The present disclosure relates to scatter estimation and correction for positron emission tomography. This scatter estimation and correction can also find application in computed tomography, X-ray imaging, radiography, fluoroscopy, and angiography, for example.
Positron emission tomography (PET) is an imaging method in nuclear medicine based on the use of a weak radioactively marked pharmaceutical (i.e., a tracer) to image certain features of a body. PET images display the spatial distribution of the radiopharmaceutical over time, thereby enabling a doctor or clinician to draw conclusions about metabolic activities or blood flow, for example.
In PET imaging, a tracer agent is introduced into the patient to be imaged (e.g., via injection, inhalation, or ingestion). After administration, the physical and bio-molecular properties of the agent cause it to concentrate at specific locations in the patient's body. The actual spatial distribution of the agent, the intensity of the region of accumulation of the agent, and the kinetics of the process from administration to its eventual elimination are all factors that may have clinical significance.
During this process, a tracer attached to the agent will emit positrons, which is the anti-matter equivalent of the electron. When an emitted positron collides with an electron, the electron and positron are annihilated, resulting in the emission of a pair of gamma rays each having an energy of 511 keV and the two gamma rays traveling at substantially 180 degrees apart.
The spatio-temporal distribution of the tracer is reconstructed via tomographic reconstruction principles by, for example, characterizing each detection event for its energy (i.e., amount of light generated), location, and timing. When two gamma rays are detected within a coincidence time window, they likely originate from the same positron annihilation event, and, therefore, are identified as being a coincidence pair. Drawing a line between their locations (i.e., the line-of-response (LOR)) one can determine the likely location of the positron annihilation event. The timing information can also be used to determine a statistical distribution along the LOR for the annihilation based on time-of-flight information of the two gamma rays. By accumulating a large number of LORs, tomographic reconstruction can be performed to determine a volumetric image of the spatial distribution of radioactivity (e.g., tracer density) within the patient.
Due to health concerns regarding exposure to radiation, clinicians in medical imaging strive to maintain radiation doses as low as reasonably achievable. This effort to maintain radiation doses as low as reasonably achievable motivates continued improvements in reconstructed image quality while decreasing the radiation doses and signal-to-noise ratios of the measured signals.
Scatter, for instance, is a main degrading factor in PET image reconstruction. Two main methods for scatter corrections —Monte Carlo simulation and Model-based single scatter simulation (SSS)—each have their respective shortcomings. The discrete nature of Monte Carlo simulation makes it inherently noisy, but this can be overcome by increasing the number of simulations. Performing a large number of Monte Carlo simulations, however, requires significant time and computational processing, making this approach often too slow for commercial implementation. As an alternative, SSS is relatively fast making it the preferred approach for commercial applications of PET scatter correction. SSS, however, is inherently inaccurate as it only includes single event scatter estimation and thus ignores higher order scatter.
Accordingly, improved methods are desired for performing PET scatter correction and thereby improving the image quality of PET images. Compared to current methods, these improved methods should have either improved accuracy or computational efficiency or both.
The foregoing “Background” description is for the purpose of generally presenting the context of the disclosure. Work of the inventors, to the extent it is described in this background section, as well as aspects of the description which may not otherwise qualify as prior art at the time of filing, are neither expressly or impliedly admitted as prior art against the present invention.
The present disclosure relates to scatter estimation in positron emission tomography using a radiative transfer equation.
According to an embodiment, the present disclosure further relates to an apparatus for reconstructing an image in positron emission tomography, comprising processing circuitry configured to acquire an emission map and an attenuation map, each representing an initial image reconstruction of a positron emission tomography scan, calculate, using a radiative transfer equation (RTE) method, a scatter source map of a subject of the positron emission tomography scan based on the emission map and the attenuation map, estimate, using the RTE method and based on the emission map, the attenuation map, and the scatter source map, scatter, and perform an iterative image reconstruction of the positron emission tomography scan based on the estimated scatter and raw data from the positron emission tomography scan of the subject.
According to an embodiment, the present disclosure further relates to a method for reconstructing an image in positron emission tomography, comprising acquiring, by processing circuitry, an emission map and an attenuation map, each representing an initial image reconstruction of a positron emission tomography scan, calculating, by the processing circuitry using a RTE method, a scatter source map of a subject of the positron emission tomography scan based on the emission map and the attenuation map, estimating, by the processing circuitry using the RTE method and based on the emission map, the attenuation map, and the scatter source map, scatter, and performing, by the processing circuitry, an iterative image reconstruction of the positron emission tomography scan based on the estimated scatter and raw data from the positron emission tomography scan of the subject.
