Information
-
Patent Grant
-
6293693
-
Patent Number
6,293,693
-
Date Filed
Wednesday, April 14, 199925 years ago
-
Date Issued
Tuesday, September 25, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 366 242
- 366 244
- 366 245
- 366 246
- 366 247
- 366 249
- 366 251
- 366 253
- 366 254
- 366 280
- 366 139
- 366 189
- 366 194
- 366 289
- 366 190
- 366 195
- 366 196
-
International Classifications
-
Abstract
A sanitary preparation apparatus having a vertically disposed tube, a port coupled to the tube for loading materials, and an end piece coupled to and sealing the bottom end of the tube is disclosed. A slidable platen having substantially the size and shape of the cross section of the tube is provided to close the mixing volume against contamination and to force the prepared material through a sealable connector coupled to the end piece. The platen has a passageway allowing a mixing mechanism including a shaft with attached impeller to be introduced into the mixing volume. One embodiment provides a second volume above the platen in which positive and negative gas pressures can be applied to move the platen within the tube. A method is disclosed for using the sanitary preparation apparatus to prepare a 4% cross-linked polyacrylamide (CPAM) hydrogel and to dispense the gel under pressure.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an apparatus and a method for sanitary mixing of viscous materials and, more particularly, to sanitary mixing of water and cross-linked polyacrylamide (CPAM) to form a hydrogel for use as a filler in implanted prostehesis.
2. Background Information
Highly viscous materials find many uses, including uses in the. Materials prepared for food, drug and cosmetic use must be prepared in a sanitary manner in compliance with Food and Drug Administration requirements. The material must be protected from outside contamination and be prepared in equipment having cleanable, non-reactive surfaces.
Conventional techniques for the sanitary preparation of highly viscous materials often involves preparation of the material in one device and then transfer of the material to another device for dispensing. For example, one method of manufacturing implantable prosthetic devices filled with a cross-linked polyacrylamide hydrogel requires hydration of the polyacrylamide in one device and then transfer to a pressure dispensing device for injection into the prosthetic shells.
One of the difficulties posed by the preparation of highly viscous, cohesive materials is that they will cling to the walls of the devices used in preparation. This complicates dispensing the prepared material and cleaning the preparation equipment after use.
It is also desirable to be able to prepare materials without exposing them to the atmosphere. This prevents exposure to air borne contaminants. In certain applications, it is desirable to prevent entraining air in the material. For example, air entrained in gels used in implantable prosthesis undesirably reduces radiolucency.
Accordingly, there is a need for a device which allows the preparation of highly viscous materials in a sanitary manner protected from contamination and entrainment of air and which allows the dispensing of prepared material without the need to transfer the material into another vessel.
SUMMARY OF THE INVENTION
A sanitary preparation apparatus having a vertically disposed tube, a port coupled to the tube for loading materials, and an end piece coupled to and sealing the bottom end of the tube is disclosed. A slidable platen having substantially the size and shape of the cross section of the tube is provided to close the mixing volume against contamination and to force the prepared material through a sealable connector coupled to the end piece. The platen has a passageway allowing a mixing mechanism including a shaft with attached impeller to be introduced into the mixing volume. One embodiment provides a second volume above the platen in which positive and negative gas pressures can be applied to move the platen within the tube. A method is disclosed for using the sanitary preparation apparatus to prepare a 4% cross-linked polyacrylamide (CPAM) hydrogel and to dispense the gel under pressure.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is an exploded perspective view of an embodiment of the present invention.
FIG. 2
is the device of
FIG. 1
shown assembled for use in preparing a viscous material.
FIG. 3
a
is a the assembled device of
FIG. 2
showing an operative configuration.
FIG. 3
b
is a the assembled device of
FIG. 2
showing another operative configuration.
FIG. 4
is a cross-section of a platen as used in the present invention.
FIG. 5
is a detail of a device shown in
FIG. 3
with the platen at the bottom-most position following discharge of the material.
FIG. 6
shows an alternate embodiment of the device with the platen at the bottom-most position following discharge of the material.
FIG. 7
shows an alternate embodiment of the device with the platen at the bottom-most position following discharge of the material.
