Method and apparatus for seismic signal processing and exploration

Information

  • Patent Grant
  • RE38229
  • Patent Number
    RE38,229
  • Date Filed
    Friday, July 27, 2001
    23 years ago
  • Date Issued
    Tuesday, August 19, 2003
    21 years ago
Abstract
A method, a map and an article of manufacture for the exploration of hydrocarbons. In one embodiment of the invention, the method comprises the steps of: accessing 3D seismic data; dividing the data into an array of relatively small three-dimensional cells; determining in each cell the semblance/similarity, the dip and dip azimuth of the seismic traces contained therein; and displaying dip, dip azimuth and the semblance/similarity of each cell in the form a two-dimensional map. In one embodiment, semblance/similarity is a function of time, the number of seismic traces within the cell, and the apparent dip and apparent dip azimuth of the traces within the cell; the semblance/similarity of a cell is determined by making a plurality of measurements of the semblance/similarity of the traces within the cell and selecting the largest of the measurements. In addition, the apparent dip and apparent dip azimuth, corresponding to the largest measurement of semblance/similarity in the cell, are deemed to be estimates of the true dip and true dip azimuth of the traces therein. A color map, characterized by hue, saturation and lightness, is used to depict semblance/similarity, true dip azimuth and true dip of each cell; true dip azimuth is mapped onto the hue scale, true dip is mapped onto the saturation scale, and the largest measurement of semblance/similarity is mapped onto the lightness scale of the color map.
Description




TECHNICAL FIELD




This invention relates to the general subject of seismic exploration and, in particular, to methods and devices for identifying structural and stratigraphic features in three dimensions.




BACKGROUND OF THE INVENTION




In seismic exploration, seismic data is acquired along lines (see lines


10


and


11


of

FIG. 1

) that consist of geophone arrays onshore or hydrophone streamer traverses offshore. Geophones and hydrophones act as sensors to receive energy that is transmitted into the ground and reflected back to the surface from subsurface rock interfaces. Energy is often provided onshore by Vibroseis® vehicles which transmit pulses by shaking the ground at pre-determined intervals and frequencies on the surface. Offshore, airgun sources are usually often used. Subtle changes in the energy returned to surface often reflect variations in the stratigraphic, structural and fluid contents of the reservoirs.




In performing three-dimensional (3D) seismic exploration, the principle is similar; however, lines and arrays are more closely spaced to provide more detailed subsurface coverage. With this high density coverage, extremely large volumes of digital data need to be recorded, stored and processed before final interpretation can be made. Processing requires extensive computer resources and complex software to enhance the signal received from the subsurface and to mute accompanying noise which masks the signal.




After the data is processed, geophysical personnel assemble and interpret the 3D seismic information in the form of a 3D data cube (See

FIG. 2

) which effectively represents a display of subsurface features. Using this data cube, information can be displayed in various forms. Horizontal time slice maps can be made at selected depths (See FIG.


3


). Using a computer workstation, an interpreter can also slice through the field to investigate reservoir issues at different seismic horizons. Vertical slices or cross-sections can also be made in any direction using seismic or well data. Seismic picks of reflectors can be contoured, thereby generating a time horizon map. Time horizon maps can be converted to depth to provide a true scale structural interpretation at a specific level.




Seismic data has been traditionally acquired and processed for the purpose of imaging seismic reflections for structural and stratigraphic interpretation. However, changes in stratigraphy are often difficult to detect on traditional seismic displays due to the limited amount of information that stratigraphic features present in a cross-section view. While working with both time slices and cross-sections provides an opportunity to see a much larger portion of faults, it is difficult to identify fault surfaces within a 3D volume where no fault reflections have been recorded.




Coherence is one measure of seismic trace similarity or dissimilarity. The more two seismic traces increase in coherence, the more they are alike. Assigning a coherence measure on a scale from zero to one, “0” indicates the greatest lack of similarity, while a value of “1” indicates total or complete similarity (i.e., two identical, perhaps time-shifted, traces). Coherence for more than two traces may be defined in a similar way.




One method for computing coherence was disclosed in U.S. Pat. No. 5,563,949 to Bahorich and Farmer (assigned to Amoco Corporation) having a Ser. No. 353,934 and a filing date of Dec. 12, 1994. Unlike the shaded relief methods that allow 3D visualization of faults, channels, slumps, and other sedimentary features from picked horizons, the coherency process devised by Bahorich and Farmer operates on the seismic data itself. When there is a sufficient change in acoustic impedance, the 3D seismic coherency cube developed by Bahorich and Farmer can be extremely effective in delineating seismic faults. It is also quite effective in highlighting subtle changes in stratigraphy (e.g., 3D images of meandering distributary channels, point bars, canyons, slumps and tidal drainage patterns).




Although the process invented by Bahorich and Farmer has been very successful, it has some limitations. An inherent assumption of the Bahorich invention is the assumption of zero mean seismic signals. This is approximately true when the correlation window exceeds the length of a seismic wavelet. For seismic data containing a 10 Hz component of energy, this requires a rather long 100 ms window which can mix stratigraphy associated with both deeper and shallower time horizons. Shortening the window (e.g., to 32 ms results in higher vertical resolution, but often at the expense of increased artifacts due to the seismic wavelet. Unfortunately, a more rigorous, non-zero mean running window cross correlation process is an order of magnitude more computationally expensive. Moreover, if seismic data is contaminated by coherent noise, estimates of apparent dip using only two traces will be relatively noisy.




Thus, there is a need for methods and apparatus that would overcome the shortcomings of the prior art. In particular, improved resolution and computational speed are desirable. In addition, it would be highly desirable to improve estimates of dip in the presence of coherent noise.




SUMMARY OF THE INVENTION




In accordance with the present invention, a method and an article of manufacture is disclosed for locating subterranean features, faults, and contours. In one embodiment of the invention, the method comprises the steps of: accessing 3D seismic data covering a pre-determined volume of the earth; dividing the volume into an array of relatively small three-dimensional cells, wherein each of said cells is characterized by at least five laterally separated and generally vertical seismic traces located therein; determining in each cell the semblance/similarity of the traces relative to two predetermined directions; and displaying the semblance/similarity of each cell in the form a two-dimensional map. In one embodiment, semblance/similarity is a function of time, the number of seismic traces within the cell, and the apparent dip and apparent dip azimuth of the traces within the cell; the semblance/similarity of a cell is determined by making a plurality of measurements of the semblance/similarity of the traces within the cell and selecting the largest of the measurements. In addition, the apparent dip and apparent dip azimuth, corresponding to the largest measurement of semblance/similarity in the cell, are deemed to be estimates of the true dip and true dip azimuth of the traces therein. Finally, a color map, characterized by hue, saturation and lightness, is used to depict semblance/similarity, true dip azimuth and true dip of each cell; in particular, true dip azimuth is mapped onto the hue scale, true dip is mapped onto the saturation scale, and the largest measurement of semblance/similarity is mapped onto the lightness scale of the color map.




In another embodiment of the invention, an article of manufacture is disclosed that comprises a medium that is readable by a computer and that carries instructions for the computer to perform a seismic exploration process. In one embodiment, the computer accesses 3D seismic data covering a pre-determined volume of the earth and the medium instructs the computer to: divide the volume into an array of relatively small three-dimensional cells, wherein each cell is characterized by at least five laterally separated and generally vertical seismic traces located therein; determine in each cell the semblance/similarity of the traces relative to two pre-determined directions; and store the semblance/similarity of each cell for display in the form a two-dimensional map. In one embodiment, the instructions on the medium define semblance/similarity as a function of time, the number of seismic traces within the cell, and the apparent dip and apparent dip azimuth of the traces within the cell; the semblance/similarity of a cell is determined by making a plurality of measurements of the semblance/similarity of the traces within the cell and by selecting the largest of the measurements. In addition, the apparent dip and apparent dip azimuth, corresponding to the largest measurement of semblance/similarity in the cell, are deemed to be estimates of the true dip and true dip azimuth of the traces therein. The computer comprises means for producing a color display that is characterized by hue, saturation and lightness; and the medium has instructions to map true dip azimuth onto a hue scale, true dip onto a saturation scale, and the largest measurement of semblance/similarity onto a lightness scale.




The process of the invention is particularly well suited for interpreting fault planes within a 3D seismic volume and for detecting subtle stratigraphic features in 3D. This is because seismic traces cut by a fault line generally have a different seismic character than traces on either side of the fault. Measuring multi-channel coherence or trace similarity along a time slice reveals lineaments of low coherence along these fault lines. Such measures can reveal critical subsurface details that are not readily apparent on traditional seismic sections. Also by calculating trace similarity along a series of time slices, these fault lineaments identify fault planes or surfaces.




The process of the invention presents a multitrace semblance method that is generally more robust in noisy environments than a three trace cross correlation method for estimating seismic coherency. In addition, the semblance process presented in this patent application provides:




higher vertical resolution for good quality data than that of a three trace cross correlation measurement of seismic coherency;




the ability to map the 3D solid angle (dip/azimuth) of coherent events;




the ability to generalize the concept of complex “trace” attributes to one of complex “reflector” attributes; and




by combining these enhanced complex trace attributes with coherency and solid angle, the basis of quantitative 3D seismic stratigraphy data attributes that are amenable to geostatistical analysis methods.




Moreover, seismic coherency versus dip maps of picked horizons allow analysis of:




the structural and stratigraphic framework before detailed picking starts;




structural and stratigraphic features of the entire data volume, including zones that are shallower, deeper, and adjacent to the primary zone of interest;




subtle features that are not respresentable by picks on peaks and troughs; and




features internal to the top and bottom of formation or sequence boundary picks.




Coupled with coherency, data cubes of the solid angle dip of coherent seismic reflection events allow one to quickly see structural as well as stratigraphic relationships (such as onlap and offlap) between the seismic data and interpreted sequence boundaries.




Numerous other advantages and features of the present invention will become readily apparent from the following detailed description of the invention, the embodiments described therein, from the claims, and from the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings (s) will be provided by the Office upon request and payment of the necessary fee.






FIG. 1

is a schematic diagram showing an arrangement of geophones to obtain 3D seismic data from the earth's subsurface for processing in accordance with the present invention;





FIG. 2

is a pictorial representation of the information obtained from the data acquired using the arrangement of

FIG. 1

;





FIG. 3

is a pictorial representation of a horizontal time slice (t=1200 ms) of 3D seismic data processed in accordance with the prior art;





FIGS. 4A through 4H

illustrate various analysis windows (computational stars) that may be used in running window analysis of seismic coherence, dip and dip azimuth;





FIG. 5

is a pictorial representation of the process of the invention using an elliptical window centered about an analysis point;





FIGS. 6A and 6B

are examples of a rectangular dip/azimuth tessellation useful when analyzing a survey having strikes and dips parallel to the acquisition axes, and when illuminating faults cutting perpendicular to a dominant reflector strike and dip (p


O


, q


O


);





FIGS. 7A through 7C

are pictorial representations of three tesselations of solid angle dip/azimuth space;





FIGS. 8A through 8D

depict the mapping of 3D seismic attributes (φ,c,d) to 3D color space (H,L,S);





FIG. 9

shows four surfaces through the color hemisphere of

FIG. 8A

for four values of coherence;





FIGS. 10A through 10C

depict ordinary vertical slices of the seismic data of

FIG. 3

;





FIGS. 11A through 11C

depict the seismic attributes, dip, dip azimuth and coherency obtained by applying the process of the invention, to data corresponding to that of

FIGS. 10A through 10C

;





FIGS. 12A and 12B

are time slices (t=1200 ms and t=1600 ms) through the dip azimuth cube giving rise to

FIGS. 11A and 11B

;





FIGS. 13A and 13B

are gray scale displays of coherency;





FIGS. 14A through 14C

depict coherency slices corresponding to the data of

FIGS. 10A through 10C

;





FIGS. 15A and 15B

depict the results of applying a semblance algorithm and applying dip/azimuth algorithm in accordance with the present invention; and





FIGS. 16A and 16B

are schematic diagrams depicting the processing flow of the steps performed in one embodiment of the invention.











DETAILED DESCRIPTION




While this invention is susceptible of embodiment in many different forms, there is shown in the drawings, and will herein be described in detail, specific embodiments of the invention. It should be understood, however, that the present disclosure is to be considered an exemplification of the principles of the invention and is not intended to limit the invention to any specific embodiment or algorithm described herein.




Before describing the invention in detail, an overview will be given so that the detailed description, which follows, may be better understood. One embodiment of the process of the invention is illustrated in FIG.


16


A. Briefly, the method comprises the steps of: accessing 3D seismic data


10


covering a pre-determined volume of the earth; dividing


12


the volume into an array of relatively small three-dimensional cells, wherein each of said cells is characterized by at least five laterally separated and generally vertical seismic traces located therein; determining


14


in each cell the semblance/similarity of the traces relative to two pre-determined directions; selecting


16


the largest of the measurements; and displaying


24


the semblance/similarity of each cell in the form a two-dimensional map. The semblance/similarity measurements may be recorded


18


for future use, or sent


20


to an interactive workstation for further analysis; or printed or displayed as a color map


22


, characterized by hue, saturation and lightness, may be used to depict semblance/similarity, true dip azimuth and true dip of each cell.




The first step of the process (See

FIG. 16A

) is to obtain a set of seismic data in the form of seismic signal traces distributed over a three dimensional volume of the earth. Methods by which such data is obtained and reduced to digital form for processing as 3D seismic data are known to those skilled in the art.




The Semblance Process




The next step is to generate a “coherence cube.” This is done by applying a multi-trace semblance algorithm to the 3D seismic data. This algorithm may take many forms. Whatever its form, its function is to compare the similarity of nearby regions of seismic data within the 3D seismic volume. This value (or attribute) serves as a rather robust estimate of signal discontinuity within geologic formations, as well as signal discontinuities across faults and erosional unconformities.




We define an analysis grid (or computational star) to be either an elliptical or rectangular pattern of “J” traces centered about a given output trace (See FIGS.


4


A through


4


H).




In the drawings “X” denotes the center of the analysis window while “O” denotes additional traces used in the semblance calculation. Minimum size circular and rectangular windows used to analyze data with equal trace spacings (Δx=Δy) are shown in

FIGS. 4A and 4D

. Minimum circular and rectangular windows used to analyze data with trace spacing in the cross-line/strike (y) direction twice that in the in-line/dip (x) direction (Δy=2Δx) are shown in

FIGS. 4B and 4E

. Such nonequal spacings are commonly used to exploit the slower change of geology in the strike direction. Larger analysis windows used for greater resolution of reflector dip and azimuth, or to increase signal to noise ratio in poor data areas, are shown in

FIGS. 4C and 4F

.




Elliptical and rectangular analysis windows centered about an analysis point defined by a major axis, a minor axis, and the azimuth of major axis are shown in

FIGS. 4G and 4H

. The acquisition (x,y) axes are rotated by φ


O


degrees from the North-East (x′, y′) axes. Such assymmetric windows are useful in fracture detection.




