Claims
- 1. Apparatus for making a seal between a pair of films and concurrently penetrating the films along the seal, including a resilient counter for supporting an assembled pair of films each of which has thermoplastic material facing the other film, a severing blade and means for heating the severing blade to a temperature high enough to penetrate the films at least largely by fusion, a body of resilient material of poor heat conductivity compared to that of the severing blade and means for holding the body of resilient material against a lateral surface of the severing blade and thereby providing for heat transfer from the blade to the body of resilient material and producing a temperature gradient at the film-engaging surface of said body that declines with distance from the blade, and means for pressing the blade and the body of resilient material against the assembled films on the counter to cause the blade to penetrate the films and to cause the resilient body to bear against and seal the films together adjacent the outline penetrated by said blade, the body of resilient material and the resilient counter accommodating thickening of the seal being formed.
- 2. Apparatus as in claim 1 wherein said body of resilient material is compressible.
- 3. Apparatus for forming articles of superposed thermoplastic strips, including a die assembly having a cutting strip and a sealing strip of heat-conductive material assembled to each other in fixed relationship with a layer of heat-insulating material interposed therebetween, adjacent edges of said heat-conductive strips being shaped in accordance with the outline of articles to be formed thereby, means including a rubbery member for pressing superposed thermoplastic strips against said edges, and means for heating said cutting strip to a stable temperature high enough to fuse and penetrate through the thermoplastic strips and for heating the sealing strip only to a temperature high enough to form a seam between superposed thermoplastic strips during briefly sustained applied pressure of said rubbery member said heating means comprising a metal member having an essentially flat surface supporting the edges of said heat-conductive strips opposite to the cutting and sealing edges thereof, said cutting strip being of a metal of high thermal conductivity, and said sealing strip being of a metal whose thermal conductivity is substantially lower than that of said cutting strip.
- 4. The method of making a seal between a pair of films and, concurrently, penetrating the films along the seal, including the steps of assembling a pair of films each having at least a layer of thermoplastic material facing the other film, supporting said films on a resilient counter, heating a severing blade to a temperature high enough to penetrate the films at least largely by fusion, retaining a body of resilient material of poor heat conductivity against a lateral surface of the severing blade, thereby to establish heat-transfer from the blade to said body of resilient material and producing a temperature gradient at the film-engaging surface of the body that decreases with distance from the blade, and pressing the blade against the films on the counter to cause the blade to penetrate the films and thereupon to cause the resilient body to bear against and seal the films together adjacent the outline penetrated by said blade while accommodating thickening of the seal being formed.
- 5. The method as in claim 4 wherein the temperature gradient and the time of pressure application are regulated to limit the width of the seal to less than the width of said film engaging surface but greater than the combined thicknesses of the films.
- 6. The method as in claim 5 wherein said temperature gradient and the bearing of the resilient body against the films is continued so that the films are heated to seal-forming temperature over a width of seal substantially greater than the combined initial thickness of the films.
- 7. The method as in either of claims 4 and 6 wherein said resilient body is compressible.
- 8. Apparatus for making a seam uniting a pair of films having opposed thermoplastic material and cutting the films along the seam, including a resilient counter, and a severing and sealing die comprising a severing blade of high thermal conductivity, a body of resilient heat-resistant material extending along said blade against a side surface thereof to be heated thereby, means for heating said blade to a temperature effective upon application of moderate pressure to cause severing of the films, and means for retaining said body of resilient material against said severing blade, the severing blade having a severing edge that projects a short extent from a film-engaging portion of said body of resilient material so that said films are subjected to pressure in a zone adjacent said blade between said resilient counter and said body of resilient material when said severing edge has penetrated said films, said heating of said blade causing heating of said body of resilient material but causing only reduced heating of the films with increasing distance from said severing blade, said die thus being adapted for forming a marginal seam between said films that extends only partway from the blade across said pressure zone while portions of the films in the pressure zone remote from the severing blade are subjected to pressure during formation of the seam but remain unsealed.
- 9. Apparatus as in claim 8, wherein said body of heat-resistant material is at least partly of foamed material, whereby it is compressible.
Parent Case Info
This application is a continuation-in-part of Ser. No. 941,721 filed Sept. 12, 1978, now U.S. Pat. No. 4,256,024 issued Mar. 17, 1981, Ser. No. 714,746 filed Aug. 16, 1976 now U.S. Pat. No. 4,113,169, issued Sept. 12, 1978, and Ser. No. 427,443 filed Dec. 21, 1973, now U.S. Pat. No. 3,975,885 issued Aug. 24, 1976, which patents are continuation-in-part of Ser. No. 231,288 filed Mar. 2, 1972, now U.S. Pat. No. 3,815,794 issued June 11, 1974.
US Referenced Citations (10)
Related Publications (2)
|
Number |
Date |
Country |
|
714746 |
Aug 1976 |
|
|
427443 |
Dec 1973 |
|
Continuation in Parts (2)
|
Number |
Date |
Country |
Parent |
941721 |
Sep 1978 |
|
Parent |
231288 |
Mar 1972 |
|