FIG. 8
shows an embodiment of the present invention as used in a prosthetic filling system.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides an apparatus for the sanitary preparation of highly viscous materials, such as hydrogels used for the filling of implantable prosthetic devices, that protects the prepared material from contamination by outside air, prevents the entrainment of air in the prepared mixture, and allows the prepared mixture to be dispensed for filling without the need to transfer the material into a second vessel. The present invention also provides a method for using the device for the preparation of viscous materials, particularly hydrogels and, more particularly, polyacrylamide and cross-linked polyacrylamide (CPAM) gels.
The preparation apparatus is constructed according to techniques of sanitary construction as are well known to those skilled in the art. As shown in
FIG. 1
, the preparation apparatus
10
includes a tube
12
which is vertically disposed, having an open top end and an opposing open bottom end. The tube
12
is preferably made of stainless steel having a circular cross-section. The tube
12
has ports
14
in the side of the tube
12
for the loading of materials for the preparation of the viscous material. The tube
12
is closed at its bottom end by an end piece
16
having a sealable connector
18
. The connector may be closed by a sanitary type ball valve
20
, best seen in
FIG. 3
a.
A platen
22
having substantially the size and shape of the cross-section of the tube is fitted into the tube
12
closing the top of a first volume in which the viscous mixture will be prepared. The platen
22
has a passageway
24
, best seen in
FIG. 4
, which allows a shaft
26
to pass through the platen for the purpose of driving an impeller
28
for the mixing process. In one embodiment shown in
FIG. 4
, the platen includes a top plate
30
, a middle plate
32
, and a bottom plate
34
sandwiched together to form the body of the platen
22
. Preferably the top
30
and bottom
34
plates are
316
stainless steel and the middle plate
32
is an ultra-high molecular weight plastic to provide a platen
22
with reduced sliding friction in the tube
12
. The plates are held together by screws
36
. Seals
38
on the outside and around the shaft passageway
24
seal the platen
22
against the side of the tube
12
and against the shaft
26
to prevent leakage from the first volume past the platen
22
. A replaceable consumable ultra-high molecular weight plastic wear strip
40
may be provided on the edge of the middle plate
32
. Handles
42
may be provided on the top plate
30
to facilitate assembly and disassembly of the platen from the tube
12
.
The impeller
28
is coupled to the shaft
26
, passes upwardly through the platen
22
and is coupled to a motive mechanism
44
which rotates the impeller
28
. When the preparation apparatus
10
is assembled for use, the impeller
28
is raised some distance from the end piece
16
. This distance may be critical to achieving an acceptable mixture. For example, it has been found, for a tube
12
having a diameter of ten inches and using an impeller
28
with a diameter of 7.68 inches for the preparation of a viscous material containing four percent cross-linked polyacrylamide (CPAM) by weight, that positioning the impeller
28
approximately 3 inches above the end piece
16
will produce a uniform mixture without lumps or air bubbles.
The preparation apparatus
10
is used to prepare a viscous material by assembling the first end piece
16
to the bottom end of the tube and opening the connector
18
in the first end piece. The impeller
28
is assembled to the shaft
26
, the shaft
26
is inserted through the platen
22
, and the platen
22
is inserted into the tube
12
. The motive mechanism
44
is coupled to the shaft
26
after the shaft has been passed through the platen
22
. The connector
18
at the bottom of the tube assembly is closed and a liquid component is introduced into the first volume through the port
14
in the side of the tube
12
.
The impeller
28
is rotated to form a vortex
46
. It has been found that the geometry of a vortex
46
may be important to forming satisfactory viscous mixtures. In the case of the preparation of the 4% CPAM gel, a vortex
46
having a bottom approximately 1½ inches above the impeller
28
has produced satisfactory results. It has been found that the rotational speed, in revolutions per minute, necessary to produce a satisfactory vortex and mixing is from sixteen to thirty-two times the volume of the mixture to be prepared, in liters. Because of the drag on the shaft
26
from the seals
38
and from the viscous mixture, it may be desirable to use a speed controller (not shown) that senses the actual rotational speed of the shaft
26
and controls the motive mechanism
44
as necessary to maintain the desired rotational speed of the shaft
26
. It has also been found that the ratio of the diameter of the tube
12
to the length of the tube affects the formation of a good vortex and adequate mixing of the viscous material. For the preparation of the 4% CPAM gel, a ratio of length to diameter of about three to one has been found to produce satisfactory results.