If we center the (x, y) axis about the center of an analysis window containing J seismic traces, u


j


(t, x


j


, y


y


), we define the semblance σ(τ,p,q) to be:










σ


(

τ
,
π
,
q

)


=



{




j
=
1

J







u


[


τ
-

(


px
j

+

qy
j


)


,

x
j

,

y
j


]



}

2


J





j
=
1

J








{

u


[


τ
-

(


px
j

+

qy
j


)


,

x
j

,

y
j


]


}

2








(
2
)













where the triple (τ,p,q) defines a local planar event at time τ, and p and q are the apparent dips in the x and y directions measured in ms/m. Since, p=d sin φ and q=d cos φ, where d is the true dip and φ is the dip azimuth, it follows that:






u


f


(τ,p,q,x,y)=u


f


[τ−d(x sinφ+y cosφ), x, y].






Those skilled in the art will recognize that, in the denominator of equation (1), J serves as a normalization factor. The numerator represents the average energy and the summation term in the denominator represents the total energy of the traces. In effect, equation (1) is representative of a ratio of coherent and incoherent energy.




The objective is to perform a simultaneous 2D search (See

FIG. 5

) over apparent dips (p,q) in the in-line and cross-line directions. However, the semblance estimate given by equation (1) will be unstable for small but coherent values of seismic events, such as might occur if we were to sum along the zero crossings of a plane coherent wavelet. To avoid this, we estimate the coherence c (τ,p,q) at time τ and apparent dips (p,q) to be the average semblance over a time window (or vertical analysis window of height 2 w ms of half length K=w(Δt samples):










c


(

τ
,
p
,
q

)


=





k
=

-
K



+
K









{




j
=
1

J







u


[


τ
+

k





Δ





t

-

(


px
j

+

qy
j


)


,

x
j

,

y
j


]



}

2



J





k
=

-
K



+
K







j
=
1

J








{

u


[


τ
+

k





Δ





t

-

(


px
j

+

qy
j


)


,

x
j

,

y
j


]


}

2









(
2
)













In general, we do not know but wish to estimate that value of (p,q) associated with the local dip and azimuth of a hypothetical 3D reflection event.




In one embodiment of the process of the invention, we estimate (p,q) through a brute force search over all possible apparent dips (See FIGS.


6


A and


6


B). We assume that the interpreter is able to estimate the maximum true dip, d


max


(measured in ms/m) from conventional seismic displays of the data (e.g., vertical data slices), thereby limiting the dips to be:






{square root over (p


2


+q


2


)}≦+d


max


.






If x


max


and y


max


are the half width and half length of a rectangular analysis window, and if f


max


is the highest temporal frequency component contained in the seismic data, then the Nyquist criterion of sampling the data at two points per period restricts the apparent dip increments, Δp to Δq, to:






x


max


Δp≧1(2f


max


), and y


max


Δq≦1/(2f


max


).






It should be noted that the Nyquist criterion is valid for linear operations on the seismic data; and that equation (2) is nonlinear. In practice, we have found it necessary to limit Δp and Δq to half that required by the Nyquist sampling criterion to obtain an accurate semblance for a coherent dipping event.




Thus, our search for an estimate of the apparent dip ({circumflex over (p)}, {circumflex over (q)}) of a seismic reflector is reduced to the calculation of semblance c(p


l


, q


m


) over n


p


* n


q


discrete apparent dip pairs (p


l


, q


m


) where:






n


p


=(2d


max


/Δp)+1, and








n


q


=(2d


max


/Δq)+1.






The apparent dip pair (p


l


, q


m


) is deemed to be an estimate of the reflector apparent dips when:






c(p,q)≧c(p


l


, q


m


)   (3)






for all −n


p


<1≦+n


p


, −n


1


≦m≦+n


1


.




The estimated apparent dips ({circumflex over (p)}, {circumflex over (q)}) are related to the estimated true dip d and dip azimuth {circumflex over (φ)} by the simple geometric relationships:









p
^

=


d
^


sin


φ
^



;






and






q
^


=


d
^


cos


φ
^




,










where {circumflex over (d)} is measured in ms/m and the angle {circumflex over (φ)} is measured clockwise from the positive x′ (or North) axis. A simple coordinate rotation by angle φ


O


is necessary when the in-line acquisition direction x is not aligned with the N-S (x′) axis (See FIG.


4


G).




Solid Angle Discretization and Display




Optimal angular discretization is important for two reasons: minimization of computational cost, and limitation on the number of colors that can be displayed using commercial interpretation workstation software (e.g., currently 64 with Landmark's “Seisworks” and 32 with Geoquest's “IESX” systems).





FIG. 7A

shows the discretization of apparent dip using equal increments Δp and Δq in a rectangular grid of 69 angles.

FIG. 7B

shows the discretization using equal increments Δd and Δφ in a radial grid of 97 angles. Clearly, we do not wish to sample the dip d=0 ms/m for ten different azimuths. The “Chinese Checker” tessellation of

FIG. 7C

more closely represents an equal and therefore more economic sampling of the (d, φ) surface with a minimum number of points (i.e., 61 angles). Each tesselation of

FIGS. 7A and 7C

represents an approximately equal patch of solid angle ΔΩ. For the angular discretization shown in FIG.


7


C and for a circular analysis radius, a, the incremental dip Δd is chosen to be:










a





Δ





d




1

2






f
max



.





(
4
)













Display




While it is possible to independently map semblance, dip, and azimuth, it is clear that the latter two attributes are coupled to each other. Furthermore, the confidence we have in these estimates is proportional to the coherency/semblance. Others (See U.S. Pat. No. 4,970,699 to Bucher et al. and assigned to Amoco Corporation. “Method for Color Mapping Geophysical Data”) have shown that the color HLS (hue, lightness, saturation) model can be quite effective in displaying multicomponent seismic attributes (Also see Foley, J. D. and Van Dam, A., 1891, Fundamentals of Interactive Graphics, Addison-Wesley, Reading, Mass.).




Refering to

FIGS. 8A through 8D

, in this scheme, we directly map azimuth, φ, onto the hue axis H:






H=φ






where both H (commonly known as the “color wheel”) and φ vary between −180 and +180 degrees (See FIG.


8


B). Blue corresponds to North, salmon to East, yellow to South, and forest green to West azimuth. Azimuths corresponding to zero dip are arbitrarily assigned a value of 0 degrees (North) and are thus plotted as blue.




Next, we map (See

FIG. 8C

) average semblance/coherence c, onto the lightness axis L:






L=αc,






where






0≦L≦100,








0≦c≦1.0, and






α is a scale constant less than 100, since changes in hue and saturation near L=0 (black) and L=100 (white) are difficult to distinguish. White, or L=100, corresponds to high semblance or c=1, while black, or L=100, corresponds to low semblance, c=0. Intermediate semblances correspond to intermediate shades of gray, (such as silver, gray and charcoal gray). Lightness (sometimes referred to as “brightness”) expresses the amount of illumination. It represents a gray scale ranging from black to white.




Finally, we map dip d onto the saturation axis S:






S=100 d/d


max








The saturation (S=0) and hue chosen are arbitrary; we could just as easily have displayed this attribute for a value of (H=0, S=100) giving us semblance displayed as white, pastel blue, pure blue, midnight blue and black. Saturation expresses the lack of dilution of a color by white light. A fully saturated color has no white added; adding white “washes out” the color without changing its hue. (See FIG.


8


D).





FIG. 9

illustrates four constant surfaces through the 3D (H,L,S) color hemisphere of (φc, d) shown in

FIG. 8A

, corresponding to c=100, c=0.75, c=0.50 and c=0.00.




Appendix 1 describes the color scheme in greater detail. Some advantages of the HLS color model are: azimuth is cyclic and maps neatly to the cyclic color wheel (hue); the azimuths corresponding to d=0 are meaningless; all azimuths converge smoothly to gray for shallow dips; and lower confidence in estimating dip and azimuth in zones of weak, low semblance (such as across faults) is indicated by darker colors.




Implementation of Mathematical Process




Landmark and GeoQuest interpretive workstations (See FIG.


16


B), for example, can be used to view and interpret faults and stratigraphic features by loading the processed data as a seismic volume. Visualization software (e.g., Landmark's SeisCube software) may be employed to rapidly slice through the seismic volume to aid in understanding complex fault relationships.




Computer Program




A FORTRAN 77 program was written to perform the calculations and provide the information for the displays previously described. Additional details are given in Appendix 2. Each trace U


MN


is accessed by its in-line and cross-line indices, M and N. The user specifies a rectangular or an elliptical spatial analysis window or cell about each point/trace in the input data set (See FIG.


4


G). The major and minor axis of this analysis window, a and b are given by a=aplength and b=apwidth. The orientation or azimuth of the major axis φ


a


is given by φ


a


=apazim. A rectangular analysis window (

FIG. 4H

) is indicated by specifying −R on the command line. The 2J indices relative to the center of this analysis window (and corresponding to the traces that fall within this window) are tabulated as a simple list, with m(j) and n(j) indicating the trace index (relative to the analysis trace U


MN


) in the x and y directions, respectively. The program performs a simultaneous 2D search over apparent dips (p,q) in the in-line and cross-line directions, where (p


2


+q


2


)


1/2


<+smax. The increments dp and dq are chosen such that the data are sampled at four points per period<1/(fref) at the edge of the analysis window. For interpretation, it may be convenient to express each apparent dip pair (p,q) in spherical coordinates as a true (time or depth) dip d and dip azimuth φ.




The data in the analysis window are interpolated to the fractional time, τ−px−qy, for each trial dip and azimuth (See FIG.


5


), in essence, “flattening” of data. The semblance for this trial dip at the analysis point is defined to be the semblance of these flattened traces in the analysis window.




For time domain data, we flatten the jth trace about the analysis point (M,N) by:






u


f


(τ,p,q,x,y)=u[τ−(px+qy)]=u[τ−d(x sinφ+y cosφ)].






where x and y are distances measured from the center of the analysis window. This may be expressed






u


f




M+m(j),N+n(j)


(τ,p,q)=M


M+m(j),N+n(j)


[τ−(pn


(j)




(j)Δx+qm(j)Δy)]







where Δx and Δy are the in-line and cross-line trace spacings.




For depth domain data we flatten the jth trace using:






u


f


(ξ,p,q,x,y)=u[ξ−(px+qy)]=u[τ−d(x sinφy cosφ)].






The semblance is ;then calculated for all subsequent dips and azimuths using:










σ


(

τ
,
p
,
q

)


=








(




j
=
1

J







[


u
f



(

t
,
p
,
q
,

x
j

,

y
j


)


]


)

2



J





j
=
1

J








[


u
f



(

t
,
p
,
q
,

x
j

,

y
j


)


]

2








(
5
)













As in velocity analysis, the semblance for each dip, azimuth and analysis point are smoothed by forming a running window time integration over the partial sums from −K to +K where K=apheight/dt. We therefore define the coherence, c(τ,p,q) to be:










c


(

τ
,
p
,
q

)


=










-
K


+
K









(




j
-
1

J







[


u
f



(

t
,
p
,
q
,
x
,
y

)


]


)

2




J





-
K


+
K











j
=
1

J








[


u
f



(

t
,
p
,
q
,
x
,
y

)


]

2









(
6
)













That dip and azimuth pair Ω=(d, φ) which has the maximum (running window integrated) coherency c is taken to be an estimate of the coherency, {overscore (c)}, dip and azimuth ({circumflex over (d)}, {circumflex over (φ)}) for the analysis point.




EXAMPLES





FIGS. 11A through 11C

are displays of the 3D seismic attributes (φ, c, d) corresponding to

FIGS. 10A through 10C

using the semblance based coherency algorithm expressed by equation (6), and the color display technique depicted in

FIGS. 8 and 9

. The input data were temporarily sampled at 4 ms, have an in-line trace spacing of Δx=12.5 m, and have a cross-line trace spacing of Δy=25 m, with the in-line acquisition oriented along a N-S axis. For

FIGS. 11A through 11C

, a circular analysis window or cell of a=b=60 m was used (See FIG.


4


A), so as to include a total of 11 traces in the calculation. The maximum search dip (See

FIG. 7C

) was d


max


=0.25 ms/m, giving rise to 61 search angles. The temporal integration time used was w=16 ms, or K=4, thereby averaging the semblance calculation over 9 samples.




In

FIGS. 10A and 10B

lines AA′ and BB′ were chosen as S to N and W to E vertical slices through the center of a salt dome. Line CC″ is an offset S to N line and illustrates the appearance of radial faults on a vertical slice. In

FIGS. 11A through 11C

, the interior of the salt dome is represented by dark colors, corresponding to an area of generally low coherency. Low areas of coherency correspond to the radial faults seen on line CC″. Coherent, flat dips are represented as light gray and dominate the section away from the salt dome, in particular line CC″. The blue color on the north side of the salt dome (seen on N-S line AA′) corresponds to sediments dipping steeply (D=D


max


) to the North. These dips become progressively shallower away from the salt dome, and are thus displayed first as blue (saturation, S=100.0), cadet blue (S=0.75) and steel blue (S=0.50), before they flatten and are displayed as gray (S=0.0). The yellow color on the south side of the salt dome (seen on line AA′) corresponds to sediments dipping steeply to the South. The salmon color on the East flank of the salt dome (shown on the E-W line BB′) corresponds to sediments dipping steeply to the East. These dips also become progressively shallow away from the salt dome, and are displayed first as salmon (S=100.00), through sienna (S=50.0), and finally to gray, corresponding to flat dip. Finally, the forest green color on the West flank of the salt dome (shown on line AA′) corresponds to sediments dipping steeply to the West. These dips also flatten away from the salt dome and are displayed using the colors shown on the West part of the legend shown in FIG.


9


. N-S line CC′ is not aligned radially with the salt dome. Thus, out-of-the-plane rotation of different fault blocks are depicted, with the green block corresponding to dips to the SW and the cyan block with dips to the NW.




Since these 3D attributes were calculated for every point on the input seismic volume, they can be displayed as horizontal attribute time slices (See FIGS.


12


A and


12


B); these correspond to a time slice of the unprocessed seismic data. The interior of the salt dome, as well as the radial faults are displayed as dark colors, corresponding to incoherent zones of the data. Because of the nearly radial symmetry of the salt diapir at t=1,200 ms (See FIG.


12


A), the dipping sediments that flank the diapir also radiate outward in an azimuthally simple fashion such that their azimuths correspond quite closely to the color legend on the left side of FIG.


9


. This pattern is somewhat less symmetric at t=1,600 ms (See FIG.


12


B), where there are shallower dips to the South than to the North. In addition, internal blocks of coherent data can be seen within the salt dome.




The color legend displayed in

FIG. 9

allows for only four “buckets” of coherency. In order to examine the coherency in greater detail, it can be plotted as a single attribute. This is shown in

FIGS. 13A and 13B

where all 184 colors are applied to the simple gray scale shown of FIG.