According to an embodiment, the present disclosure further relates to a non-transitory computer-readable storage medium storing computer-readable instructions that, when executed by a computer, cause the computer to perform a method for reconstructing an image in positron emission tomography, comprising acquiring an emission map and an attenuation map, each representing an initial image reconstruction of a positron emission tomography scan, calculating, using a RTE method, a scatter source map of a subject of the positron emission tomography scan based on the emission map and the attenuation map, estimating, using the RTE method and based on the emission map, the attenuation map, and the scatter source map, scatter, and performing an iterative image reconstruction of the positron emission tomography scan based on the estimated scatter and raw data from the positron emission tomography scan of the subject.
The foregoing paragraphs have been provided by way of general introduction, and are not intended to limit the scope of the following claims. The described embodiments, together with further advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The terms “a” or “an”, as used herein, are defined as one or more than one. The term “plurality”, as used herein, is defined as two or more than two. The term “another”, as used herein, is defined as at least a second or more. The terms “including” and/or “having”, as used herein, are defined as comprising (i.e., open language). Reference throughout this document to “one embodiment”, “certain embodiments”, “an embodiment”, “an implementation”, “an example” or similar terms means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, the appearances of such phrases or in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments without limitation.
In positron emission tomography (PET), the measured coincidences include both true coincidences and a background signal (e.g., random coincidences). To improve the image quality of a reconstructed PET signal, it is desirable to estimate and account for this background signal. For example, the background signal can be accounted for by correcting the data using a baseline subtraction based on the estimated background signal, or, when a log-likelihood objective function is used to iteratively reconstruct a PET image, the log-likelihood expression can include a background-signal term based on the estimated background signal. The background signal includes counts due to random events and scatter events. In PET, the background signal is primarily made up of accidental coincidences, also known as randoms, and scatters.
For many annihilation events, only one photon of a pair of photons is detected because the other photon is absorbed or scattered out of plane of a PET detector ring. Further, some photons reaching the scintillating detectors of the PET detector ring are not detected due to a less than unity quantum efficiency of the detectors. Detection events in which only one of a pair of photons is detected can be referred to as “singles.” If two singles from separate annihilations are detected within the coincidence timing window, then they are mistakenly registered as having arisen from the same annihilation. This is called an accidental coincidence (AC) event, also known as a random event. Stated differently, an AC event occurs when two unrelated singles are detected within a coincidence timing window.
Although most scattered photons in the body leave the detector plane undetected, some scattered photons are still detected and registered, resulting in an incorrect line-of-response (LOR). In certain implementations, some of these scattered events resulting in incorrect LORs can be removed by energy discrimination because photons lose a fraction of their energy during the Compton interaction giving rise to the scatter event. Even so, some scattered photons (scatters) and some random coincidences (randoms) will inevitably be recorded, and, thus, the background signal includes the randoms and the scatters.
Various corrections can be performed on the PET data, resulting in better image quality. For example, gamma rays are attenuated as they propagate through the patient, detector elements vary in their detection efficiency, and random and scattered coincidences are recorded along with the true coincidence events. Correcting for these effects improves the image quality, resulting in clinically useful images and accurate quantitative information from PET studies.
Gamma rays that encounter more material or denser material on their path from the annihilation site to the detectors are more likely to be absorbed or scattered (i.e., attenuated) than gamma rays that travel through sparser parts of the body. To this end, dual energy X-ray computed tomography (CT) can be used to generate a three-dimensional map of material components and density as a function of position. With the scattering and attenuation properties of different material components known, the reconstructed CT images can then be used to determine the gamma-ray attenuation and scattering cross-sections as a function of position (i.e., an attenuation map/image and a scatter cross-section map/image).
If images are reconstructed from sinograms without attenuation correction, then gamma rays from less dense areas (e.g., lungs) are over-represented (e.g., appear as though they are emitting more gamma rays than they actually are) and denser tissue are under-represented. In the absence of attenuation correction, the reconstructed image would be susceptible to artifacts that both impair the visual appearance of the image and also lead to inaccurate quantitation of tracer uptake.
