1. Field
The present invention relates to wireless data communication. More particularly, the present invention relates to a novel and improved method and apparatus for scheduling packet data transmissions in a wireless communication system.
2. Background
In a wireless communication system, a base station communicates with multiple mobile users. Wireless communications may include low delay data communications, such as voice or video transmissions, or high data rate communications, such as packetized data transmissions. U.S. Pat. No. 6,574,211, entitled “METHOD AND APPARATUS FOR HIGH RATE PACKET DATA TRANSMISSION,” issued Jun. 3, 2003, describes high rate packet data transmissions, and hereby expressly incorporated by reference.
Packet data transmissions are not required to be low latency transmissions, and therefore allow the base station flexibility in scheduling mobile user transmissions within a system. Once scheduled, the base station may transmit data to as little as a single mobile user during a given time period. In general, scheduling of packet data mobile users in a system has two goals. The first goal is to optimize the utilization of each channel. The second goal is to allocate transmissions to mobile users fairly. The two goals sometimes compete. For example, channel quality conditions and the amount of pending data for a given user may result in excessive time allocations to that user particularly at the expense of other users.
There is a need, therefore, for a fair method for scheduling packet data transmissions to mobile users that is channel-sensitive.
The disclosed embodiments provide a novel and improved method for scheduling packet data transmissions in a wireless communication system. In one aspect, in a wireless communication system adapted for packet data transmissions, a method includes receiving rate request indicators for a plurality of mobile stations, calculating priority function values for the plurality of mobile stations in response to the rate request indicators, and scheduling transmissions to the mobile stations according to the priority function value.
According to another aspect, a wireless apparatus includes a priority factor calculation unit adapted to receive data rate requests from mobile stations and generate power factor values in response, and a scheduling unit coupled to the priority factor calculation unit, the scheduling unit adapted to schedule data transmissions.
According to still another aspect, a method for scheduling packet data transactions in a wireless communication system includes determining a pool of users, calculating a priority function of at least a portion of the pool of users, scheduling a first set of users having pending data transactions from the portion of the pool of users, receiving rate request indicators from the portion of the pool of users, and updating priority functions of the first set of users in response to the rate request indicators.
The features, objects, and advantages of the presently disclosed method and apparatus will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:
In an exemplary embodiment of the present invention, a base station of a spread-spectrum wireless communication system schedules packet data transmissions to mobile users based upon the instantaneous values of a per-user Priority Function (PF). The user scheduling priority is related to the PF value, wherein a high PF value indicates a high scheduling priority and a low PF value indicates a low priority. In one aspect, a method for determining PF values is based on a channel condition indicated by a Rate Request Indicator (RRI). The method also considers a fairness criteria dictated by the Quality Of Service (QOS) requirements. Such a method provides robust protection against non-zero buffer under-runs on the transmitter side. In one embodiment, the rate request indicator is a Data Rate Request (DRR). In another embodiment, the rate request indicator is Carrier-to-Interference (C/I) information. Alternate embodiments may implement other types of rate request indicators or predictors. In the exemplary embodiment, the base station calculates a Priority Function (PF) for the multiple mobile users. Each PF is a function of the rate request indicator and the projected throughput of a given mobile user. The PF values allow the base station to schedule active mobile units having pending data. The scheduling produces an approximately equal share of the allocated transmission time to the multiple mobile stations.
Scheduling allocation improves channel sensitivity by reducing adverse effects associated with assigned data rates. Actual data rate assignments provide quantized transmission rates. This results in a coarse adjustment of data rates within a system. Actual data rates may be truncated, or otherwise manipulated, to conform to the assigned and available data rates. By using a rate request indicator to determine a transmission data rate, the data rate is adjusted according to the actual requirements and operating environment of the system.
In an exemplary embodiment illustrated in
From the subset of M active users with data pending, at step 26, a further subset is determined of “K” users to be scheduled for transmission. In the exemplary embodiment, the subset of K users is determined according to system configuration and a predetermined scheduling policy. Often K=1, or K is constrained to a single user. However, K may be any number less than or equal to M. Based on the calculated PF values, the base station schedules “K” users at step 28. Note that the K scheduled users constitute a subset of the N active users, i.e., (K≦M≦N). The base station 12 then transmits packet data transmissions at step 30 according to the schedule of step 28. Transmission involves determination of transmission power, power control, data rate, modulation, and other parameters of transmission. Note that concurrently, the base station 12 may be transmitting low latency transmissions to mobile stations 14.