8


C. In this display, maximum coherency (c=1.0) is rendered as white; minimum coherency (c=0.0) is rendered as black. While the interior of the salt diapir is shown as a highly incoherent zone, this display better shows subtle details in the radial faults patterns. In particular, faults emanating from the salt dome are shown, with some bifurcating as we move away. In addition to more continuous binning of the coherency attribute, part of this difference in perception is due to the fact that the human retina sees colors and black and white using different (cone vs. rod) receptors. There is also a physiological difference in the ability to differentiate between greens and blues between male and female populations. For this reason, male interpreters often prefer the simple single attribute coherency display shown in

FIGS. 13A

,


13


B and

FIG. 15A

over the multiattribute (φ,c,d) display shown in

FIGS. 11A through 12B

and FIG.


15


B. In actuality, these displays are quite complimentary: the 3D component display being useful in recognizing the appearance of conflicting dips azimuths between adjacent rotated fault blocks; and the single component display being used to enhance the edge, or incoherent fault discontinuity, separating them.




Process Considerations




Careful study of

FIGS. 13A and 13B

reveals a ring-like pattern of incoherent energy circumscribing the salt dome. To investigate the cause of these artifacts, vertical slices were taken through the single component coherency cube corresponding to the seismic data in

FIGS. 10A through 10C

. This is shown in

FIGS. 14A through 14C

. The interior of the salt dome is clearly incoherent. An incoherent submarine canyon feature (described by Nissen et al., “3D Seismic Coherency Techniques Applied to the Identification and Delineation of Slump Features”, 1995 SEG Expanded Abstracts, pages 1532-1534) is shown to the north of the salt dome. If the seismic data shown in

FIGS. 10A through 10C

were overlayed on the coherency section shown in

FIGS. 14A through 14C

, one would see a close correspondence between areas of low coherency of

FIGS. 14A through 14C

with zero crossings of the seismic reflection events in

FIGS. 10A through 10C

. This is easily understood if it is assumed that there is a fixed, but incoherent, level of seismic noise throughout the data. For analysis points where the apparent dips are aligned with the peaks or troughs of strong amplitude seismic reflectors (such that the estimate of signal energy is high with respect to the incoherent noise), one can expect the signal-to-noise ratio to be high, giving rise to an estimate of high coherency. However, if, our analysis point is such that there are apparent dips aligned with the zero crossings of these same seismic reflectors, such that the signal is low with respect to our incoherent noise, one can expect the signal-to-noise ratio to be low, giving rise to a low estimate of coherency.




We have found three methods for increasing the signal-to-noise ratio: the first more appropriate for structural analysis; the second more appropriate for stratigraphic analysis, and the third appropriate for both.




For the case of steeply dipping (less than 45 degrees from the vertical) faults, the signal-to-noise ratio can be increased by simply increasing the size of our vertical analysis window w given in equation (2). Two effects will be observed. First, the structural leakage corresponding to the zero crossing points of the reflectors diminishes as vertical integration window size increases. Second, since few of the faults are truly vertical, the lateral resolution of the faults appears to decrease as the vertical window size increases. An analysis window of w=16 ms (which would encompass a full cycle of the peak 30 Hz energy in the data) appears to be in good compromise.




The second method (equally appropriate for stratigraphic and structural analysis) of increasing the signal-to-noise ratio, is to extract coherency along an interpreted stratigraphic horizon. If this stratigraphic horizon is associated with an extremum of the seismic data, such as a peak or trough, those data having only a relatively high signal-to-noise ratio are selectively displayed. Clearly, extracting coherency data corresponding to a zero crossing would greatly exacerbate the coherency display. A more economic version of this approach is to first flatten the data along the horizon of interest and then calculate the seismic attributes only along the picked horizon. This approach is somewhat more sensitive to busts in automatic (and human!) pickers, since cycle skip glitches in the picking are somewhat random and therefore will almost always appear as incoherent.




Shallow features (e.g., shallow channels; shallow tidal channel features corresponding to reworked deltaic sands; and small en echelon faulting) do not exist for any distance above or below an interpreted stratigraphic horizon; therefore, the inclusion of any data from above or below the horizon in which they are located adds uncorrelated amplitude variations, thereby making these discontinuities look more coherent, and hence washed out. If the time samples above or below the interpreted horizon contain independent, perhaps strong amplitude discontinuities, these discontinuities will bleed into the analysis for large windows, giving a stratigraphic horizon containing features mixed from stratigraphic different horizons generated at different geologic times.




The third method is a generalization of the original collection of seismic traces u


j


to that of an analytic trace v


j


defined as:






v


j


(t)≡vu


j


(t)+iu


j




H


(t)






where u


j




H


(t) is the quadrature, or Hilbert transform of u


j


(t), and i denotes {square root over (−1)}. The calculation of σ(τ,p,q) and c(τ,p,q) is entirely analogous to equations (1) and (2), where we note that the definition of v


j




2


is given by






v


j




2


≡v


j


v


j


*≡(u


j


+iv


j




H




iu



j




H


)(u


j


iv


j




H




iu



j




H


).






The third method avoids numerical instabilities in the semblance estimate of equation (1) at the “zero-crossings” of an otherwise strong reflector.




The Effect of the Horizontal Analysis Window




By examining equation (2), it is clear that the computational cost of analysis increases linearly with the number of traces included in the analysis. However, by comparing a semblance based 11-trace coherency time slice with those of a 3-trace cross correlation coherency time slice, (where each has an identical vertical analysis window of w=32 ms) one is led to believe that adding more traces to the computation can increase the signal-to-noise ratio. In general, the signal to noise ratio increases as we increase the size of the analysis window. However, the overall coherency decreases somewhat (one sees less white), since the approximation of a possibly curving reflector by a constant (p,q) planar event breaks down as we increase the window size. In general, the signal-to-noise ratio of dip/azimuth estimates increases with the number of traces in the calculation, until a point is reached whereby the locally planar reflector approximation no longer holds.




Conclusions




The 3D semblance technique presented in this patent application provides an excellent measurement of seismic coherency. By using an arbitrary size analysis window, we are able to balance the conflicting requirements of maximizing lateral resolution and signal-to-noise ratio that is not possible when using a fixed three trace cross correlation technique. Accurate measurements of coherency can be achieved by using a short temporal (vertical) integration window that is on the order of the shortest period in the data, whereas a zero mean cross correlation technique preferably is used with an integration window that is greater than the longest period in the data. Thus, the semblance process results in less vertical smearing of geology than a cross correlation process, even for large spatial analysis windows (See FIGS.


15


A and


15


B). Equally important to the coherence estimate, the semblance process provides a direct means of estimating the 3D solid angle (dip and azimuth) of each reflector event. These solid angle maps may or may not be related to conventional time structure maps defining formation boundaries. Like the basic coherency process of Bahorich and Farmer (e.g., cross correlation), estimation of the instantaneous dip/azimuth cube can be achieved prior to any interpretation of the data for use in a gross overview of the geologic setting. In this reconnaissance mode, the coherency and instantaneous dip/azimuth cubes allow the user to pick key dip and strike lines crossing important structural or sedimentologic features very early in the interpretation phase of a project. In an interpretation mode, these dips and azimuths may be related to formation and/or sequence boundaries, such that one can map progradation and transgression patterns of the internal structure in 3D. Finally, having estimated the instantaneous dip and azimuth at every point in the data cube, one can apply conventional seismic trace attributes to locally planar reflectors, thereby greatly increasing signal-to-noise ratios.




From the foregoing description, it will be observed that numerous variations, alternatives and modifications will be apparent to those skilled in the art. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the manner of carrying out the invention. Other algorithms may be used to measure the similarity of nearby regions of seismic data or to generate the “discontinuity cube.” Moreover, equivalent computations may be substituted for those illustrated and described. For example, instead of a search over apparant dips p and q, one could search over dip and azimuth (d, φ). The inverse of the computed semblance may be used so as to obtain a display analogous to the negative of a photograph. Also certain features of the invention may be used independently of other features of the invention. For example, after the solid angle (dip and azimuth) has been estimated, a smoother and more robust multitrace estimate of the conventional complex trace attributes (Taner, M. T., Koehler, F., and Sheriff, R. E.; 1979; “Complex Seismic Trace Analysis;” Geophysics, 44, 1041-1063) may be obtained. Instead of calculating these attributes on a single trace, one can calculate attributes of the angle stack of traces within the analysis window. That is, one can calculate:









a
i



(

τ
,
p
,
q

)


=


{



[

U


(

τ
,
p
,
q

)


]

2

+


[


U
H



(

τ
,
p
,
q

)


]

2


}


1
/
2



,







Ψ
i



(

τ
,
p
,
q

)


=


tan

-
1




{



U
H



(

τ
,
p
,
q

)


/

U


(

τ
,
p
,
q

)



}



,






f
i

=








ψ



τ


=




U


(

τ
,
p
,
q

)







U
H




τ




(

τ
,
p
,
q

)


+



U
H



(

τ
,
p
,
q

)






U



τ




(

τ
,
p
,
q

)






[

U


(

τ
,
p
,
q

)


]

2

+


[


U
H



(

τ
,
p
,
q

)


]

2















and








b
j



(

τ
,
p
,
q

)


=


&LeftBracketingBar;



U


(

τ
,
p
,
q

)






U



τ




(

τ
,
p
,
q

)


+



U
H



(

τ
,
p
,
q

)







U
H




τ




(

τ
,
p
,
q

)



&RightBracketingBar;




[

U


(

τ
,
p
,
q

)


]

2

+


[


U
H



(

τ
,
p
,
q

)


]

2













where







U


(

τ
,
p
,
q

)







is





{




j
=
1

J







u
(


τ
-

(


px
j

+

qy
j


)


,

x
j

,

y
j


]


}

2










(See the numerator of equation 1);




U


H


(τ,p,q) is the Hilbert transform, or quadrature component of U(τ, p, q);




a


i


(τ,p,q) is the envelope, or instantaneous amplitude;




Ψ


i


(τ,p,q) is the instantaneous phase;




f


i


(τ,p,q) is the instantaneous frequency; and




b


i


(τ,p,q) is the instantaneous bandwidth (See Cohen, L.; 1993; “Instantaneous Anything;” Proc. IEEE Int. Conf. Acoust. Speech Signal Processing, 4, 105-109).




In addition to these “instantaneous” attributes, other attributes are suggested to characterize the signal within a given lobe of the trace envelope to be that of the attribute at the peak of the envelope τ


θ


. These include (See Bodine, J. H.; 1994; “Waveform Analysis with Seismic Attributes;” presented in the 54th Ann. Intl. Mtg. SEG. Atlanta, Ga., USA):




the wavelet envelope:






a


r


(τ,p,q)=a


i





θ


,p,q),






the wavelet phase:






Ψ


r


(τ,p,q)=Ψ


i





θ


,p,q),






the wavelet frequency:






f


r


(τ,p,q)=f


j





θ


,p,q),






the wavelet bandwidth:






b


r


(τ,p,q)=b


i





θ


,p,q),






the zero phase component:






U


0


(τ,p,q)=cos[Ψ


r


(τ,p,q)]U(τ,p,q)+sin[Ψ


r


(τ,p,q)]U


H


(τ,p,q)






the ninety degree phase component:






U


90


(τ,p,q)=−sin[Ψ


r


(τ,p,q)]U(τ,p,q)+cos[Ψ


r


(τ,p,q)]U


H


(τ,p,q)






as well as skewness, rise time, and response length. Since mixing occurs along the true dip direction, slowly varying amplitude, phase, frequency, and bandwidth components of the event will be preserved. Moreover, the computation of coherency/semblance/similarity allows one to perform “texture analysis” of similar seismic regions. Texture analysis combined with “cluster analysis” leads to segmentation analysis. Among other things, this allows one to make geologic correlations and extrapolate the geological character of the subsurface. In addition, determination of the coherency may be used to impose a priori constraints for both post-stack and pre-stack seismic inversion. Thus, it will be appreciated that various modifications, alternatives, variations, and changes may be made without departing from the spirit and scope of the invention as defined in the appended claims. It is, of course, intended to cover by the appended claims all such modifications involved within the scope of the claims.












APPENDIX 1









MULTIATTRIBUTE HLS CALIBRATION



























direction




φ (hue)




Crayola Color















The hues are pure, or 100% saturated colors, and correspond to the






following 1994 non-toxic 96 crayon “Crayola” standard:















N




0




blue







NNE




30




plum







ENE




60




magenta







E




90




salmon







ESE




120




red







SSE




150




orange-red







S




180




yellow







SSW




210




lime-green







WSW




240




green







W




270




forest-green







WNW




300




cyan







NNW




330




cerulean







N




360




blue











Partial 50% saturation corresponds to “dirtier” or “muddier” colors:















N




0




cadet blue







NE




45




fuscia







E




90




maroon







SE




135




sepia







S




180




gold







SW




225




olive







W




270




sea green







NW




315




steel blue







N




360




cadet blue











0% saturation corresponds to no color pigment:















N




0




gray







E




90




gray







S




180




gray







W




270




gray







N




360




gray













Low values of lightness correspond to “dark” colors; intermediate values of lightness correspond to “deep” colors, and high values of lightness correspond to “pastel” colors.





















APPENDIX 2











SYNOPSIS






\semb3d [-Nfile_in] [-Ofile_out] [-hisfile_his] [-tstarttstart] [-tendtend]






[-ildmdx] [-cldmdy] [-aplengthaplength] [-apwidthapwidth]






[-apheightapheight] [-apazimapazim] [-llazlmxazim] [-clazimyazim]






[-dzdz] [-smaxsmax] [-pminpmin] [-pmaxpmax] [-qminqmin]






[-qmaxqmax] [-threshthresh] [-freffref] [-startlinestartline]






[-endlineendline] [-exppower] [-min] [-int] [-R]






DESCRIPTION






semb3d reads in 3D seismic post stack time or depth data and generates






semblance, dip and azimuth outputs.






COMMAND LINE ARGUMENTS






semb3d gets all its parameters from command line arguments. These






arguments specify the input, output, spatial analysis window, and dip






discretization parameters. The following command line arguments have






been used in one embodiment of the invention.






-Nfile_ in






Enter the input data set name or file immediately after typing -N. This






input file should include the complete path name if the file resides in a






different directory. Example: -N/export/data2/san_ juan/time_ stack tells






the program to look for file ‘time_ stack’ in directory






‘/export/data2/san_ juan’. For this program, the data is stored






as a rectangular grid of regularly binned data. The number of traces






(denoted by lineheader word ‘NumTrc’) defines the number of traces






in the ‘x’ direction. The number of records (seismic lines denoted






by lineheader word ‘NumRec’) defines the number of traces in the ‘y’






direction. Missing data padded in with dead traces flagged by a dead






trace header flag.






