This invention relates generally to a method for securing two components. More specifically, the invention relates to a method for securing two components for a brazing process, particularly aluminum components.
A heat exchanger is a device which transfers the heat of one substance to another, for example, from a warm or hot surface to a cold or cooler one. Heat exchangers are widely used in industrial processing plants, power plants, air conditioning, vehicles, and the like as evaporators, condensers, and radiators. In a simple form, a heat exchanger includes one or more passages through which a fluid flows while exchanging heat with the environment surrounding the passages.
Heat exchangers, particularly automotive radiators, often consist of a composite structure including tanks of a reinforced plastic attached to an aluminum core by crimping with gasket seals between the components. An all aluminum heat exchanger, e.g., an entire radiator including the tanks, is advantageous to provide packaging advantages and recycling advantages with smaller tank width by eliminating the header crimp area between the core and the tanks. Some components that are to be joined together are joined by brazing, wherein at least one component to be brazed contains a clad alloy to ensure proper brazing between two or more components.
In the present invention, a braze ring and a method to secure two components is used. This invention provides a braze ring in between two components, which is secured by a staking or crimping method.
Accordingly, the present invention relates to a heat exchanger assembly comprising an extrusion member; a tubing member; a brazing ring; and a securing area provided in a surface of the extrusion member in order to secure the tubing member to the extrusion member.
The present invention further relates to a method of securing two components comprising: securing a brazing ring between a first component and a second component; securing a surface area of the first component in order to secure the first and the second components together; and brazing the braze ring.
This invention solves the problem of having to add a clad alloy to at least one of two components to be brazed. Adding a clad alloy requires additional manufacturing steps and costs to the process. Furthermore, this invention makes possible for two components to be brazed and not require a clad alloy in either component but rather a braze ring between two components and a method to secure the two components.
This invention demonstrates how to secure two components, which do not contain a clad alloy, in order to prepare for the brazing process. This invention involves a staking or crimping method to hold the two components together, all the while securing a braze ring that is captured in between the two components to act as the brazing mechanism.
Aluminum tubing (no clad alloy) may be used for tubing member 10. Aluminum extrusion (no clad alloy) may be used for extrusion member 14. A clad alloy is a metal to which a metal coasting has been applied. This coating often provides an improved wearing surface, a better appearance, or corrosion protection. The clad alloy also allows for other clad alloy components to be brazed together.
According to particular embodiments shown in
Annular groove 16 on upper surface 17 of extrusion member 14 is radially displaced in direction 30 from a center of step down portion 18 along bore 19 within the extrusion member 14 and forms securing ring 11. Crimping of securing ring 11 is provided in upper surface 17 of extrusion member 14 in order to secure tubing member 10 to step down portion 18 in bore 19 of extrusion member 14. Performing crimping of securing ring 11 against bead 13 of tubing 10 securely holds braze ring 12 between bead 13 and step down portion 18 during a brazing process. This crimping prevents unwanted rotation of tubing member 10 with respect to extrusion member 14 during the brazing process.
Two components necessary to make a heat exchanger assembly may be brazed by any known method, such as controlled atmospheric brazing (CAB). CAB is generally brazing in a dry, inert gas atmosphere. Various inert gases may be utilized in the CAB process, such as, but not limited to nitrogen, argon, helium and the like.
Process 60 continues with an operation 64. At operation 64, a first component is secured against a second component. Further, operation 64 may further include operating a staking tool to stake securing area 15 second component. Operation 64 may further include engaging securing area 15 with bead 13 to secure tubing member 10 of the second component within extrusion member 14 of the first component. Operation 64 may further include sandwiching braze ring 12 between bead 13 and step down portion 18 of bore 19 in response to staking of securing area 15.
According to process 60, operation 64 may then be followed by operation 66 of brazing the braze ring 12. At operation 66, brazing the braze ring may include controlled atmosphere brazing.
Following operation 72, the process 70 moves to operation 74, wherein a braze ring 12 is secured between a first and second component. Further at operation 74, process 70 may include abutting bead portion 13 of second component (tubing member 10) against braze ring 12.
Following operation 74, process 70 moves to operation 76. At operation 76, securing ring 11 may be crimped to secure the first component to the second component. Further, operation 76 may further include operating a crimping tool to crimp securing ring 11. Operation 76 may further include engaging securing ring 11 with bead 13 to secure tubing member 10 within extrusion member 14. Operation 74 may further still include sandwiching braze ring 12 between bead 13 and step down portion 18 of bore 19 in response to crimping of securing ring 11.
Operation 76 of Process 70 may be followed by operation 78 of brazing the braze ring 12. Operation 78 of brazing the braze ring may include controlled atmosphere brazing.
Although the preferred embodiments of the invention have been illustrated and described in detail, it will be readily apparent to those skilled in the art that various modifications may be made therein without departing from the spirit of the invention or from the scope of the appended claims.