Once the vortex has formed, the gelling material can be added. The length of time during which the gelling material is added affects the quality of the material produced. Times between 2 and 20 seconds have been found to be satisfactory for the addition of granular CPAM. It may be desirable to lower the platen
22
to close off the inner ends of the ports
14
after addition of all components as shown in
FIG. 3
b
. Mixing continues until a short time after the Weisenberg effect is produced in the viscous material. The Weisenberg effect is characterized by closing of the vortex of the stirred solution and the solution climbing the stirrer shaft. Total mixing times between 85 and 115 seconds after the addition of the gelling material have been found to be satisfactory for the preparation of 4% CPAM gel.
When the viscous material has formed, the motive mechanism
44
is stopped. The lower connection
18
is opened. The platen
22
is forced in an axial direction toward the lower end piece
16
by a platen actuator to dispense the viscous material. In one embodiment, a second end piece
54
is used to seal the top end of the tube
12
forming a second volume above the first volume and above the platen
22
. A passageway
58
is provided in the second end piece
54
for the shaft
26
. Seals are provided against the tube
12
and the shaft
26
so that the second volume can maintain vacuum or pressure. By creating positive and negative pressures in the second volume, the platen
22
can be moved up and down within the tube
12
. This arrangement further protects the material being prepared from outside contamination. By introducing pressurized gas in the second volume through an upper connection
56
, it is possible to dispense the viscous material under high pressure. For example, pressures of as much as 140 pounds per square inch gauge have been used to force the platen
22
down for the dispensing of the material.
In alternate embodiments, the lower end piece may be provided with a conical shape
48
(
FIG. 6
) or hemispherical shape
50
(
FIG. 7
) to aid in the dispensing of a viscous material, to avoid a sharp corner in which material will not be well mixed, and to promote the formation of a good vortex for mixing. The lower connector
18
is coupled to the shaped lower end piece at the lowest portion of the end piece.
The bottom plate
34
of the platen
22
may be recessed or an open ring to fit over the impeller
28
when the platen
22
is in the lowest position within the tube for dispensing of the viscous material. (
FIGS. 5-7
) The non-recessed portion of the bottom side of the platen is shaped to match the contours of the end piece so that the greatest amount of viscous material possible will be expelled from the preparation apparatus
10
during dispensing.
The following exemplary method has been used with a device embodying the present invention for the preparation of a hydrogel including four percent CPAM by weight. The preparation apparatus
10
was prepared as previously described with a vertical tube
12
of approximately 10 inches in diameter and 30 inches long, the lower end sealed with a hemispherical end piece
50
, the platen
22
assembled with the impeller
28
and shaft
26
and motive mechanism
44
, and the second end being closed by a top end piece
52
. The first volume was evacuated and water was drawn into the first volume under vacuum. The water was then held under vacuum for approximately fifteen minutes to de-gas the water. Approximately 11.5 liters of water were drawn into the tube
12
. The impeller
28
was then rotated at 280 revolutions per minute (RPM). Four hundred and eighty grams of CPAM powder were then added to the water within three to five seconds. The mixture was then mixed for approximately 100 seconds. The motive mechanism
44
was then stopped and the second volume was pressurized with high pressure nitrogen to approximately 60 pounds per square inch gauge and the bottom valve
20
was opened to dispense the resulting CPAM hydrogel.
It has been found that sieving CPAM granules to remove particles larger than 0.5 mm improves the quality of the hydrogel. Sieving to remove particles smaller than 0.25 mm may also be beneficial.