-Ofile_ out






Enter the output multi-attribute data set name or file immediately after






typing -O. Attributes will be output back to back, line by line. Without






scaling the semblance c will range between 0.0 and 1.0. The values of dip






will range between 0 and smax and will always be positive (pointing






down). Units are in msec/m (msec/ft) for time data, or m/m (ft/ft) for






depth data. The azimuth φ is perpendicular to strike and points in the






direction of maximum positive dip (pointing down). The values of azimuth






will range between 0 and 360 degrees. Properly defined, an output azimuth






of 0. degrees corresponds to North, while an output azimuth of 90 degrees






corresponds to East. The values of OMEGA = (d, φ) can be chosen






such that (when converted to an 8 bit integer) the left most 6 bits






correspond to a valid Seisworks color table. This color table corresponds






to the HLS color model previously described and is generated using a






program that maps the angles scanned into an HLS (hue, lightness,






saturation) color map of OMEGA = (d, φ).






-hls file_ hls






Enter -hls followed by the hls table file name to output an ascii flat






file containing the hue, lightness and saturation of each sample contained






in the output. This file is input to a program to generate a RGB (red,






green, blue) color lookup table needed for a proper display on certain






workstations.






-tstarttstart






Enter -tstart followed by the beginning of the analysis window in msec.






-tendtend






Enter -tend followed by the end of the analysis window in msec. The






output record will be (tend − tstart) msec long.






-ildmdx






After -ildm enter the in-line distance measure (trace separation) in m






(ft).






-cldmdy






After -cldm enter the cross-line distance measure (line separation) in m






(ft).






-dzdz






After -dz enter the vertical depth sample increment in m (ft). A value of






dz >0 indicates the data are in depth.






-aplengthaplength






After -aplength enter the half aperture length (in meters or feet) along






the azimuth of the elliptical analysis window to be used. Increasing the






analysis window by increasing aplength, apwidth will result in:






(1) increased angular resolution,






(2) decreased spatial resolution,






(3) increased computational cost; and






(4) decreased overall coherency (since the plane wave approximation is






less valid.






-apwidthapwidth






After -apwidth enter the half half aperture width (in meters or feet)






perpendicular to the azimuth of the elliptical analysis window to be used.






-apheightapheight






After -apheight enter the half length in milliseconds (or meters or feet) of






the running time (depth) integration window applied over the semblance.






Example = ±2 samples. Increasing the temporal integration window






apheight will result in:






(1) a smoothed, less noisy response,






(2) decreased vertical resolution, and






(3) no change in computational cost.






-apazimapazim






After -apazim enter the azimuth of the elliptical analysis window (with 0






being North and 90 being East).






-smaxsmax






After -smax enter the maximum dip to be tested in msec/m (msec/ft) for






time data, or in m/m (ft/ft) for depth data. This is recommended when






there is no preferential strike direction in the data. This value can be






read directly from a section display of the data. smax will be on the






order of .30 msec/m (10 msec/ft) for time data. Increasing the value of






smax beyond any true dips results in significantly increased computational






cost for an identical result.






-pminpmin






After -pmin enter the minimum inline (increasing trace number) dip to be






tested in msec/m (msec/ft) for time data, or in m/m (ft/ft) for depth data.






This is recommended when there is a predominant strike direction parallel






or perpendicular to the data acquisition lines. This value can be read






directly from a section display of the data.






-pmaxpmax






After -pmax enter the maximum in-line (increasing trace number) dip to be






tested in msec/m (msec/ft) for time data, or in m/m (ft/ft) for depth data.






This is recommended when there is a predominant strike direction parallel






or perpendicular to the data acquisition lines. This value can be read






directly from a section display of the data. Enter this command line






argument to define a rectangular (2*aplength by 2*apwidth) vs. elliptical






analysis window oriented along the azimuth axis.






-qminqmin






After -qmin enter the minimum cross-line (increasing line number) dip to






be tested in msec/m (msec/ft) for time data, or in m/m (ft/ft) for depth






data. This is recommended when there is a predominant strike direction






parallel or perpendicular to the data acquisition lines. This value can






be read directly from a section display of the data.






-qmaxqmax






After -qmax enter the maximum cross-line (increasing line number) dip to






be tested in msec/m (msec/ft) for time data, or in m/m (ft/ft) for depth






data. This is recommended when there is a predominant strike direction






parallel or perpendicular to the data acquisition lines. This value can






be read directly from a section display of the data






-threshthresh






After -thresh enter the threshhold or cutoff semblance value, below which






dip and azimuth are considered to be valid measures; below this value






shades of gray will be displayed. Some display software limits the number






of colors available for display.






-freffref






After -fref enter the reference frequency in cycles/sec (Hz) for time






data, or in cycles/km (cycles/kft) used in determining the number of






dips to be searched (e.g., fref = 60 Hz for time data, 30 cycles/km






for depth data).






-ilazimilazim






After -ilazim enter the in-line azimuth (0 degrees being North, 90






degrees being East) that is the azimuth of increasing trace number. This






value is used to calibrate a solid angle output file, if used.






-clazimclazim






After -clazim enter the cross-line azimuth (0 degrees being North, 90






degrees being East) that is the azimuth of increasing line numbers. This






value is used to calibrate the solid angle output file, if used.






-exppower






After -exp enter the exponent to be applied for non-linear scaling of the






semblance. In general, most semblance/coherency values will be between






0.8 and 1.0. Scaling with power = 2.0 would map these values between






.64 and 1.0, scaling with power = 4.0 would map these values between






.41 and 1.0, and so forth. This is useful for loading data to an






interpretive workstation.






-startlinestartline






After -startline enter the first output line to be generated.






-endlineendline






After -endline enter the last output line to be generated.






-min






After -min enter this command line argument to extract the dip, azimuth,






and semblance corresponding to the minimum semblance of the angles






searched. (As a default, the program searches for the maximum semblance






or coherency).






-int






Enter this command line argument to scale output such that it can be






represented by an 8 bit integer ranging between −128 and +127. Useful for






loading data to an interpretive workstation.