To apply attenuation correction, an attenuation map is generated whereby one can determine the attenuation through the patient for all LORs. For example, on a stand-alone PET scanner, this can be done with a transmission scan in which an external positron source is rotated around the patient and the attenuation of the transmitted gamma rays is determined. In a combination PET/CT scanner, the acquired CT image can be used for PET attenuation correction. Further, in certain implementations, a joint-estimation method can be used to simultaneously derive both the attenuation map and the activity distribution for the PET data.
Like the attenuation map, a map of the scatter cross-section as a function of position can also be used to improve the image quality of PET images by accounting for the background signal in the PET reconstruction process. For example, the PET image can be reconstructed using a maximum-likelihood expectation maximization (ML-EM) method by iteratively updating the reconstructed image f according to the equation
wherein gi is the measured counts in ith LOR, H is the system matrix,
As introduced above, scatter is a main degrading factor in PET image reconstruction. Two related methods for scatter corrections —Monte Carlo simulation and Model-based single scatter simulation (SSS)—each have their respective shortcomings. The discrete nature of Monte Carlo simulation makes it inherently noise and performing a large number of Monte Carlo simulations requires significant time and computation processing that renders it impracticable for common industrial applications. SSS is relatively fast, making it the preferred approach for commercial applications of PET scatter correction, but is inherently inaccurate because it only includes single scatter estimation, thereby ignoring higher order scatter.
The methods described herein have advantages over the Monte Carlo and SSS methods because they use an RTE approach to estimate the scatter (i.e., scatter term si). Compared with the SSS approach, the methods described herein provide more accurate scatter estimation, including both total scatters for one detector in each LOR and total scatters for both two detectors in each LOR. Compared with the MC approach, the methods described herein provide a faster scatter estimation and lower noise in the estimated scatter.
Referring now to the Figures, wherein like reference numerals designate identical or corresponding parts throughout the several views,
Each GRD can include a two-dimensional array of individual detector crystals, which absorb gamma radiation and emit scintillation photons. The scintillation photons can be detected by a two-dimensional array of photomultiplier tubes (PMTs) that are also arranged in the GRD. A light guide can be disposed between the array of detector crystals and the PMTs. Further, each GRD can include a number of PMTs of various sizes, each of which is arranged to receive scintillation photons from a plurality of detector crystals. Each PMT can produce an analog signal that indicates when scintillation events occur, and an energy of the gamma ray producing the detection event. Moreover, the photons emitted from one detector crystal can be detected by more than one PMT, and, based on the analog signal produced at each PMT, the detector crystal corresponding to the detection event can be determined using Anger logic and crystal decoding, for example. However, Anger arithmetic is not necessarily required when there is a one-to-one correspondence between the crystals and the photodetectors.
In
According to an embodiment, the processor 870 of the PET scanner 800 of
Alternatively, the CPU in the processor 870 can execute a computer program including a set of computer-readable instructions that perform method 100 described herein, the program being stored in any of the above-described non-transitory electronic memories and/or a hard disk drive, CD, DVD, FLASH drive or any other known storage media. Further, the computer-readable instructions may be provided as a utility application, background daemon, or component of an operating system, or combination thereof, executing in conjunction with a processor, such as a Xenon processor from Intel of America or an Opteron processor from AMD of America and an operating system, such as Microsoft VISTA, UNIX, Solaris, LINUX, Apple, MAC-OS and other operating systems known to those skilled in the art. Further, CPU can be implemented as multiple processors cooperatively working in parallel to perform the instructions.
In one implementation, the reconstructed image can be displayed on a display. The display can be an LCD display, CRT display, plasma display, OLED, LED or any other display known in the art.
The network controller 874, such as an Intel Ethernet PRO network interface card from Intel Corporation of America, can interface between the various parts of the PET imager. Additionally, the network controller 874 can also interface with an external network. As can be appreciated, the external network can be a public network, such as the Internet, or a private network such as an LAN or WAN network, or any combination thereof and can also include PSTN or ISDN sub-networks. The external network can also be wired, such as an Ethernet network, or can be wireless such as a cellular network including EDGE, 3G and 4G wireless cellular systems. The wireless network can also be WiFi, Bluetooth, or any other wireless form of communication that is known.
In contrast,
The PET scanner 800 described above with respect to
For a given LOR (e.g., a LOR between a detector A and a detector B), the scatter can be calculated as:
reflects one-sided scatter events for detector B, and
IA=εB(e−∫
reflects one-sided scatter events for detector A. For each of the above equations, and in view of
Understanding this, and in order to determine the scatter for the given LOR between detector A and detector B, scatter flux at detectors A and B must be determined by RTE. In this way, scatter events IA, IB, and IAB may be determined.
