered with hydraulic fluid. In that regard, each cylinder 19,20 is provided with a pair of hydraulic flowlines that enable the pushrods 21, 22 to be moved in either direction as selected. The hydraulic cylinder 19 thus provides a pair of hydraulic flowlines 34, 35. Similarly, the hydraulic cylinder 20 provides hydraulic flowlines 36, 37.
These hydraulic flowlines 34, 35, 36, 37 are provided with pressurized hydraulic fluid in a manner known in the art using a power unit such as hydraulic power unit, providing a hydraulic pump 40. The hydraulic power unit transmits pressurized fluid to the flowlines 34, 35, 36, 37 via flowlines 48, 49.
A lifting harness 43 is shown in
Harness 43 can include a spreader plate 44 that can be lifted with a crane or other lifting device that would attach a lifting line 51 to lifting eye 46 using a hook 52, shackle or other such rigging. Chains 45 span between plate 44 and frame 11, being attached to frame 11 using a plurality of shackles 47 as shown.
In
In
In
The following is a list of parts and materials suitable for use in the present invention.
All measurements disclosed herein are at standard temperature and pressure, at sea level on Earth, unless indicated otherwise. All materials used or intended to be used in a human being are biocompatible, unless indicated otherwise.
The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims.
Priority of U.S. Provisional Patent Application Ser. No. 60/691,655, filed Jun. 17, 2005, incorporated herein by reference, is hereby claimed.
Number | Name | Date | Kind |
---|---|---|---|
1326460 | Lorenz | Dec 1919 | A |
1798106 | Pels | Mar 1931 | A |
1986633 | Hearing | Jan 1935 | A |
2135911 | Ostberg | Nov 1938 | A |
3056267 | McRee | Oct 1962 | A |
3578233 | Meister et al. | May 1971 | A |
3817133 | Romberg | Jun 1974 | A |
4091514 | Motes-Conners et al. | May 1978 | A |
4124015 | Isaksson | Nov 1978 | A |
4168729 | Tausig et al. | Sep 1979 | A |
4197828 | Schellhorn | Apr 1980 | A |
5139006 | Trudeau | Aug 1992 | A |
5245982 | Trudeau | Sep 1993 | A |
5413086 | Trudeau | May 1995 | A |
5639185 | Saxon | Jun 1997 | A |
6022173 | Saxon | Feb 2000 | A |
6761100 | Oncken | Jul 2004 | B1 |
20060115331 | Matteucci | Jun 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
60691655 | Jun 2005 | US |