Claims
  • 1. A method for the exploration of hydrocarbons, comprising the steps of:(a) obtaining a representation of a set of seismic traces distributed over a pre-determined three-dimensional volume of the earth, said volume of the earth having subterranean features characterized by dip and dip azimuth that are defined relative to a pre-defined dip azimuth measurement axis; (b) dividing said three-dimensional volume into at least one horizontal time layer, and dividing said time layer into a plurality of three-dimensional analysis cells, wherein each analysis cell has two pre-determined, mutually perpendicular lateral dimensions and has portions of at least five laterally separated seismic traces located therein; (c) calculating, within each of said analysis cells, a plurality of measures of the semblance of said traces located therein, wherein each measure of semblance is at least a function of time, the number of seismic traces within said analysis cell, and the apparent dip and apparent dip azimuth of said traces within said analysis cell; (d) identifying, within each analysis cell, the largest of said calculated measures of semblance and defining the corresponding apparent dip and apparent dip azimuth to be an estimate of the true dip and an estimate of the true dip azimuth of the seismic traces within said analysis cell; and (e) forming, from all of said analysis cells, a seismic attribute display from said largest calculated measures of semblance and said corresponding estimates of the true dip and the true dip azimuth of the seismic traces within said time layer.
  • 2. The method of claim 1, where step (e) is performed by forming a color map that is characterized by hue, saturation and lightness,wherein one of said estimates of true dip azimuth, said estimates of true dip, and said largest calculated measures of semblance is mapped onto one of a lightness scale, hue scale, and a saturation scale; wherein another of said estimates of true dip azimuth, said estimates of true dip, and said largest calculated measures of semblance is mapped onto another of said lightness scale, said hue scale, and said saturation scale; and wherein the remaining one of said estimates of true dip azimuth, said estimates of true dip, and said largest calculated measures of semblance is mapped onto the remaining one of said lightness scale, said hue scale, and said saturation scale.
  • 3. The method of claim 2, where step (e) is performed by mapping said estimates of true dip azimuth onto said hue scale.
  • 4. The method of claim 2, where step (e) is performed by mapping said estimates of true dip onto said saturation scale.
  • 5. The method of claim 2, where step (e) is performed by mapping said largest calculated measures of semblance onto a lightness scale.
  • 6. The method of claim 1, where in performing step (c) each measure of semblance is at least a function of the energy of said traces; and wherein said energy of said traces is a function of time, the number of seismic traces within said analysis cell, and the apparent dip and apparent dip azimuth of said traces within said analysis cell.
  • 7. The method of claim 6, wherein each measure of semblance is at least a function of (∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj))2and ∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj)2where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances measured from the center of the analysis cell, where p and q are the apparent dips in the x and y directions respectively, and where uf(t, p,q,xj[x],yj[y]) is a seismic trace within the analysis cell; and wherein the true dip d and dip azimuth φ are related to p and q by p=d sin φ [p] and q=d cos φ.
  • 8. The method of claim 7, wherein each measure of semblance is a function of: (∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj)2.
  • 9. The method of claim 7, wherein each measure of semblance for each dip, dip azimuth, and analysis point are smoothed by performing a running window time integration over the partial sums from −K to +K: ∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢[uf⁡(t+k⁢ ⁢Δ⁢ ⁢t,p,q,xj,yj)])2∑k=-K+K⁢ ⁢∑j=1J⁢ ⁢[uf⁡(t+k⁢ ⁢Δ⁢ ⁢t,p,q,xj,yj)]2where K is the half width of the time window in samples.
  • 10. The method of claim 1, wherein said traces within said analysis cells are characterized by a maximum dip and a maximum temporal frequency component; and wherein step (c) includes the steps of:obtaining an estimate of the maximum true dip and the maximum temporal frequency component of said traces in said analysis cell; using said maximum true dip, said maximum temporal frequency and said pre-determined lateral dimensions of said analysis cell to calculate apparent dip increments in two generally perpendicular directions relative to said dip azimuth measurement axis.
  • 11. The method of claim 1, where in performing step (c) said measure is at least a function of: {∑j=1J⁢ ⁢u⁡[τ-(pxj+qyj)]}2where J is the number of traces in said analysis cell, where uj(τ,p,q) is a representation of the seismic trace in said analysis cell, where ρ is the time, p is the apparent dip in the x direction, and q is the apparent dip in the y direction; wherein p and q are measured in ms/m and the x and y directions are mutually perpendicular.
  • 12. The method of claim 11, where in performing step (c) said measure is also a function of ∑j=1J⁢ ⁢{u⁡[τ-(pxj+qyj)]}2.
  • 13. The method of claim 12, where in performing step (c) said measure is a function of: {∑j=1J⁢ ⁢u⁡[τ-(pxj+qyj)]}2∑j=1J⁢ ⁢{u⁡[τ-(pxj+qyj)]}2.
  • 14. A method of locating subterranean features, faults, and contours, comprising the steps of:(a) accessing 3D seismic data covering a pre-determined volume of the earth; (b) dividing said volume into an array of relatively small three-dimensional cells wherein each of said cells is characterized by at least five laterally separated and generally vertical seismic traces located therein; (c) determining in each of said cells the semblance/similarity of said traces relative to two pre-determined directions; and (d) recording said semblance/similarity of said cells in a form for display as a two-dimensional map of subterranean features.
  • 15. The method of claim 14, where in performing step (c) said pre-determined directions are mutually perpendicular; and said semblance/similarity of said traces within each cell is a function of at least time, the number of seismic traces within said analysis cell, and the apparent dip and apparent dip azimuth of said traces within said analysis cell.
  • 16. The method of claim 15, where said semblance/similarity of said traces within each cell is determined by computing a plurality of measurements of the semblance/similarity of said traces within each cell and selecting the largest of said measurements of said semblance/similarity of each cell; and wherein step (c) further includes the step of defining the apparent dip and apparent dip azimuth corresponding to said largest of said measurements to be an estimate of the true dip and an estimate of the true dip azimuth of the seismic traces within said analysis cell.
  • 17. The method of claim 16, wherein each of said plurality of measurements of said semblance/similarity of at least a function of the energy of said traces; and wherein said energy of said traces is a function of time, the number of seismic traces within said analysis cell, and the apparent dip and apparent dip azimuth of said traces within said analysis cell.
  • 18. The method of claim 16, wherein said map is a color map that is characterized by hue, saturation and lightness;wherein one of said estimates of true dip azimuth, said estimates of true dip, and said largest calculated measures of semblance is mapped onto one of a lightness scale, hue scale, and a saturation scale; wherein another of said estimates of true dip azimuth, said estimates of true dip, and said largest calculated measures of semblance is mapped onto another of said lightness scale, said hue scale, and said saturation scale; and wherein the remaining one of said estimates of true dip azimuth, said estimates of true dip, and said largest calculated measures of semblance is mapped onto the remaining one of said lightness scale, said hue scale, and said saturation scale.
  • 19. The method of claim 18, wherein step (d) comprises the steps of:mapping said estimates of true dip azimuth onto said hue scale, mapping said estimates of true dip onto said saturation scale, and mapping said largest calculated measures of semblance onto a lightness scale.
  • 20. In seismic exploration wherein 3D seismic data comprising reflected seismic energy is recorded as a function of time and wherein a computer is used that is programmed to process such seismic traces and to produce an image therefrom that is representative of subterranean features, an article of manufacture comprising:a medium that is readable by a computer and that carries instructions for said computer to perform a process comprising the steps of: (a) accessing 3D seismic data over a predetermined volume of the earth, said data comprising seismic traces that are characterized by time, position and amplitude; and (b) ascertaining the similarity of nearby regions of said 3D seismic data of said volume by: (1) dividing at least a portion of said data into an array of relatively small, adjacent, three-dimensional analysis cells, wherein each of said analysis cells contains portions of at least five seismic traces; and (2) computing a seismic attribute for each cell that is a function of the largest of a plurality of measurements of semblance and the corresponding apparent dip and the corresponding apparent dip azimuth.
  • 21. The article of manufacture of claim 20, wherein said medium carries instructions for the computer to perform step (2) by making measurements of semblance that are a function of: ∑j=1J⁢ ⁢u⁡[τ-(pxj+qyj)].where x and y are distances measured from the center of the analysis cell along mutually perpendicular x and y axes, where J traces is the number of seismic traces, where Uj(π,p,q) represents a seismic trace, where π is the time, p is the apparent dip in the x direction, and q is the apparent dip in the y direction; and wherein p and q are measured in ms/meter.
  • 22. The article of manufacture of claim 21, wherein said medium carries instructions for the computer to perform step (2) by making measurements of the semblance that are also a function of: {∑j=1J⁢ ⁢u⁡[τ-(pxj+qyj)]}2.
  • 23. The article of manufacture of claim 21, wherein said medium carries instructions for said computer to perform step (1) by forming analysis cells having an elliptical cross-section.
  • 24. The article of manufacture of claim 23, wherein said predetermined volume is characterized by a fracture having an ascertainable direction; and wherein said medium carries instructions for said computer to form analysis cells that are generally elliptical in shape and that have major axes aligned in the direction of said fracture.
  • 25. In seismic exploration wherein reflected seismic energy is recorded as a function of time to produce a series of seismic traces, a method comprising the steps of:(a) accessing a data set of seismic traces distributed over a three-dimensional volume of the earth, said volume of the earth having subterranean features characterized by dip and dip azimuth; (b) calculating a plurality of measures of the semblance of said traces within a relatively small three dimensional analysis cell that is located within said volume and at one part of a predetermined time layer, wherein each measure of semblance is at least a function of time, the number of seismic traces within said analysis cell, and the apparent dip and apparent dip azimuth of said traces within said analysis cell; (c) computing a seismic attribute for said analysis cell that is at least a function of the largest of said plurality of calculated measures of semblance and the corresponding apparent dip and the corresponding apparent dip azimuth, wherein said corresponding apparent dip and said corresponding apparent dip azimuth are defined to be estimates of the true dip and an estimate of the true dip azimuth of the seismic traces within said analysis cell; (d) repeating steps (b) and (c) along other parts of said time layer; and (e) forming a map of said seismic attributes over said time layer.
  • 26. The method of claim 25, wherein step (a) comprises the steps of:(1) accessing 3D seismic data over a predetermined volume of the earth, said 3D seismic data comprising at least eleven seismic traces that are characterized by time, position and amplitude; and (2) dividing a portion of said volume into at least one time layer comprising an array of relatively small, three-dimensional cubes that contain at least five seismic traces; and wherein said cubes are used as the cells to perform step (b).
  • 27. The method of claim 26, where in performing step (b) each measure of semblance is a function of: {∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj)}2∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj)2where each analysis cell contains portions of at least J seismic traces, where J is at least 5, where x and y are distances measured from the center of the analysis cell along mutually perpendicular x and y axes, where p and q are the apparent dips in the x and y directions, where uj(t,p,q,x,y) represents a seismic trace within said analysis cell, and where the true dip d and dip azimuth φ are related to p and q by p=d sin (φ) and q=d cos (φ).
  • 28. The method of claim 27, wherein each measure of semblance for each dip, dip azimuth, and analysis point are smoothed by forming a running window time integration over partial sums of a time window within said horizontal time layer.
  • 29. A method of seismic exploration, comprising the steps of:(a) reading a 3D seismic data set comprising seismic signal traces that are distributed over a volume of the earth; (b) selecting at least one horizon slice from said volume and forming therein cells that are arranged into laterally extending rows and columns, each of said cells having at least five seismic traces extending generally therethrough; (c) computing for each of said cells; (1) a plurality of semblance measurements of said traces, wherein each measurement is at least a function of time, the number of seismic traces within said analysis cell, and the apparent dip and apparent dip azimuth of said traces; (2) the largest of said plurality of measurements of semblance; and (3) an estimate of the true dip and an estimate of the true dip azimuth of the seismic traces within said analysis cell from the apparent dip and apparent dip azimuth corresponding to said largest measurement of semblance; and (d) displaying, over said at least one horizon slice, of representations of said largest measurements of semblance and said estimated true dips and said estimated true dip azimuths of each of said cells.
  • 30. The method of claim 29, wherein step (b) is performed by selecting a horizon slice that is characterized by a common time; and wherein step (d) is performed by displaying across said time slice representations of said largest measurements of semblance and said estimated true dips and said estimated true dip azimuths of said cells.
  • 31. The method of claim 29, wherein step (d) is performed by forming a color map that is characterized by hue, saturation and lightness, wherein for each of said cells:one of said estimates of true dip azimuth, said estimates of true dip, and said largest calculated measurements of semblance is mapped onto one of a lightness scale, hue scale, and a saturation scale; wherein another of said estimates of true dip azimuth, said estimates of true dip, and said largest calculated measurements of semblance is mapped onto another of said lightness scale, said hue scale, and said saturation scale; and wherein the remaining one of said estimates of true dip azimuth, said estimates of true dip, and said largest calculated measurements of semblance is mapped onto the remaining one of said lightness scale, said hue scale, and said saturation scale.
  • 32. In the exploration for gas and oil wherein over a volume of the earth seismic traces are recorded, a method comprising the steps of:(a) grouping at least parts of at least five relatively close seismic traces into a plurality of relatively small three-dimensional analysis cells; (b) performing in each of said cells a plurality of measurements of the semblance of said parts of said traces as a function of at least time, the number traces therein, the apparent dip of said traces, and the apparent dip azimuth; (c) identifying in each of said cells the largest of said plurality of measurements of semblance, the corresponding apparent dip, and the corresponding dip azimuth; and (d) converting said largest measurements of semblance, said corresponding dip and said corresponding dip azimuth of said cells into color attributes of hue, saturation and lightness, wherein for each cell: one of said dip azimuth, said dip, and said largest measurements of semblance is mapped onto one of a lightness scale, hue scale, and a saturation scale; another of said dip azimuth, said dip, and said largest measurements of semblance is mapped onto another of said lightness scale, said hue scale, and said saturation scale; and the remaining one of said dip azimuth, said dip, and said largest measurements of semblance is mapped on the remaining one of said lightness scale, said hue scale, and said saturation scale.
  • 33. A device adapted for use by a workstation wherein 3D seismic data is read into memory and processed into a color display of subterranean features, comprising:computer readable means carrying instructions for a process comprising the steps of: (1) digitally locating said 3D seismic data in an array of relatively small three-dimensional cells, wherein each of said cells contains representations of a part of at least five seismic traces; (2) calculating for each of said cells an estimate of the semblance, and estimate of the true dip, and an estimate of the true dip azimuth of said parts; and (3) converting said estimates of semblance, said estimates of true dip, and said estimates of true dip azimuth into an array of digital values corresponding to the color attributes of hue, saturation, and lightness.
  • 34. The device of claim 33, wherein one of said estimates of true dip azimuth, said estimates of true dip, and said estimates of semblance is mapped onto one of a lightness scale, a hue scale, and a saturation scale for each of said cells;wherein another of said estimates of true dip azimuth, said estimates of true dip, and said estimates of semblance is mapped onto another of said lightness scale, said hue scale, and said saturation scale for each of said cells; and wherein the remaining one of said estimates of true dip azimuth, said estimates of true dip, and said estimates of semblance is mapped onto the remaining one of said lightness scale, said hue scale, and said saturation scale for each of said cells.
  • 35. The device of claim 33, wherein said computer readable means carries instructions to perform step (2) by:(i) calculating a plurality of semblance measurements relative to at least two directions, and selecting the largest of said measurements; (ii) selecting the apparent dip corresponding to said largest measurement of semblance from step (i); and (iii) selecting the apparent dip azimuth corresponding to said largest measurement of semblance from step (i).
  • 36. The device of claim 33, wherein said computer-readable means is selected from the group consisting of a magnetic tape, a magnetic disk, an optical disk and a CD-ROM.
  • 37. A method of prospecting for hydrocarbon deposits, comprising the steps of:(a) obtaining a color seismic attribute display of 3D seismic data for a predetermined three-dimensional volume of the earth, said display being generated by using data obtained by a computer and at least one program for said computer that instructs said computer to perform the following steps: (1) convert said volume into an array of relatively small three-dimensional cells, wherein each of said cells has a portion of at least five seismic traces located therein; (2) make plurality of semblance measurements within each of said cells, wherein each measurement is at least a function of time, the number of seismic traces within said cell, the apparent dip of said traces and apparent dip azimuth of said traces; (3) select the largest of said plurality of measurements of semblance in each cell; (4) use as an estimate of the true dip and an estimate of the true dip azimuth in each cell the apparent dip and apparent dip azimuth that correspond to said largest measurement of semblance in said cell; (5) map said estimates of true dip azimuth onto a hue scale; (6) map said estimates of true dip onto a saturation scale; and (7) map said largest calculated measures of semblance onto a lightness scale; and (b) using said color display to identify subsurface structural and sedimentological features commonly associated with the entrapment and storage of hydrocarbons.