Precise scatter solutions, including the simulation of first-order scatter and multi-order scatter flux with an accurate physical model, can be obtained using RTE as follows
{circumflex over (Ω)}·∇ψ({right arrow over (r)},E{circumflex over (Ω)})+μ({right arrow over (r)},E)ψ({right arrow over (r)},E,{circumflex over (Ω)})=∫∫d{circumflex over (Ω)}′dE′f({right arrow over (r)},E,E′,{circumflex over (Ω)}·{circumflex over (Ω)}′)ψ({right arrow over (r)},E′,{circumflex over (Ω)}′)+q({right arrow over (r)},E,{circumflex over (Ω)})
where ψ({right arrow over (r)}, E, {circumflex over (Ω)}) is the specific intensity of photon flux at point {right arrow over (r)}, energy E, and direction {circumflex over (Ω)}, E′({circumflex over (Ω)}′) and E({circumflex over (Ω)}) are the incident and outgoing energy (angle) of the flux, q({right arrow over (r)}, E, {circumflex over (Ω)}) is emission map, {circumflex over (n)} is the normal direction of the boundary surface, f({right arrow over (r)}, E, E′,
ψ({right arrow over (r)}c,E,{circumflex over (Ω)})=0, for {circumflex over (n)}·{circumflex over (Ω)}<0
In certain implementations of the RTE-based approach, the first-order scatter can be simulated as
ψ1({right arrow over (r)},E,{circumflex over (Ω)})=∫O{right arrow over (r)}d{right arrow over (r)}′∫∫d{circumflex over (Ω)}′dE′f({right arrow over (r)}′,E,E′,{circumflex over (Ω)}·{circumflex over (Ω)}′)ψ0({right arrow over (r)}′,E′,Ω′)exp[−∫{right arrow over (r)}′{right arrow over (r)}d{right arrow over (r)}″μ({right arrow over (r)}″,E)],
wherein the subscript 1 in ψ1({right arrow over (r)}, E, {circumflex over (Ω)}) indicates the first-order scatter at point {right arrow over (r)}, E is an energy, and {circumflex over (Ω)} is a unit vector in the direction of propagation for the photon flux and the subscript 0 in ψ0({right arrow over (r)}′, E′, {circumflex over (Ω)}′) indicates the zero-order scatter (i.e., the photon beam in the absence of scatter). Further, the annihilation point O indicates a starting point for a photon path, and f({right arrow over (r)}′, E, E′, {circumflex over (Ω)}·{circumflex over (Ω)}′) is the scatter cross section, which includes both Compton and Rayleigh scattering for photon PET. Finally, the variable μ({right arrow over (r)}, E) represents the total attenuation coefficient for the photons at point {right arrow over (r)} and energy E. This integral equation can be solved by discretizing the coordinates {right arrow over (r)}, E, {circumflex over (Ω)}, {right arrow over (r)}′, E′, {circumflex over (Ω)}′, and {right arrow over (r)}″, and then solving numerically.
In addition to first-order scatter ψ1 ({right arrow over (r)}, E, {circumflex over (Ω)}), the multiple scatter ψs({right arrow over (r)}, E, {circumflex over (Ω)}) can include higher-order scatter. For example, the multiple scatter can be iteratively calculated as
ψsk+1({right arrow over (r)},E,{circumflex over (Ω)})=ψ1({right arrow over (r)},E,{circumflex over (Ω)})+∫{right arrow over (r)}
wherein the first term on the right-hand side is the first-order scatter and the second term on the right-hand side (i.e., the integral) represents higher-order scatter.
