The present application relates generally to the imaging arts and more particularly to an apparatus and method for scattered photon correction. It finds use in X-ray imaging (using X-ray photons), Computer Tomography or CT imaging (using X-ray photons), and other kinds of systems such as image-guided radiation therapy systems.
Such imaging processes generally include a radiation source which produces imaging photons. The photons pass through the imaged subject to be collected or counted by a photon detector. Data generated by the photon detector is then electronically processed to generate an image of the subject. Two types of photons reach the photon detector. The first are “primary” photons, which are generated by the photon source and travel on a straight line path through the imaged subject to reach the photon detector. The second are “scattered” photons, including photons which are generated by the photon source but which get redirected off of a straight line path during their travel to the photon detector, and also including extraneous background photons which were not actually generated by the photon source. Scattered photons can introduce error into the image reconstruction process. Therefore, to generate highly accurate images of the subject, data generated by the photon detector as a result of scattered photons is typically discounted or corrected for during the image reconstruction process.
According to one aspect of the present invention, a method and apparatus are provided for improved photon scatter correction.
According to a particular aspect of the present invention, an imaging method is provided. A direct physical measurement of scattered photons, as well as a model of the photon scattering process, are used in conjunction during image reconstruction to correct for photon scatter in generating an image. This method may additionally provide a correction for low frequency drop.
According to another aspect of the present invention, an imaging apparatus is provided. The imaging apparatus has a photon source and a photon detector. The photon detector has two regions. A first, imaging region of the photon detector receives photons traveling along flight paths leading on a straight line path back to the photon source. A second, scatter region of the photon detector is closed to such photons by a shutter, but is open to other photons. The measurement of scattered photons received by the second, scatter region of the photon detector may then be used in conjunction with a model of the photon scattering process during image reconstruction to correct for scattered photons in the imaging data collected from the first, imaging region of the photon detector.
One advantage resides in a more accurate and robust scatter correction, reducing the risk of visible scatter artifacts appearing in images. Another advantage resides in producing more useful X-ray, CT, PET, SPECT or other images. Numerous additional advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of preferred embodiments.
The invention may take form in various components and arrangements of components, and in various process operations and arrangements of process operations. The drawings are only for the purpose of illustrating preferred embodiments and are not to be construed as limiting the invention.
The imaging method and apparatus of the present application are directed generally to any imaging system which corrects for scattered photons. One example of such an apparatus is the imaging system 100 shown in
As illustrated in
A collimator 122 is mounted proximate to the X-ray detector 110, between the detector 110 and the examination region 106, to reduce the amount of scattered photons received by the detector 110. In general, collimators operate to filter the streams of incoming photons so that only photons traveling in a specified direction are allowed through the collimator. Which direction(s) are permitted through which portion(s) of the collimator is determined in accordance with the data type being collected (for example, whether the X-ray source 108 or other photon source is configured to produce a parallel beam, fan beam, and/or cone beam). The collimator 122 shown in
The X-ray detector 110 may include, for example, a scintillator that emits a secondary flash of light or photons in response to the incident X-ray photons 116, or optionally can be a solid state direct conversion material (e.g. CZT). In the former instance, an array of photomultiplier tubes or other suitable photodetectors in the detector 110 receives the secondary light and converts it into electrical signals. The X-ray detector 110 records multiple two dimensional images (also called projections) at different points around the imaged subject 104. That X-ray projection data is stored by an imaging data processor 124 in a memory 126. Once all the X-ray projection data is gathered, it may be electronically processed by the imaging data processor 124. The processor 124 generates an image of the subject 104, according to a mathematical algorithm or algorithms, which can be displayed on an associated display 128. A user input 130 may be provided for a user to control the processor 124.
The aforementioned functions can be performed as software logic. “Logic,” as used herein, includes but is not limited to hardware, firmware, software and/or combinations of each to perform a function(s) or an action(s), and/or to cause a function or action from another component. For example, based on a desired application or needs, logic may include a software controlled microprocessor, discrete logic such as an application specific integrated circuit (ASIC), or other programmed logic device. Logic may also be fully embodied as software.
“Software,” as used herein, includes but is not limited to one or more computer readable and/or executable instructions that cause a computer or other electronic device to perform functions, actions, and/or behave in a desired manner. The instructions may be embodied in various forms such as routines, algorithms, modules or programs including separate applications or code from dynamically linked libraries. Software may also be implemented in various forms such as a stand-alone program, a function call, a servlet, an applet, instructions stored in a memory such as memory 126, part of an operating system or other type of executable instructions. It will be appreciated by one of ordinary skill in the art that the form of software is dependent on, for example, requirements of a desired application, the environment it runs on, and/or the desires of a designer/programmer or the like.
The systems and methods described herein can be implemented on a variety of platforms including, for example, networked control systems and stand-alone control systems. Additionally, the logic, databases or tables shown and described herein preferably reside in or on a computer readable medium such as the memory 126. Examples of different computer readable media include Flash Memory, Read-Only Memory (ROM), Random-Access Memory (RAM), programmable read-only memory (PROM), electrically programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic disk or tape, optically readable mediums including CD-ROM and DVD-ROM, and others. Still further, the processes and logic described herein can be merged into one large process flow or divided into many sub-process flows. The order in which the process flows herein have been described is not critical and can be rearranged while still accomplishing the same results. Indeed, the process flows described herein may be rearranged, consolidated, and/or re-organized in their implementation as warranted or desired.