  • 38. The method of claim 37, further including the step of using said map to identify drilling hazards.
  • 39. The method of claim 38, further including the step of drilling at a location identified in step (b).
  • 40. The method of claim 37, wherein step (a)(2) comprises the step of computing: ∑j=1J⁢ ⁢u⁡[τ-(pxj+qyj)]where each cell is characterized by two perpendicular dimensions, where x and y are distances measured from the center of the cell along mutually perpendicular x and y axes, where J is the number of seismic traces, where Uj(τ,p,q) represents a seismic trace, where τ is the time, p is the apparent dip in the x direction, and where q is the apparent dip in the y direction.
  • 41. The method of claim 40, wherein step (a)(2) comprises the step of computing: {∑j=1J⁢ ⁢u⁡[τ-(pxj+qyj)]}2.
  • 42. In a computer workstation wherein 3-D seismic data obtained over a predetermined three-dimensional volume of the earth is read into memory, wherein a computer divides such volume into an array of three-dimensional analysis cells, wherein each cell has at least a portion of five laterally separated seismic traces located therein, and wherein the computer is used to transform such data into a display of seismic attributes, the computer CHARACTERIZED BY performing a process comprising the steps of:(1) calculating in each of the cells a semblance value for said seismic traces, wherein said semblance value is at least a function of time, the number of seismic traces within said cell, the apparent dip of said traces, and the apparent dip azimuth of said traces; and (2) displaying said semblance value of each cell that lies between two planes within the 3-D volume to identify subsurface features commonly associated with the entrapment and storage of hydrocarbons.
  • 43. The computer workstation of claim 42, wherein the computer performs step (1) by: making a plurality of semblance measurements within each of said cells; and selecting the largest of said plurality of measurements as said semblance value of said cell.
  • 44. The computer workstation of claim 43, wherein after performing step (1) the computer performs the step of: using the apparent dip and the apparent dip azimuth that correspond to said largest measurement of semblance in said cell as an estimate of true dip and as an estimate of true dip azimuth of said cell.
  • 45. The computer workstation of claim 44, wherein the display of step (2) is characterized by color components of hue, saturation and lightness; and wherein step (2) comprises the steps of mapping said estimate of true dip azimuth for each cell onto a hue scale; mapping said estimate of true dip for each dell onto a saturation scale; and mapping said largest calculated measures of semblance onto a lightness scale.
  • 46. The method of claim 14 wherein said semblance/similarity is at least a function of time, amplitude and the number of traces within said cells.
  • 47. The method of claim 14 wherein said semblance/similarity is determined for data samples of a constant time value.
  • 48. The method of claim 14 wherein said semblance/similarity is at least a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2and∑j=1J⁢ ⁢uf⁡(t,xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uf(t,xj,yj) is a portion of a seismic trace within said cell.
  • 49. The method of claim 48 wherein said semblance/similarity is a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,xj,yj)2.
  • 50. The method of claim 49 wherein said semblance/similarity is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,xj,yj)2.
  • 51. The method of claim 48 wherein said semblance/similarity is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uf(t+k⁢ ⁢Δ⁢ ⁢t,xj,yj))2∑k=-K+K⁢∑j=1J⁢ ⁢uf(t+k⁢ ⁢Δt,xj,yj)2where K is the half width of the time window in samples.
  • 52. The method of claim 14 wherein said semblance/similarity is at least a function of:(∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj))2and∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, where p and q are apparent dips in the x and y directions, respectively, and where uf(t,p,q,xj,yj) is a portion of a seismic trace with said cell.
  • 53. The method of claim 52 wherein said semblance/similarity is a function of:(∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj)2.
  • 54. The method of claim 52 wherein said semblance/similarity is an arithmetic inverse function of:(∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj)2.
  • 55. The method of claim 52 wherein said semblance/similarity is determined by performing a running window time integration over partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj))2∑k=-K+K⁢ ⁢∑j=1J⁢ ⁢uf⁡(t,p,q,xj,yj)2where K is the half width of the time window in samples.
  • 56. The method of claim 52 wherein p=0 and q=0.
  • 57. The method of claim 14 wherein step (d) includes recording said semblance/similarity in a form for display mapped to at least one of: (i) a lightness scale (ii) a hue scale, and, (iii) a saturation scale.
  • 58. In seismic exploration wherein 3D seismic data from geologic formations of the earth are recorded as a function of time and wherein a computer is used that is programmed to process such 3D seismic data so that an image may be produced therefrom that is representative of subterranean features, an article of manufacture comprising:a medium that is readable by a computer and that carries instructions for said computer to perform a process comprising: (a) accessing 3D seismic data over a predetermined volume of geologic formations the earth, said 3D seismic data comprising seismic traces that are characterized by time, position and amplitude; and (b) ascertaining a seismic attribute of said 3D seismic data by: (1) dividing at least a portion of said 3D seismic data into a plurality of relatively small three-dimensional analysis cells, wherein each of said analysis cells contain portions of at least five seismic traces; and (2) computing a seismic attribute that is a function of semblance for each analysis cell.
  • 59. The article of manufacture of claim 58 wherein said semblance is at least a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2and∑j=1J⁢ ⁢uf⁡(t,xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uf(t,xj,yj) is a portion of a seismic trace within said cell.
  • 60. The article of manufacture of claim 59 wherein said semblance is a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,xj,yj)2.
  • 61. The article of manufacture of claim 59 wherein said semblance is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,xj,yj)2.
  • 62. The article of manufacture of claim 59 wherein said semblance is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uf(t+k⁢ ⁢Δ⁢ ⁢t,xj,yj))2∑k=-K+K⁢∑j=1J⁢ ⁢uf(t+k⁢ ⁢Δt,xj,yj)2where K is the half width of the time window in samples.
  • 63. The article of manufacture of claim 58 wherein the process performed by the computer further comprises displaying said seismic attribute in a form that is at least one of (i) a planar display, (ii) a cross-sectional display, (iii) a 2D display and, (iv) a 3D display.
  • 64. The article of manufacture of claim 58 wherein the computed seismic attribute is a number that is at least 0 and at most 1.
  • 65. The article of manufacture of claim 58 wherein the process further comprises displaying the computed seismic attributes in a visual format to display the subterranean features.
  • 66. The article of manufacture of claim 65 wherein the visual format to display the subterranean features is at least one of (i) a cube of discontinuity values, (ii) a cube of dissimilarity values, (iii) a cube of semblance values, (iv) a cube of the inverse of semblance values, and (v) a cube of coherence values.
  • 67. In seismic exploration wherein 3D seismic data from geologic formations of the earth are recorded as a function of time and wherein a computer is used that is programmed to process such 3D seismic data so that an image may be produced therefrom that is representative of subterranean features, an article of manufacture comprising:a medium that is readable by a computer and that carries instructions for said computer to perform a process comprising: (a) accessing 3D seismic data over a predetermined volume of geologic formations of the earth, said 3D seismic data comprising seismic traces that are characterized by time, position and amplitude; and (b) dividing at least a portion of said data into a plurality of relatively small, three-dimensional analysis cells, wherein each of said three-dimensional analysis cells contains portions of at least five seismic traces; and (c) computing a seismic attribute for each cell that is a function of(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2and∑j=1J⁢ ⁢uf⁡(t,xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uf(t,xj,yj) is a portion of a seismic trace within said cell.
  • 68. The article of manufacture of claim 67 wherein said seismic attribute is a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,xj,yj)2.
  • 69. The article of manufacture of claim 67 wherein said seismic attribute is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,xj,yj)2.
  • 70. The article of manufacture of claim 67 wherein said seismic attribute is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uf(t+k⁢ ⁢Δ⁢ ⁢t,xj,yj))2∑k=-K+K⁢∑j=1J⁢ ⁢uf(t+k⁢ ⁢Δt,xj,yj)2where K is the half width of the time window in samples.
  • 71. The article of manufacture of claim 67 wherein the process performed by the computer further comprises displaying said seismic attribute in a form that is at least one of (i) a planar display, (ii) a cross-sectional display, (iii) a 2D display and, (iv) a 3D display.
  • 72. The article of manufacture of claim 67 wherein the computed seismic attribute is a number that is at least 0 and at most 1.
  • 73. The article of manufacture of claim 67 wherein the process further comprises displaying the computed seismic attributes in a visual format to display the subterranean features.
  • 74. A method for locating geologic features of an earth volume, the method comprising:(a) accessing 3D seismic data over a predetermined volume of the earth, said data comprising seismic traces that are characterized by time, position and amplitude; (b) dividing at least a portion of said 3D ismic data into a plurality of relatively small, three-dimensional analysis cells, wherein each of said analysis cells contains portions of at least five seismic traces; and (c) computing a seismic attribute for each cell that is a function of(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2and∑j=1J⁢ ⁢uf⁡(t,xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uf(t,xj,yj) is a portion of a seismic trace within said cell.
  • 75. The method of claim 74 wherein said seismic attribute is a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,xj,yj)2.
  • 76. The method of claim 74 wherein said seismic attribute is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,xj,yj)2.
  • 77. The method of claim 74 wherein said seismic attribute is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uf(t+k⁢ ⁢Δ⁢ ⁢t,xj,yj))2∑k=-K+K⁢∑j=1J⁢ ⁢uf(t+k⁢ ⁢Δt,xj,yj)2where K is the half width of the time window in samples.
  • 78. The method of claim 74 further comprising displaying said seismic attribute in a form that is at least one of (i) a planar display, (ii) a cross-sectional display, (iii) a 2D display, and (iv) a 3D display.
  • 79. The method of claim 74 wherein the computed seismic attribute is a number that is at least 0 and at most 1.
  • 80. The method of claim 74 further comprising displaying the computed seismic attributes in a visual format to display the subterranean features.
  • 81. A method of locating subterranean features, the method comprising:(a) accessing 3D seismic data covering a pre-determined volume of the earth; (b) dividing said volume into an array of relatively small three- dimensional cells wherein each of said cells is characterized by at least five laterally separated and generally vertical seismic traces located therein; (c) determining in each of said cells a semblance/similarity of said traces; and (d) recording said semblance/similarity of said cells.
  • 82. The method of claim 81 wherein said semblance/similarity is at least a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2and∑j=1J⁢ ⁢uf⁡(t,xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uf(t,xj,yj) is a portion of a seismic trace within said cell.
  • 83. The method of claim 82 wherein said semblance/similarity is a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,xj,yj)2.
  • 84. The method of claim 82 wherein said semblance/similarity is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,xj,yj)2.
  • 85. The method of claim 82 wherein said semblance/similarity is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uf(t+k⁢ ⁢Δ⁢ ⁢t,xj,yj))2∑k=-K+K⁢∑j=1J⁢ ⁢uf(t+k⁢ ⁢Δt,xj,yj)2where K is the half width of the time window in samples.
  • 86. The method of claim 81 further comprising displaying said semblance/similarity in a form that is at least one of (i) a planar display, (ii) a cross-sectional display, (iii) a 2D display, and (iv) a 3D display.
  • 87. The method of claim 81 wherein the semblance/similarity of said traces is a number that is at least 0 and at most 1.
  • 88. The method of claim 81 further comprising displaying the semblance/similarity in a visual format to display the subterranean features.
  • 89. A method of locating geologic formations, the method comprising:(a) accessing 3D seismic data covering a pre- determined volume of the earth; (b) dividing said volume into an array of relatively small three-dimensional cells wherein each of said cells is characterized by at lest five laterally separated and generally vertical seismic traces located therein; (c) determining in each of said cells an inverse of a semblance/similarity of said traces relative to two pre-determined directions; and (d) recording said inverse of said semblance/similarity of said cells.
  • 90. The method of claim 89 wherein the inverse of said semblance/similarity is an additive inverse.
  • 91. A method of generating a discontinuity cube for displaying subterranean geologic features of a volume of earth formation, the method comprising:(a) accessing 3D seismic data covering a pre-determined volume of the earth; (b) dividing said volume into an array of relatively small three-dimensional cells wherein each of said cells is characterized by at least five laterally separated and generally vertical seismic traces located therein; (c) assigning a signal discontinuity value to each said cell; and (d) assigning a unique color to each said signal discontinuity value in said cells.
  • 92. The method of claim 91 wherein the signal discontinuity value is at least a function of(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2and∑j=1J⁢ ⁢uf⁡(t,xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uf(t,xj,yj) is a portion of a seismic trace within said cell.
  • 93. The method of claim 92 wherein said signal discontinuity value is a function of: (∑j=1J⁢ ⁢uf⁡(t,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,xj,yj)2.
  • 94. The method of claim 92 wherein said signal discontinuity value is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2∑j=1J⁢ ⁢uf⁡(t,xj,yj)2.
  • 95. The method of claim 92 wherein said signal discontinuity value is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uf(t+k⁢ ⁢Δ⁢ ⁢t,xj,yj))2∑k=-K+K⁢∑j=1J⁢ ⁢uf(t+k⁢ ⁢Δt,xj,yj)2where K is the half width of the time window in samples.
  • 96. The method of claim 91 further comprising displaying said signal discontinuity value in a form that is at least one of (i) a planar display, (ii) a cross-sectional display, (iii) a 2D display, and (iv) a 3D display.
  • 97. The method of claim 91 wherein the signal discontinuity value of said cells is a number that is at least 0 and at most 1.
  • 98. The method of claim 91 further comprising displaying the signal discontinuity value in a visual format to display the subterranean features.
  • 99. A method of generating a cube for displaying geologic features, faults and contours of a cubic volume of an earth formation wherein 3D seismic data samples covering said cubic volume of the earth formation are accessed, said cubic volume of the earth formation divided into an array of relatively small 3D cells containing at least a portion of the 3D seismic data samples, the cube representing said cubic volume of said earth formation enclosing a plurality of the 3D seismic data samples, the method comprising:(a) assigning a semblance value to each seismic data sample in said cube; and (b) assigning a unique color to each semblance value in said cube.
  • 100. The method of claim 99 wherein the semblance value is at least a function of (∑j=1J⁢ ⁢uf⁡(t,xj,yj))2and ∑j=1J⁢ ⁢uf⁡(t,xj,yj)2,where each cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uf(t,xj,yj) is a portion of a seismic trace within said cell.
  • 101. A method of generating a cube for displaying a set of geologic features, faults and contours of a cubic volume on an earth formation wherein a plurality of 3D seismic data samples covering said cubic volume of the earth formation is accessed, said cubic volume of the earth formation divided into an array of relatively small 3D cells, said cube representing said cubic volume of said earth formation enclosing at least a portion of said plurality of 3D seismic data samples, the method comprising:(a) assigning an inverse of semblance value to each seismic data sample in said cube; and (b) assigning a unique color to each said inverse of semblance value in said cube.
  • 102. The method of claim 101 wherein the inverse of semblance value is at least a function of (∑j=1J⁢ ⁢uf⁡(t,xj,yj))2and∑j=1J⁢ ⁢uf⁡(t,xj,yj)2,where each cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uf(t,xj,yj) is a portion of a seismic trace within said cell.
  • 103. The method of claim 101 wherein said inverse of semblance value is an additive inverse.
  • 104. A method of generating a cube for displaying a set of geologic features, faults and contours of a cubic volume of an earth formation wherein 3D seismic data samples covering said cubic volume of the earth formation are accessed, said cubic volume of the earth formation divided into an array of relatively small 3D cells containing at least a portion of the 3D seismic data samples, said cube representing said cubic volume of said earth formation enclosing at least a portion of a plurality of the 3D seismic data samples, the method comprising the steps of:(a) mapping a semblance value to each seismic data sample in said cube; and (b) mapping a unique color to each semblance value in said cube.
  • 105. The method of claim 104 wherein the semblance value is at least a function of(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2and∑j=1J⁢ ⁢uf⁡(t,xj,yj)2,where each cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uf(t,x,j,yj) is a portion of a seismic trace within said cell.
  • 106. A method of generating a cube for displaying geologic features, faults and contours of a volume of an earth formation wherein a plurality of seismic data samples covering the volume of the earth formation is accessed, said volume of the earth formation divided into an array of relatively small three-dimensional cells, said cells characterized by at least five laterally separated and generally vertical seismic traces located therein, the method comprising:(a) assigning a signal discontinuity value to each seismic data sample in said cube; and (b) assigning a unique color to each said signal discontinuity value in said cube.
  • 107. The method of claim 106 wherein the signal discontinuity value is at least a function of(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2and∑j=1J⁢ ⁢uf⁡(t,xj,yj)2,where each cell contains portions of at least J (J≧5) eismic traces, where x and y are distances from the center of the cell, and where uf(t,xj,yj) is a portion of a seismic trace within said cell.