At step 32, the base station 12 updates each projected throughput, T′, for each of the K scheduled users as a function of a corresponding rate request indicator received from each scheduled user. The following formula describes the T′ update calculation for scheduled users according to the exemplary embodiment:
T′(j,n+1)=(1−α)·T′(j,n)+α·DRR(j) (2)
If K<M at step 34 processing continues to step 36 to update each T′ for non-scheduled users within the pool of N active users, i.e., users not included in the M scheduled users. The projected throughput calculation for non-scheduled users is given as:
T′(i,n+1)=(1−α)·T′(i,n) (3)
The updated projected throughput values are used to update PF values. Processing then returns to step 26 wherein the updated PF values are used to continue scheduling any users that still have pending data.
The exemplary embodiment updates the PF values for each user as if each mobile station 16 always has sufficient amount of pending data, and that the rate requested by each mobile station 16 is realizable. Therefore, the scheduling sequence generated by the PF computed as in Equations (1)-(3) is not sensitive to any unpredictable states of the transmission buffers as long as a buffer has at least one bit of data to send.
The PF calculation unit 42 receives data rate request indicators from the mobile stations 16, such as DRR(l). The PF calculation unit 42 uses the rate request indicator to determine a PF for each user according to Equation (1). The PF(j) for all users having pending data j=1, . . . , K are provided to a scheduling unit 46. The scheduling unit 46 determines a schedule among the various users associated with PF(j). The scheduling unit 46 provides the schedule information to transmit circuitry 48. DATA IN is also provided to transmit circuitry 48, which transmits the data according to the schedule information to produce DATA OUT. The schedule information is also provided to a calculation unit 50 which updates the projected throughput of the active N users. The scheduled users are updated according to Equation (2), while the non-scheduled users are updated according to Equation (3). For updating the projected throughput values, the calculation unit 50 receives rate request indicators for mobile stations 16. The updated projected throughput values for the subset of M users with pending data are then provided back to the PF calculation unit 42 to update the PF values. The calculation unit 50 includes a smoothing filter, such as an Infinite Impulse Response (IIR) filter. The tap coefficients for the smoothing filter are configurable.
In one example, a mobile station 16 has a velocity of 3 km/hr and experiences a doppler frequency, fdoppler, of 5.4 Hz. Projected throughput(s) are subject to IIR smoothing filtering according to Equations (2) and (3) with a time constant, TW, given as approximately, is 2 sec. The IIR filter tap coefficient, a, is related to time constant TW by a relation given as:
Thus, a novel and improved method and apparatus for scheduling packet data transmissions in a wireless communication system has been described. Those of skill in the art would understand that the data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description are advantageously represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The various illustrative components, blocks, modules, circuits, and steps have been described generally in terms of their functionality. Whether the functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans recognize the interchangeability of hardware and software under these circumstances, and how best to implement the described functionality for each particular application.
As examples, the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented or performed with a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components such as, e.g., registers and FIFO, a processor executing a set of firmware instructions, any conventional programmable software module and a processor, or any combination thereof designed to perform the functions described herein. The processor may advantageously be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. The software modules could reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. The processor may reside in an ASIC (not shown). The ASIC may reside in a telephone (not shown). In the alternative, the processor may reside in a telephone. The processor may be implemented as a combination of a DSP and a microprocessor, or as two microprocessors in conjunction with a DSP core, etc.
The previous description of the preferred embodiments is provided to enable any person skilled in the art to make or use the present invention. The various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The present Application for Patent is a Continuation of patent application Ser. No. 09/728,239 entitled “Method and Apparatus for Scheduling Packet Data Transmissions in a Wireless Communication System” filed Nov. 30, 2000, pending, and assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 09728239 | Nov 2000 | US |
Child | 11040743 | Jan 2005 | US |