The scattered photon field at the detectors, located at a position {right arrow over (r)}D, can then be expressed as
ψs({right arrow over (r)}D,E,{circumflex over (Ω)})=∫{right arrow over (r)}
In certain implementations, the scatter cross section terms f({right arrow over (r)}′, E, E′, {circumflex over (Ω)}·{circumflex over (Ω)}′) and the photon flux terms ψs({right arrow over (r)}′, E′, {circumflex over (Ω)}′) and ψ0({right arrow over (r)}′, E′, {circumflex over (Ω)}′) in the integrand can be expanded and expressed using the lowest-order spherical harmonics terms in series expansion, simplifying the calculations. For example, the first-scatter flux can be calculated by a discretized integral formula, which is given by
wherein Ylm*({circumflex over (Ω)}) is the complex conjugation of a spherical harmonic function of degree l and order m, and ψ1({right arrow over (r)}, E, l, m) is the intensity of the first-scatter flux in the spherical-harmonics domain. The spherical harmonics can be given by
Ylm({circumflex over (Ω)})=Ylm(θ,ϕ)=N exp(imϕ)Plm(cos(θ))
wherein Ylm({circumflex over (Ω)}) is a spherical harmonic function of degree l and order m, Pim is an associated Legendre polynomial, N is a normalization constant, and θ and ϕ represent colatitude and longitude, respectively. The number of spherical harmonics used to approximate the first-scatter flux can depend on the material component and scatter cross-section at the point {right arrow over (r)}′ and on the type of scattering (e.g., Compton and Raleigh scattering).
Further, the flux of multiple scatters can be calculated using a discretized integral spherical harmonics formula, which is given by
wherein ωsk+1 ({right arrow over (r)}, E, l, m) and ψsk({right arrow over (r)}′, E′, {right arrow over (l)}, {right arrow over (m)}) are the intensity of the flux for multiple scatter including all scatter events up to order k+1 and order k respectively and f({right arrow over (r)}′, E, E′,
the above-defined iterative formula can be more simply expressed as ψsk+1=Aψsk+ψ1.
Accordingly, scatter can be accurately simulated by including both the first-scatter flux and the multiple-scatter flux in order to represent an accurate physical model.
Returning now to
Accordingly, at sub process 110 of method 100, the first order scatter flux and higher order scatter flux for the given LOR 115 can be estimated by RTE. Estimation of scatter at sub process 110 of method 100 is informed by an emission map obtained at step 103 of method 100. The emission map obtained at step 103 of method 100 may be an initial reconstruction of the PET scan, or a ‘coarse’ reconstruction of the PET scan, thereby forming a basis from which scatter may be estimated at sub process 110 of method 100. Further, it can be appreciated that scatter estimation can be performed for each LOR of an associated detector A in order to determine, for example RB. For instance, the multiple LORs may include a detector B, detector B′, and detector B″. A similar process may be followed for RA. Scatter estimation, as performed at sub process 110 of method 100, will be described in further detail with reference to
At step 120 of method 100, the estimated scatter is utilized, in view of raw PET scan data, for iterative image reconstruction, or ‘fine’ image reconstruction. During ‘fine’ image reconstruction, raw PET scan data may be obtained at step 107 of method 100 and can be modified according to an ML-EM algorithm for PET. Fundamentally, the iterative update equation for the ML-EM algorithm for PET is
where gi is the measured counts in ith LOR and
then the iterative update equation with scatter correction will be
wherein gi is the measured counts in ith LOR, H is the system matrix,
The above described calculation of the scatter estimation performed at sub process 110 of method 100 for a given LOR 115 and iterative (i.e. ‘fine’) image reconstruction at step 120 of method 100 can be iteratively performed for each given LOR 115 of a specified detector. With appropriate modifications, the above described method can also be iteratively performed for each LOR 115 of another detector of a plurality of detectors of a detector ring. In this way, an entire scan volume of a patient can be evaluated and an image reconstructed therefrom may be iteratively updated to provide a more accurate image absent scatter.
Having performed the above-described iterative image reconstruction of step 120 of method 100, the result may be used to iteratively generate a reconstructed image at step 125 of method 100.
As described above, scatter may be determined, for a given LOR 115, as RA (i.e., the total one-sided scatter flux calculated from RTE for detector A), RB (i.e., the total one-sided scatter flux calculated from RTE for detector B), and IAB (i.e., the total two-sided scatter events for detector A and detector B from O).
In an embodiment,
With regard to
At step 105A of sub process 110 of
For a first calculation, or step, of the iterative process, ψs({right arrow over (r)}′, E′, {circumflex over (Ω)}′) defined above may be set to 0. Subsequent iterations of the calculations may then be determined according to the precision desired.