  • 108. A method to generate a coherence cube for locating subterranean features, faults, and contours, the method comprising:(a) accessing 3D seismic data covering a pre-determined volume of the earth; (b) dividing said volume into an array of relatively small three-dimensional cells wherein each of said cells is characterized by at least five laterally separated and generally vertical seismic traces located therein; (c) determining in each of said cells the ratio of incoherent energy and coherent energy of said traces relative to two pre-determined directions; and (d) recording said ratio of incoherent energy and coherent energy of said cells in a form for display as a map of subterranean features.
  • 109. A method of locating subterranean features, faults, and contours, the method comprising:(a) accessing 3D seismic data covering a pre-determined volume of the earth; (b) dividing said volume into an array of relatively small three-dimensional cells wherein each of said cells is characterized by at least five laterally separated and generally vertical seismic traces located therein; (c) determining in each of said cells the discontinuity/dissimilarity of said traces relative to two pre-determined directions; and (d) recording said discontinuity/dissimilarity of said cells in a form for display as a map of subterranean features.
  • 110. The method of claim 109 wherein the discontinuity/dissimilarity is at least a function of(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2and∑j=1J⁢ ⁢uf⁡(t,xj,yj)2,where each cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uf(t,xj,yj) is a portion of a seismic trace within said cell.
  • 111. A device adapted for use by a workstation wherein 3D seismic data is read into memory and processed into a color display of subterranean features, the device including computer readable means carrying instructions for a process comprising:(a) digitally locating said 3D seismic data in an array of relatively small three-dimensional cells, wherein each of said cells contains representations of a part of at least five seismic traces; (b) calculating for each of said cells an estimate of the semblance; and (c) converting said estimate of semblance into an array of digital values corresponding to color attributes.
  • 112. The device of claim 111, wherein said computer-readable means is selected from the group consisting of a magnetic tape, a magnetic disk, an optical disk and a CD-ROM.
  • 113. The device of claim 111 further comprising means for displaying the computed estimates of semblance in a visual format of subterranean features.
  • 114. In a computer workstation wherein 3D seismic data obtained over a predetermined three-dimensional volume of the earth is read into memory, wherein a computer divides such volume into an array of three-dimensional analysis cells, wherein each cell has at least a portion of five laterally separated seismic traces located therein, and wherein the computer is used to transform such data into a display of seismic attributes, the computer CHARACTERIZED BY performing a process comprising:(a) calculating in each of the cells a semblance value for said seismic traces, wherein said semblance value is at least a function of amplitude, time, and the number of seismic traces within said cell; and (b) displaying said semblance value of each cell within the 3D volume to identify subsurface features commonly associated with the entrapment and storage of hydrocarbons.
  • 115. The computer workstation of claim 114, wherein the display of step (b) is characterized by color components of at least one of hue, saturation and lightness, and wherein step (b) comprises mapping said semblance for each cell onto one of (i) a hue scale, (ii) a saturation scale, and (iii) a lightness scale.
  • 116. A method of seismic exploration for locating geologic formations, faults, contours and unconformities, the method comprising:(a) reading a 3D seismic data set comprising seismic signal traces that are distributed over a volume of the earth; (b) selecting at least one time slice from said volume and forming therein cells that are arranged into laterally extending rows and columns, each of said cells having at least five seismic traces therein; (c) computing for each of said cells a plurality of semblance measurements of said traces, wherein each measurement is at least a function of amplitude, time, and the number of seismic traces within said cell; and (d) recording in a form for display, over said at least one time slice, measurements of semblance.
  • 117. A method of seismic exploration for locating geologic formations, faults, contours and unconformities, the method comprising:(a) reading a 3D seismic data set comprising seismic signal traces that are distributed over a volume of the earth; (b) selecting at least one time slice from said volume and forming therein cells that are arranged into laterally extending rows and columns, each of said cells having at least five seismic traces therein; (c) computing for each of said cells at least one seismic attribute wherein said at least one seismic attribute is at least a function of:(∑j=1J⁢ ⁢uf⁡(t,xj,yj))2and∑j=1J⁢ ⁢uf⁡(t,xj,yj)2,where each cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell and where uf(t,xj,yj) is a portion of a seismic trace within said cell; and (d) recording in a form for display, over said at least one time slice, said at least one seismic attribute.
  • 118. The method of claim 14 wherein said semblance/similarity is at least a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uj(t,xj,yj) is a portion of a seismic trace within said cell.
  • 119. The method of claim 118 wherein said semblance/similarity is a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 120. The method of claim 119 wherein said semblance/similarity is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 121. The method of claim 118 wherein said semblance/similarity is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj))2∑k=-K+K⁢ ⁢∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj)2where K is the half width of the time window in samples.
  • 122. The method of claim 14 wherein said semblance/similarity is at least a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, where p and q are apparent dips in the x and y directions, respectively, and where uj(t,p,q,xj,yj) is a portion of a seismic trace within said cell.
  • 123. The method of claim 122 wherein said semblance/similarity is a function of: (∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 124. The method of claim 122 wherein said semblance/similarity is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 125. The method of claim 122 wherein said semblance/similarity is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj))2∑k=-K+K⁢ ⁢∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj)2where K is the half width of the time window in samples.
  • 126. The method of claim 122 wherein p=0 and q=0.
  • 127. The article of manufacture of claim 58 wherein said semblance is at least a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uj(t,xj,yj) is a portion of a seismic trace within said cell.
  • 128. The article of manufacture of claim 127 wherein said semblance is a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 129. The article of manufacture of claim 127 wherein said semblance is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 130. The article of manufacture of claim 127 wherein said semblance is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj))2∑k=-K+K⁢ ⁢∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj)2where K is the half width of the time window in samples.
  • 131. In seismic exploration wherein 3D seismic data from geologic formations of the earth are recorded as a function of time and wherein a computer is used that is programmed to process such 3D seismic data so that an image may be produced therefrom that is representative of subterranean features, an article of manufacture comprising: a medium that is readable by a computer and that carries instructions for said computer to perform a process comprising:(a) accessing 3D seismic data over a predetermined volume of geologic formations of the earth, said 3D seismic data comprising seismic traces that are characterized by time, position and amplitude; (b) dividing at least a portion of said data into a plurality of relatively small, three-dimensional analysis cells, wherein each of said three-dimensional analysis cells contains portions of at least five seismic traces; and (c) computing a seismic attribute for each cell that is a function of(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uj(t,xj,yj) is a portion of a seismic trace within said cell.
  • 132. The article of manufacture of claim 131 wherein said seismic attribute is a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 133. The article of manufacture of claim 131 wherein said seismic attribute is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 134. The article of manufacture of claim 131 wherein said seismic attribute is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj))2∑k=-K+K⁢ ⁢∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj)2where K is the half width of the time window in samples.
  • 135. The article of manufacture of claim 131 wherein the process performed by the computer further comprises displaying said seismic attribute in a form that is at least one of (i) a planar display, (ii) a cross-sectional display, (iii) a 2D display and, (iv) a 3D display.
  • 136. The article of manufacture of claim 131 wherein the computed seismic attribute is a number that is at least 0 and at most 1.
  • 137. The article of manufacture of claim 131 wherein the process further comprises displaying the computed seismic attributes in a visual format to display the subterranean features.
  • 138. A method for locating geologic features of an earth volume, the method comprising:(a) accessing 3D seismic data over a predetermined volume of the earth, said data comprising seismic traces; (b) dividing at least a portion of said 3D seismic data into a plurality of relatively small, three-dimensional analysis cells, wherein each of said analysis cells contains portions of at least five seismic traces relative to two directions; and (c) computing a seismic attribute for each cell that is a function of(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uj(t,xj,yj) is a portion of a seismic trace within said cell.
  • 139. The method of claim 138 wherein said seismic attribute is a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 140. The method of claim 138 wherein said seismic attribute is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 141. The method of claim 138 wherein said seismic attribute is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj))2∑k=-K+K⁢ ⁢∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj)2where K is the half width of the time window in samples.
  • 142. The method of claim 138 further comprising displaying said seismic attribute in a form that is at least one of (i) in planar display, (ii) a cross-sectional display, (iii) a 2D display, and (iv) a 3D display.
  • 143. The method of claim 138 wherein the computed seismic attribute is a number that is at least 0 and at most 1.
  • 144. The method of claim 138 further comprising displaying the computed seismic attributes in a visual format to display the subterranean features.
  • 145. The method of claim 81 wherein said semblance/similarity is at least a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uj(t,xj,yj) is a portion of a seismic trace within said cell.
  • 146. The method of claim 145 wherein said semblance/similarity is a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 147. The method of claim 145 wherein said semblance/similarity is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 148. The method of claim 145 wherein said semblance/similarity is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj))2∑k=-K+K⁢ ⁢∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj)2where K is the half width of the time window in samples.
  • 149. The method of claim 91 wherein the signal discontinuity value is at least a function of(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each analysis cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uj(t,xj,yj) is a portion of a seismic trace within said cell.
  • 150. The method of claim 149 wherein said signal discontinuity value is a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 151. The method of claim 149 wherein said signal discontinuity value is an arithmetic inverse of a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2.
  • 152. The method of claim 149 wherein said signal discontinuity value is determined by performing a running window time integration over the partial sums from −K to +K:∑k=-K+K⁢ ⁢(∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj))2∑k=-K+K⁢ ⁢∑j=1J⁢ ⁢uj⁡(t+kΔt, ⁢xj,yj)2where K is the half width of the time window in samples.
  • 153. The method of claim 99 wherein the semblance value is at least a function of(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uj(t,xj,yj) is a portion of a seismic trace within said cell.
  • 154. The method of claim 101 wherein the inverse of semblance value is at least a function of(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uj(t,xj,yj) is a portion of a seismic trace within said cell.
  • 155. The method of claim 104 wherein the semblance value is at least a function of(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uj(t,xj,yj) is a portion of a seismic trace within said cell.
  • 156. The method of claim 106 wherein the semblance value is at least a function of(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uj(t,xj,yj) is a portion of a seismic trace within said cell.
  • 157. The method of claim 109 wherein the discontinuity/dissimilarity is at least a function of(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uj(t,xj,yj) is a portion of a seismic trace within said cell.
  • 158. A method of seismic exploration for locating geologic formations, faults, contours and unconformities, the method comprising:(a) reading a 3D seismic data set comprising seismic signal traces that are distributed over a volume of the earth; (b) selecting at least one time slice from said volume and forming therein cells that are arranged into laterally extending rows and columns, each of said cells having at least five seismic traces therein; (c) computing for each of said cells at least one seismic attribute wherein said at least one seismic attribute is at least a function of:(∑j=1J⁢ ⁢uj⁢(t, ⁢xj,yj))2and∑j=1J⁢ ⁢uj⁡(t, ⁢xj,yj)2,where each cell contains portions of at least J (J≧5) seismic traces, where x and y are distances from the center of the cell, and where uj(t,xj,yj) is a portion of a seismic trace within said cell; and (d) recording in a form for display, over said at least one time slice, said at least one seismic attribute.
  • 159. The method of claim 74 further comprising storing said seismic attributes for each cell as a data set.
  • 160. The method of claim 81 further comprising storing said semblance/similarity of said cells as a data cube.
  • 161. The method of claim 89 further comprising storing said inverse of said semblance/similarity of said cells as a data cube.
  • 162. The method of claim 138 further comprising storing said seismic attributes for each cell as a data cube.
  • 163. A method of generating a data cube for displaying geologic features, faults and contours of a cubic volume of an earth formation wherein 3D seismic data samples covering said volume of the earth formation are accessed, said volume of the earth formation divided into an array of relatively small 3D cells containing at least a portion of the 3D seismic data samples relative to two spatial directions, the cube of semblance/similarity values representing said volume of said earth formation enclosing a plurality of the 3D seismic data samples, the cube of semblance/similarity values formed by:(a) forming an analytic trace from each seismic trace; and (b) assigning a semblance/similarity value to each analytic trace data sample in said cube.
  • 164. The method of claim 163 wherein said analytic trace, vj(t), is a function of uj(t) +iujH(t).
  • 165. A method for creating an analytic coherence cube of semblance/similarity values, the method comprising:(a) accessing 3D seismic data covering a pre-determined volume of the earth; (b) forming an analytic trace from each seismic trace; (c) dividing said volume into an array of relatively small three-dimensional cells wherein each of said cells is characterized by at least five laterally separated and generally vertical analytic traces located therein; (d) determining in each of said cells the semblance/similarity of said analytic traces relative to two pre-determined directions; and (e) recording an analytic coherence cube from said semblance/similarity of said cells.
  • 166. The method of claim 165 wherein said analytic traces, vj(t,xj,yj), are a function of uj(t,xj,yj) +iujH(t,xj,yj).
  • 167. The method of claim 165 wherein each semblance/similarity value is at least a function of(∑j=1J⁢ ⁢vj⁡(t, ⁢xj,yj))2and∑j=1J⁢ ⁢vj⁡(t, ⁢xj,yj)2,where each cell contains portions of at least J (J≧5) analytic traces, where x and y are distances from the center of the cell, and where vj(t,xj,yj) is a portion of an analytic trace within said cell.
  • 168. The method of claim 167 wherein said semblance/similarity is a function of:(∑j=1J⁢ ⁢vj⁡(t, ⁢xj,yj))2∑j=1J⁢ ⁢vj⁡(t, ⁢xj,yj)2.
  • 169. The method of claim 165, wherein said pre-determined directions are mutually perpendicular, and said semblance/similarity of said analytic traces within each cell is a function of at least time and the number of analytic traces within said analysis cell.
  • 170. The method of claim 165 wherein said semblance/similarity is at least a function of the energy of said analytic traces; and wherein said energy of said analytic traces is a function of time, and the number of said analytic traces within said cell.
  • 171. The method of claim 165 wherein said semblance/similarity is at least a function of the apparent dip and apparent dip azimuth of said analytic traces within said analysis cell.
  • 172. The method of claim 165, wherein said semblance/similarity of said cells are characterized by hue, saturation and lightness;wherein one of said estimates of true dip azimuth, said estimates of true dip, and said largest calculated measures of semblance is mapped onto one of a lightness scale, hue scale, and a saturation scale; wherein another of said estimates of true dip azimuth, said estimates of true dip, and said largest calculated measures of semblance is mapped onto another of said lightness scale, said hue scale, and said saturation scale; and wherein the remaining one of said estimates of true dip azimuth, said estimates of true dip, and said largest calculated measures of semblance is mapped onto the remaining one of said lightness scale, said hue scale, and said saturation scale.
  • 173. The method claim 172, wherein said estimates of true dip azimuth are mapped onto said hue scale, said estimates of true dip are mapped onto said saturation scale, and said largest calculated measures of semblance are mapped onto a lightness scale.
  • 174. A method for locating geologic features of an earth volume, the method comprising:(a) accessing 3D seismic data over a predetermined volume of the earth, said data comprising seismic traces that are characterized by time, position and amplitude values; (b) dividing at least a portion of said 3D seismic data into a plurality of relatively small, three-dimensional analysis cells, wherein each of said analysis cells contains portions of at least five seismic traces relative to two directions; (c) computing a seismic attribute for each cell that is a function of i) the square of the sum of the seismic trace amplitude values for the at least five traces, and ii) the sum of the squares of said seismic trace amplitude values for the at least five traces; and (d) recording said seismic attribute.
  • 175. A method of locating subterranean features, faults, and contours, comprising the steps of:(a) accessing 3D seismic data covering a pre-determined volume of the earth; (b) dividing said volume into an array of relatively small three-dimensional cells wherein each of said cells is characterized by at least five laterally separated and generally vertical seismic traces located therein; (c) determining in each of said cells a semblance/similarity of said traces relative to two pre-determined directions; and (d) recording said semblance/similarity of said cells.
CROSS-REFERENCE