FIG. 8
shows an embodiment of the present invention as used in a system for the filling of implantable prosthesis
168
. The first inlet
146
of a cannula
144
is coupled through a flexible line
150
to a rigid line
152
, and through a valve
154
to a vacuum source
156
powered by a conventional vacuum pump, preferably creating a vacuum of approximately 26 to 28 inches of mercury. The vacuum source
156
is used to evacuate the prosthesis
168
prior to filling. The preparation apparatus
10
is coupled through a valve
20
and a line
132
to a flexible hose
134
of a peristaltic pump
136
, with the flexible hose
134
or an extension thereof
138
, having a valve
140
therein, being coupled to a second inlet
142
of the cannula
144
. In the embodiment shown, the preparation apparatus
10
has a hemispherical top end piece
54
for improved mechanical characteristic with respect to pressurization. In another embodiment (not shown), the peristaltic pump
136
is not used and the filling material is injected into the prosthesis
168
by pressurization of the preparation apparatus
10
alone.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
Claims
- 1. A sanitary preparation apparatus comprising:a tube, vertically disposed, having an open top end and an opposing open bottom end; a port coupled to the tube; a first end piece coupled to and sealing the bottom end of the tube; a first sealable connector coupled to the first end piece; a platen having substantially the size and shape of the cross section of the tube, having a first shaft passageway, slidably disposed within the tube, defining a first volume in the tube below the platen and above the first end piece; an impeller; a shaft coupled to the impeller and passing through the first shaft passageway; and a motive mechanism coupled to the shaft for rotating the impeller, wherein the platen seals against the tube and the shaft to prevent leakage to and from the first volume past the platen.
- 2. The sanitary preparation apparatus of claim 1 wherein the tube is a cylindrical tube.
- 3. The sanitary preparation apparatus of claim 2 wherein the tube has a length from 1 to 5 times the diameter of the tube.
- 4. The sanitary preparation apparatus of claim 2 wherein the tube has a length approximately 3 times the diameter of the tube.
- 5. The sanitary preparation apparatus of claim 2 wherein the impeller has a diameter from 0.6 to 0.9 times the diameter of the tube.
- 6. The sanitary preparation apparatus of claim 2 wherein the impeller has a diameter of approximately 0.75 times the diameter of the tube.
- 7. The sanitary preparation apparatus of claim 1 wherein the tube has a length of approximately 30 inches.
- 8. The sanitary preparation apparatus of claim 1 wherein the tube has a capacity for preparation of 2 to 25 kilograms of viscous material.
- 9. The sanitary preparation apparatus of claim 1 wherein the tube is a stainless steel tube.
- 10. The sanitary preparation apparatus of claim 1 further comprising a second end piece coupled to and sealing the top end of the tube, having a second shaft passageway sealing against the shaft, and a second connector coupled to the second end piece, wherein the platen defines a second volume in the tube above the platen and below the second end piece, whereby gas introduced into or withdrawn from the second volume through the second connector causes the platen to slide within the tube by creating a pressure difference between the second volume and the first volume.
- 11. The sanitary preparation apparatus of claim 10, wherein the second end piece has a generally hemispherical shape.
- 12. The sanitary preparation apparatus of claim 1 wherein the platen has a recessed portion and a non-recessed portion on a side facing the first volume whereby the platen closely fits over the impeller and against the first end piece to reduce the first volume.
- 13. The sanitary preparation apparatus of claim 12 wherein the first end piece has a generally conical shape, the first sealable connector is coupled to the lowest portion of the first end piece, and the non-recessed portion is conically shaped to closely fit against the first end piece.
- 14. The sanitary preparation apparatus of claim 12 wherein the first end piece has a generally hemispherical shape, the first sealable connector is coupled to the lowest portion of the first end piece, and the non-recessed portion is hemispherically shaped to closely fit against the first end piece.
- 15. The sanitary preparation apparatus of claim 1 further comprising a handle coupled to the platen on a side opposite the first volume to allow the platen to be withdrawn from the tube.
- 16. The sanitary preparation apparatus of claim 1 further comprising a platen actuator coupled to the platen for sliding the platen axially within the tube.
- 17. The sanitary preparation apparatus of claim 1 further comprising a speed controller coupled to the motive mechanism and to the shaft to control the motive mechanism responsive to the rotational speed of the shaft.
- 18. The sanitary preparation apparatus of claim 17 wherein the speed controller is adapted to maintain the rotational speed of the shaft in revolutions per minute at between 16 and 32 times a volume of viscous material being prepared in liters.
- 19. The sanitary preparation apparatus of claim 18 wherein the speed controller is adapted to maintain the rotational speed of the shaft in revolutions per minute at approximately 24 times a volume of viscous material being prepared in liters.
US Referenced Citations (7)