As already discussed, the collected projection data generally contains inaccuracies caused by scattered X-rays. The imaging system 100 geometry shown in
A mathematical algorithm is applied to the projection data collected by the X-ray detector 110 to correct for X-ray scatter and generate sufficiently accurate CT images. That mathematical algorithm applies a model of photon scattering. The model may be a physical model, based on assumptions or estimates regarding the physical space between the X-ray source 108 and the X-ray detector 110, including the subject 104. One such algorithm is disclosed in PCT Application Publication WO 2007/148263 entitled “Method and System for Error Compensation.” That application is incorporated herein by reference for its disclosure of photon scatter compensation based on a physical model. Other algorithms may be used to correct for photon scatter, including the disclosures of:
Those sources are hereby incorporated by reference for their respective disclosures of photon scatter correction models and algorithms. Such models and algorithms may be applied using the processor 124 and memory 126 described above.
Such scatter correction models and algorithms may be used in conjunction with a direct physical measurement of scattered photons. For example, as shown in
Turning now to
There is not necessarily any difference in structure or operation of the X-ray detector 110 in the imaging region 210 and the scatter region 220. Rather, the imaging region 210 of the X-ray detector 110 will count primary photons as well as scattered photons which approach the X-ray detector 110 along the same flight path as primary photons. And the scattered region 220 of the X-ray detector 110 will count scattered photons, but not primary photons. Of course, alternatively the X-ray detector 110 may be two separate X-ray detectors with one in each region 210, 220.
As shown in
The scatter region of the X-ray detector need not be entirely contiguous like the representative scatter region 220 shown in
Yet other configurations are of course possible. The scatter region of the photon detector may be located along the entire border of the detector (e.g., all four sides of a rectangular detector). Or it may be a polka dot pattern, for example. The amount of overall detector area devoted to the scatter region should optionally be large enough to help compensate for low frequency drop or LFD (discussed further below) yet small enough to leave a sufficiently large area remaining for the imaging region to generate a useful image. It has been found that, in a rectangular detector 110 such as shown in
The direct physical measurement of scattered photons striking the scatter region of the photon detector may be used during image reconstruction to correct for scattered photons in the imaging data recorded in the imaging region of the photon detector. Generally, the scatter region of the photon detector collects substantially only scattered photons. The scatter region of the photon detector then generates an electronic signal reflecting only such scattered photons. The direct physical measurement of scattered photons may be used to estimate the contribution of scattered photons to other areas of the photon detector. That estimate may then be subtracted or divided from the signal produced by the photon detector in those areas to correct for scattered photons and generate a more accurate image.
For example, such a process 400 is shown in
Often, a single projection image 420 may initially be corrected for low frequency drop (LFD) within the X-ray detector 110 to obtain an LFD-corrected projection image 430. LFD results from photons scattering within the scintillator component of the X-ray detector 110. LFD can strongly falsify the signals recorded by the X-ray detector 110, especially portions of the detector nearby large incident X-ray intensity. Although LFD corrections may be made in the imaging region 210 and in the scatter region 220 of the X-ray detector 110, they are especially useful in the scatter region 220 due to the relatively low amounts of photons in that region 220. Thus, it is typically advantageous to place the scatter region 220 in an area of the X-ray detector 110 which is sufficiently far from areas with high incident X-ray intensity. Using the geometry shown in
Once a raw image is selected 420, and LFD corrections have been made to that image (if desired), then a physical or empirical model of the photon scattering process 440 is employed. Representative examples of such a physical model are provided above. Such a physical model 440 advantageously covers at least a portion of the imaging region 210 and at least a portion of the scatter region 220 of the X-ray detector 110. Using the physical model 440, a scatter estimate 450 corresponding to the scatter region 220 is calculated for the projection 420 or 430.
Based on that comparison, the scatter model 440 is globally adjusted over the entire X-ray detector region 210 and 220 to obtain an updated physical scatter model 460. This adjustment is made in such a way that maximum correspondence is obtained in the scatter region 220 between the updated physical scatter model 460 and the measured data 420 or LFD-corrected data 430. This may be achieved, for example, by multiplying the initial scatter estimate 450 with a scaling factor that is chosen in such a way so as to minimize the root mean square difference between the scatter estimate 450 and the measured data 420 or 430 in the scatter region 220. The scaling factors may be weighted to rely more heavily on portions of the region 220 which are believed to be more accurate than other portions.
Once the improved scatter model 460 is calculated for a particular projection 420 or 430, that improved model 460 is applied to the imaging projection data 420 or 430 to correct for scattered photons and generate a scatter-corrected projection image 470. This correction may be carried out, for example, in a subtractive or a multiplicative manner.
Once all the projections in the data acquisition have been adjusted according to the process 400 of
While the present scatter correction technique is particularly useful in a cone-beam CT apparatus with an offset detector as shown in
The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof. The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB09/51988 | 5/13/2009 | WO | 00 | 11/9/2010 |
Number | Date | Country | |
---|---|---|---|
61054825 | May 2008 | US |