This patent application is a continuation in part of a provisional patent application filed Oct. 6, 1995, and having a Ser. No. 60/005,032 and a U.S. patent application to Bahorich and Farmer, having a Ser. No. 08/353,934 and a filing date of Dec. 12, 1994, now U.S. Pat. No. 5,563,949.

US Referenced Citations (78)
Number Name Date Kind
3571787 Backus Mar 1971 A
3599175 Hollingsworth et al. Aug 1971 A
3614623 McAuliffe Oct 1971 A
3622967 Foster et al. Nov 1971 A
3638178 Stephenson Jan 1972 A
3714621 Waters Jan 1973 A
3787855 Cragon et al. Jan 1974 A
3931609 Anstey Jan 1976 A
3961306 Anstey Jun 1976 A
4223399 Hackett Sep 1980 A
4279026 Lambright et al. Jul 1981 A
4298968 Ruehle et al. Nov 1981 A
4393488 Gassaway et al. Jul 1983 A
4403312 Thomason Sep 1983 A
4467461 Rice Aug 1984 A
4503527 Pann Mar 1985 A
4633400 Chittineni Dec 1986 A
4633401 Flinchbaugh Dec 1986 A
4661935 Shock et al. Apr 1987 A
4683556 Willis Jul 1987 A
4695984 Paal Sep 1987 A
H374 Abo-Zena et al. Nov 1987 H
4713775 Scott et al. Dec 1987 A
4729101 Hanson et al. Mar 1988 A
4736347 Goldberg et al. Apr 1988 A
4745550 Witkin et al. May 1988 A
4779237 Bodine Oct 1988 A
4799200 Cheung Jan 1989 A
4799201 Nelson Jan 1989 A
4800539 Corn et al. Jan 1989 A
4809240 Mufti Feb 1989 A
4813026 Quaglino Mar 1989 A
4829487 Malloy May 1989 A
4839869 Corcoran Jun 1989 A
4843599 Bucker Jun 1989 A
4849887 Skylas Jul 1989 A
4866659 Lin et al. Sep 1989 A
4878204 Black et al. Oct 1989 A
4881207 Dubesset et al. Nov 1989 A
4884248 Laster et al. Nov 1989 A
4894807 Alam et al. Jan 1990 A
4916615 Chittineni Apr 1990 A
4951264 Yamamoto Aug 1990 A
4951266 Hsu Aug 1990 A
4964087 Widrow Oct 1990 A
4964088 Chittineni Oct 1990 A
4970699 Bucker et al. Nov 1990 A
4984220 Bodine et al. Jan 1991 A
5008861 Gallagher Apr 1991 A
5031155 Hsu Jul 1991 A
5047933 Harita et al. Sep 1991 A
5047991 Hsu Sep 1991 A
5051960 Levin Sep 1991 A
5056066 Howard Oct 1991 A
5079703 Mosher et al. Jan 1992 A
5105356 Maute et al. Apr 1992 A
5130951 Kingman Jul 1992 A
5132938 Walters Jul 1992 A
5136553 Kelly et al. Aug 1992 A
5148494 Keskes Sep 1992 A
5150332 Bale et al. Sep 1992 A
5153858 Hildebrand Oct 1992 A
5179518 Keskes et al. Jan 1993 A
5181171 McCormack et al. Jan 1993 A
5189643 Wang et al. Feb 1993 A
5191526 Laster et al. Mar 1993 A
5226019 Bahorich Jul 1993 A
5245587 Hutson Sep 1993 A
5251184 Hildebrand et al. Oct 1993 A
5265192 McCormack Nov 1993 A
5295086 Kumazawa et al. Mar 1994 A
5299576 Shiba Apr 1994 A
5309360 Monk et al. May 1994 A
5537320 Simpson et al. Jul 1996 A
5537365 Sitoh Jul 1996 A
5563949 Bahorich et al. Oct 1996 A
5671344 Stark Sep 1997 A
5675551 Sitoh Oct 1997 A
Foreign Referenced Citations (4)
Number Date Country
0181216 Jul 1985 EP
2066467 Jul 1981 GB
2 132 350 Jul 1984 GB
0172065 Aug 1963 SU
Non-Patent Literature Citations (79)
Entry
Houston, L. M. and Potter, J. R., 1993, Multiple suppression using a local coherence filter, 63rd Ann. Internat. Mtg: Soc. of Expl. Geophys., 1090-1094.
Darche, G., 1992, Seismic blind zone detection by image pr, 54th Mtg Eur Assoc Expl Geophys., p22-23.
Alam, A., Matsumoto, S., Hurst, C. and Caragounis, P., 1995, Qualitative porosity prediction from seismic attributes: 65th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 95, 313-315.
Bahorich, M. and van Bemmel, P., 1994, Stratigraphic interpretation of seismic data on the workstation, 64th Ann. Internat. Mtg: Soc. of Expl. Geophys., 481-484.
Bahorich, M. S. and Farmer, S. L., 1995, 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube: 65th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 95, 93-96.
Bahorich, M. S., Lopez, J., Haskell, N. L., Nissen, S. E. and Poole, A., 1995, Stratigraphic and structural interpretation with 3-D coherence: 65th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 95, 97-100.
Barnes, A. E., 1991, Instantaneous frequency and amplitutde at the envelope peak of a constant-phase wavelet (short note): Geophysics, Soc. of Expl. Geophys., 56, 1058-1060.
Barnes, A. E., 1994, Theory of two-dimensional complex seismic trace analysis: 64th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 94, 1580-1583.
Barnes, A. E., 1996, Theory of 2-D complex seismic trace analysis: Geophysics, Soc. of Expl. Geophys., 61, 264-272.
Bodine, J.H., 1984, Waveform analysis with seismic attributes: Presented at the 54th Annual International Meeting of the S.E.G. in Atlanta, Georgia.
Douze, E. J. and Laster, S. J., 1979, Statistic of semblance (short note): Geophysics, Soc. of Expl. Geophys., 44, 1999-2003.
Haskell, N. L., Nissen, S. E., Lopez, J. A. Bahorich, M. S., 1995, 3-D seismic coherency and the imaging of sedimentological features: 65th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 95, 1532-1534.
Heggland, R., 1995, Detection of ancient morphology and potential hydrocarbon traps using 3-D seismic data and attribute analysis: 65th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 95, 316-318.
Johnston, D. H., 1993, Seismic attribute calibration using neural networks: 63rd Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 93, 250-253.
Kemp, L. F., Threet, J. R. and Veezhinathan, J., 1992, A neural net branch and bound seismic horizon tracker: 62nd Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 92, 10-13.
Kirlin, R. L., 1992, The relationship between semblance and eigenstructure velocity estimators: Geophysics, Soc. of Expl. Geophys., 57, 1027-1033.
Lefeuvre, F. and Chanet, A., 1993, Reservoir characterization: A seismic attributes approach: 63rd Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 93, 289-293.
Lefeuvre, F., 1994, Fracture related anisotropy detection and analysis: and if the P-waves were enough?: 64th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 94, 942-945.
Lefeuvre, F. E., Wrolstad, K. H., Zou, K. S., Smith, L. J., Maret, J-P. and Nyein, U. K., 1995, Sand-shale ratio and sandy reservoir properties estimation from seismic attributes: An integrated study: 65th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 95, 108-110.
Leslie, R. B., 1994, Digital image processing of 3-D seismic attributes benefits exploration and production interpreters: 64th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 94, 813.
Lewis, C., 1995, Seismic attributes for reservoir monitoring: A feasibility study using forward modeling: 65th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 95, 309-312.
Marfurt, K. J., Scheet, R. M., Sharp, J. A., Cain, G. J. and Harper, M. G., 1995, Suppression of the acquisition footprint for seismic sequence attribute mapping: 65th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 95, 949-952.
Nelson, H. R. Jr., Mastoris, S. and Huxohl, C., 1991, Visualization of map and seismic attributes: 53rd Mtg. Eur. Assoc. Expl Geophys., Abstracts, , 91, 86-87.
Nissen, S. E., Haskell, N. L., Lopez, J. A., Donlon, T. J. and Bahorich, M. S., 1995, 3-D seismic coherency techniques applied to the identification and delineation of slump features: 65th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts., 95, 1535-1536.
Ortmann, K. A. and Wood, L. J., 1995, Successful application of 3-D seismic coherency models to predict stratigraphy, offshore eastern Trinidad: 65th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 95, 101-103.
Possato, S., Saito, M., Curtis, M. P. and Martinez, R. D., 1983, Interpretation of three-dimensional seismic attributes contributes to stratigraphic analysis of Pampo oil field: 53rd Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 83, Session:S16.2.
Robertson, J.D., and Fisher, D.A., 1988, Complex seismic trace Attributes: The Leading Edge, 7, No. 6, 22-26.
Robertson, J.D., and Nogami, H.H., 1984, Complex seismic trace analysis of thin beds: Geophysics, 49, 344-352.
Ronen, S., Hattori, M., Hoskins, J. C. and Schultz, P., 1993, Seismic guided estimation of reservoir properties, 63rd Ann. Internat. Mtg: Soc. of Expl. Geophys., 281-284.
Sibille, G., Keskes, N., Fontaine, L. and Lequeux, J. L., 1984, Enhancement of the perception of seismic facies and sequences by image analysis techniques, 54th Ann. Internat. Mtg: Soc. of Expl. Geophys., Session:S7.2.
Sonneland, L., Barkved, O., Olsen, M. and Snyder, G., 1989, Application of seismic wave-field attributes in reservoir characterization: 59th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 89, 813.
Sonneland, L., Barkved, O. and Hagenes, O., 1990, Construction of reservoir maps from seismic classifier maps: 60th Annual Intenat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 90, 241-244.
Taner, M. T., Matsuoka, T., Baysal, E., Lu, L. and Yilmaz, O., 1992, Imaging with refractive seismic waves, 62nd Ann. Internat. Mtg: Soc. of Expl. Geophys., 1132-1135.
Versteeg, R., Geoltrain, S. and Ehinger, A., 1991, Use of migration coherency panels for velocity model determination, 61st Ann. Internat. Mtg: Soc. of Expl. Geophys., 1255-1258.
Versteeg, R., Ehinger, A. and Geoltrain, S., 1991, Sensitivity of migration coherency panels to the velocity model, 61st Ann. Internat. Mtg: Soc. of Expl. Geophys., 1251-1254.
From: Reflection Seismology: A Tool for Energy Resource Exploration, 2nd Edition, 1981, Kenneth H. Waters. pp. 260, 284, 285 and 196.
From: Encyclopedic Dictionary of Exploration Geophysics by Sheriff, p. 35 (clutter to comb), no date. Supplemented by Encyclopedic Dictionary of Exploration Geophysics by Sheriff, 3rd Edition, 1991 pp. 42 and 264 (see coherence and semblance).
From: An Introduction to Probability Theory and Its Applications by W. Feller, p. 236, 1968.
“On the history and culture of geophysics, and science in general” by Christopher L. Liner, University of Tulsa, The Leading Edge, 16, No. 06, 939-940. Jun. 1997.
Keskes, N., Zaccagnino, P., Rether, D. and Mermey, P., 1983, Automatic extraction of 3-D seismic horizons, 53rd Ann. Internat. Mtg: Soc. of Expl. Geophys., Session:S21.1, p. 557-559.
Keskes, N., Boulanouar, A., Lechevalier, Y. and Zaccagnino, P., 1982, Image analysis techniques for seismic data, 52nd Ann. Internat. Mtg: Soc. of Expl. Geophys., Session:S16.7, p. 221-222.
Stark, T. J., 1996, “Surface Slice Generation and Interpretation—A Review”; The Leading Edge, 15, 818-819.
Neff, D. B., 1990, “Incremental Pay Thickness Modeling of Hydrocarbon Reservoirs”; Geophysics, 55, 556-566.
Neff, D. B., 1990, “Estimated Pay Mapping Using Three-Dimensional Seismic Data and Incremental Pay Thickness Modeling”; 55, 567-575.
Mondt, J. C., 1990, The use of dip and azimuth horizon attributes in 3-D seismic interpretation: SPE 20943, 71-77.
Cohen, 1993, “Instantaneous Anything,” IEEE Int. Conf. Acoust. Speech Signal Processing, 4, p. 105-109.
“Estimation of Three Dimensional Dip and Curvature from Reflection Seismic Data”, By Christopher J. Finn, Master's Thesis, University of Texas at Austin, May 1986.
Bahorich, Michael S., Amoco Production Research and Bridges, S. Rutt, Advance Geophysical Case Histories 1: Seismic Stratigraphy/Seismic Sequence Attribute Map (SSAM) CH1.1, Oct. 26, 1992; SEG New Orleans The Society of Exploration Geophysicists Sixty-Second Annual International Meeting & Exposition, Oct. 25-29, 1992.
Yanovskiy, A.K., and Bogolyubskiy A.D., “Sposob avtomaticheskoy approksimatsii vertikal'nogo godografa, osnovannyy na posledova-Tel'nom vydelenii plastov” in Prikladnaya geofizika, No. 82, 1976; pp. 95-100. (Translation from Russian).
Bahorich, Mike and Farmer, Steve; 3-D seismic discontinuity for faults and stratigraphic features: The Coherence Cube, The Leading Edge, The Society of Exploration Geophysicists ISN 1070-485X Oct. 1995, p. 1053-1058.
Neidell, N.S. and Taner, M. Turhan; “Semblance and Other Coherency Measures for Multichannel Data”, Geophysics, vol. 36, No. 3 (Jun. 1971), p. 482-497, 6 FIGS.
Vossler, donald A., Landmark Graphics Corp., Automatic Whole Section Selsmic Reflection Mapping: The Society of Exploration Geophysicists Sixty-Second Annual International Meeting & Exposition, 1988.
Vossler, Donald A., Landmark Graphics Corp., Automatic Declination of Lateral Facies Changes in Clatic Environments; SEG Dallas The Society of Exploration Geophysicists Fifty-Ninth Annual International Meeting & Exposition, Oct. 29-Nov. 2, 1989.
Taner, M.T., Koehler, F. and Sheriff, R.E., Complex Seismic Trace Analysis,Geophysics, vol. 44, No. 6 (Jun. 1979), p. 1041-1063, 16 FIGS, 1 table.
“The Seismic Sequence Attribute Map (SSAM)” by Mr Bahorich, Extended Abstracts of Papers, European Association of Exploration Geophysicists, 56th Meeting and Technical Exhibition, Jun. 6-10, 1994, Abstract.
“Image Processing as a Tool for Interpreting 3D and 2D Seismic Data”, by Messrs Keskes and Camy-Peyret Supplement to Nature vol. 350, pp. 6-7; Apr. 18, 1991.
“Image Analysis Techniques for the Purpose of Structural Interpretation of 3D and 2D Seismic Data”, by Keskes and Camy-Peyret; Mem. Soc. Geol. France 1992 Ser. No. 161 P133-140.
“Dip and Azimuth Displays for 3D Seismic Interpretation” by RM Dalley et al, First Break vol. 7, No. 3, Mar. 1989.
“Attribute extraction: An Important Application in any Detailed 3-D Interpretation Study”, by EJH Rijks & ICEM Sauffred, Geophysics: The Leading Edge of Exploration, Sep. 1991.
“Image Processing of Interpreted 3D Seismic Data to Enhance Subtle Structural Features/Lineations” by LA Tilbury and D. Bush, Exploration Geophysics (1991) pp. 22, 391-396.
“The Binary Consistancy Checking Scheme and Its Applications to Seismic Horizon Detection” by Cheng and Lu, IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 11, No. 4, Apr. 1989.
“Poststack Estimation of Three-Dimensional Cross-line Statics” by Messrs Schultz and Lau, Geophysics, vol. 49, No. 3, Mar. 1984 pp. 227-236.
“Signal Coherence Measure in Seismic Data Processing” by Boiardi and Cardamone, Technical program and abstracts of papers—European Association of Exploration Geophysicists; vol. 51, p. 76.
“The Signal Coherence as a Versatile Diagnostic Tool to Improve Seismic Data Processing Effectiveness” by Boiardi and Cardamone, Technical program and abstracts of papers—European Association of Exploration Geophysicists; vol. 53, p. 12-13, 1984.
“Seismic Attributes Revisited” by M. T. Taner et al. Expanded Abstracts with Author's Biographies, Society of Exploration Geophysicists International Exposition and Sixty-Fourth Annual Meeting, Oct. 23-28, 1994.
“Automatic Whole Section Seismic Reflection Mapping” by D.A. Vossler, Expanded Abstracts, Society of Exploration Geophysicists Fifty-Eight Annual International Meeting & Exposition, Oct. 30-Nov. 3, 1988, p. 689-691.
“Interpretive nomenclature—a plea for conformity” (Round Table Reply) by A. R. Brown, The Leading Edge, vol./ISS 9 Oct. 10, 1990, p. 47.
“Seismic Character Mapping Using Multivariate Statistical Pattern Integration” by Partyka, Prasad and Bahorich, Extended Abstracts of Papers, European Association of Exploration Geophysicists, Fifty-Fifth Meeting and Technical Exhibition, Jun. 7-11, 1993.
“New Spatial Visualizatin Techniques in Tectonic and Stratigraphic Interpretation Optimize Reservoir Delineation of th Roar Field, Danish North Sea”, Abatzis Geological Survey of Denmark and J. D. Kerr, p. 81.
“Sismage: The Techniques of Image Analysis at the Service of the Structural Interpretation of Seismic Data”, Naamen Keskes and Jacqueline Camy-Peyret, Soc. Nat. Aquitaine, 1991, pp. 271-278.
Applied Geophysics by R. E. Sheriff et al. (Cambridge University Press), p. 393, p. 395, (date unavailable).
“Image-Processing display techniques applied to seismic instantaneous attributes over the Gorgan gas field”, R. Burnett Oliveros and Barbara J. Radovich, Society of Exploration Geophysicists International Exposition and Sixty-Seventh Annual Meeting, pp. 2064-2067, no date.
“The Coherence Cube”, Mike Bahorich and Steve Farmer, The Leading Edge, Oct. 1995, pp. 1053-1059.
“Reflection Seismic: A Tool For Energy Resource Exploration”, Kenneth Waters and John Wiley, 1981, pp. 259-263.
“Automatic Delineation of Lateral Facies Changes in Clasic Environments” by Donald Vossler, Extended Abstracts of Papers, European Association of Exploration Geophysicists, 59th Meeting and Technical Exhibition, Oct. 29-Nov. 2, 1989, p 803-804.
The Coefficient of Coherence: Its Estimation and Use in Geophysical Data Processing, By M.R. Foster and N.J. Guinzy, Geophysics, vol. 33, No. 4, Aug. 1967, pp. 602-616.
“Semblance and Other Coherency Measures for Multichannel Data”, by N. S. Neidell and M. Turhan Taner, Geophysics, vol. 36, No. 3, Jun. 1972, pp. 482-497.
“Seismic Sequence Attribute Map (SSAM)”, by Michael Bahorich and S. Rutt Bridges, Technical Program Expanded Abstracts with Authors Biographies, The Society of Exploration Geophysicists, Sixty-Six Annual International Meetin and Exposition, Oct. 25-29, 1992, pp. 1-3.
“Time-Slice Versus Statistical Slice (stat-slice: A Comparison of their Use for 3-D Seismic Interpretation”, by John D. Kerr and Gary L. Jones, Technical Program Expanded Abstracts with Authors Biographies, The Society of Exploration Geophysicists, Sixty-Fifth Annual International Meetin and Exposition, Oct. 8-13,1995, pp. 319-321.
Provisional Applications (1)
Number Date Country
60/005032 Oct 1995 US
Divisions (1)
Number Date Country
Parent 08/707674 Sep 1996 US
Child 09/918420 US
Continuation in Parts (1)
Number Date Country
Parent 08/353934 Dec 1994 US
Child 08/707674 US
Reissues (1)
Number Date Country
Parent 08/707674 Sep 1996 US
Child 09/918420 US