Having calculated the scatter source map relative to detector A at step 105A of sub process 110, the scatter flux measured at detector B, informed by an attenuation map obtained at step 102 of sub process 110 and an emission map obtained at step 103 of sub process 110, may be calculated at step 112 of sub process 110 by
The scatter flux at detector B calculated above includes estimation of first-order and higher-order scatter flux, as illustrated in
According to an embodiment, the above-described scatter source map relative to detector A may be used with a plurality of LORs originated from annihilation point O wherein detector A is included. For instance, a scatter flux estimation at detector B′, detector B″, and detector B′″ may be calculated according to the above-described scatter source map wherein LORs may be derived between A and B′, A and B″, and A and B′″. In an example, and as shown in
With regard to
At step 105B of sub process 110 of
For a first calculation, or step, of the iterative process, ψs({right arrow over (r)}′, E′, {circumflex over (Ω)}′) defined above may be set to 0. Subsequent iterations of the calculations may then be determined according to the precision desired.
Having calculated the scatter source map relative to detector B at step 105B of sub process 110, the scatter flux measured at detector A, informed by an attenuation map obtained at step 102 of sub process 110 and an emission map obtained at step 103 of sub process 110, may be calculated at step 113 of sub process 110 by
The scatter flux at detector A calculated above includes estimation of first-order and higher-order scatter flux.
According to an embodiment, the above-described scatter source map relative to detector B may be used with a plurality of LORs originated from annihilation point O wherein detector B is included. For instance, a scatter flux estimation at detector A′, detector A″, and detector A′″ may be calculated according to the above-described source map wherein LORs may be derived between B and A′, B and A″, and B and A′″. In an example, at least two LORs may exist based on a range of detector B, the LORs including detector A and detector A′.
Having calculated, at
ψ0({right arrow over (r)},E,{circumflex over (Ω)})=q0({right arrow over (r)}q0E,{circumflex over (Ω)}′)exp[−∫{right arrow over (r)}
An example of an isotropic source scatter cross-section map is shown in
The scatter fluxes calculated above for each of detector A and detector B include an estimation of first-order and higher-order scatter flux.
According to an embodiment, the above-described isotropic source scatter cross-section map may be used with a plurality of LORs originated from annihilation point O.
Obviously, numerous modifications and variations are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
Thus, the foregoing discussion discloses and describes merely exemplary embodiments of the present invention. As will be understood by those skilled in the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting of the scope of the invention, as well as other claims. The disclosure, including any readily discernible variants of the teachings herein, defines, in part, the scope of the foregoing claim terminology such that no inventive subject matter is dedicated to the public.
Number | Name | Date | Kind |
---|---|---|---|
20040249260 | Wang | Dec 2004 | A1 |
20100310037 | Wang | Dec 2010 | A1 |
20110060211 | Lorenzo | Mar 2011 | A1 |
20110184277 | Ripoll Lorenzo | Jul 2011 | A1 |
20150286785 | Hielscher | Oct 2015 | A1 |
20180014806 | Lu | Jan 2018 | A1 |
20180204356 | Xia | Jul 2018 | A1 |
20180235562 | Petschke | Aug 2018 | A1 |
20190066342 | Zhu | Feb 2019 | A1 |
20190197740 | Lu | Jun 2019 | A1 |
20200170601 | Gagnon | Jun 2020 | A1 |
20200170607 | Yu | Jun 2020 | A1 |
20200340932 | Lu | Oct 2020 | A1 |
20210282732 | Qi | Sep 2021 | A1 |
20210335023 | Qi | Oct 2021 | A1 |
Entry |
---|
Klose, A. et al. “The inverse source problem based on the radiative transfer equation in optical molecular imaging”, Journal of Computational Physics, vol. 202, Jan. 1, 2005, pp. 323-345. |
Jha, A. et al., “Joint reconstruction of activity and attenuation map using LM SPECT emission data”, Proceedings of SPIE—The International Society for Optical Engineering, Mar. 2013, 10 pages. |
Watson, C.C., et al., “A single scatter simulation technique for scatter correction in 3D PET,” Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 1996, pp. 255-268. |
Watson, C.C., “Extension of single scatter simulation to scatter correction of time-offlight PET,” IEEE Transactions on Nuclear Science, vol. 54, No. 5, Oct. 2007, pp. 1679-1686. |
Zaidi, H., “Scatter modelling and correction strategies in fully 3-D PET,” Nuclear Medicine Communications , vol. 22, Jul. 15, 2001, pp. 1181-1184. |
Lu. Y. et al., “A deterministic integral spherical harmonics method for scatter simulation in computed tomography,” Physics of Medical Imaging, 2017, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20210335023 A1 | Oct 2021 | US |