The present invention is a tool for developing embedded systems hardware. When hardware and software are developed for an embedded system, typically the hardware is specified and designed, and then the software is written to control the hardware. In some cases, the hardware and software are specified and designed in parallel, with trade-offs occurring as needed during the process. However, the software that runs the system can be considered a specification for the system itself. For example, if the software includes a driver for a UART, a UART must be designed into the hardware. If the software has a timer interrupt task, the hardware must provide a timer. If the software application needs to transmit and receive Ethernet data, the hardware must provide an Ethernet interface. Ideally, the software functionality would be determined first and the hardware would be designed to accommodate the software.
The present invention relates to a method and an apparatus that uses software to synthesize a hardware platform for running the software. The invention determines which processor is suitable for running the code and meeting the performance parameters determined by the user. The invention also determines which hardware devices are accessed by software. If the hardware target is a semiconductor chip, the invention selects the appropriate hardware description (IP) for the processor and selects IP for the other devices on the chip using a library of IP or input from the user. If the hardware target is a printed circuit board, the invention creates a schematic or netlist that includes the appropriate microprocessor and the various semiconductor chips and the necessary interconnections.
One aspect of the present invention provides that the software can be written independently of the processor. The user can then input various parameters relating to performance, die size, cost, and other factors. The invention uses these inputs to determine the best hardware platform for the software, including which devices and which processors will best meet the requirements.
Further features and advantages of various embodiments of the present invention are described in the detailed description below, which is given by way of example only.
The present invention will be understood more fully from the detailed description given below and from the accompanying drawings of the preferred embodiment of the invention, which, however, should not be taken to limit the invention to the specific embodiment but are for explanation and understanding only.
The present invention will be understood more fully from the detailed description given below and from the accompanying drawings of the preferred embodiment of the invention, which, however, should not be taken to limit the invention to the specific embodiment but are for explanation and understanding only.
As shown in
Similarly, the system synthesis tool 101 can target a printed circuit board. The processor 103 is an off-the-shelf chip chosen by the system requirements 102 as shown in
The processor specification file (201 in
If the end of the list of requirements has been reached in block 404, the system synthesis tool 101 proceeds to block 407. If all processors in the processor attribute table have been eliminated, the system synthesis tool 101 proceeds to block 408 and issues an error message to the user, who can then decide how to reduce or change the requirements so that a processor can be found. The system synthesis tool 101 proceeds to block 415 and ends.
In block 407, if one or more processors remain in the processor attribute table that meet the project requirements, the system synthesis tool 101 proceeds to block 409 where it assigns each remaining processor in the processor attribute table a value of 0. The system synthesis tool 101 proceeds to block 410 where it determines whether the end of the list of desires in the processor specification file has been reached. If the end has not been reached, the system synthesis tool 101 proceeds to block 411 where it reads the processor desire from the processor specification file. The system synthesis tool 101 proceeds to block 412 where it adds 1 to the value of each processor in the processor attribute table that meets said processor desire. The system synthesis tool 101 returns to block 410 where it determines whether the end of the list of desires in the processor specification file has been reached.
If the end of the list of desires in the processor specification file has been reached in block 410, the system synthesis tool 101 proceeds to block 413 where it presents to the user a list of all processors that meet the requirements (i.e. have not been eliminated from the processor attribute table), ranked according to the assigned values, highest to lowest, that determine which processor best meets the desires. Note that in another embodiment, desires may have different levels of importance associated with them. In this embodiment, the desires listed in the processor specification file would have associated values and, instead of simply adding a 1 in block 412, these values would be added to the value of the processor that meets these desires.
The system synthesis tool 101 proceeds to block 414 where the user selects a processor for the project. The system synthesis tool 101 proceeds to block 415 and ends the search for a processor.
In addition to assisting the user in selecting the appropriate processor, the system synthesis tool 101 examines the source code files and finds each software driver routine in order to determine the corresponding hardware device. In one embodiment, this process of finding driver routines is accomplished by searching for a specific header to the routine that describes the task. An example of a driver routine source code with such a specific header is shown in
In addition to assisting the user in selecting the appropriate processor and determining standard hardware devices, the system synthesis tool 101 examines the source code files and finds each custom software driver routine in order to determine the corresponding custom hardware device. A custom hardware device is one that has been designed specifically by the user and is not widely available to other users. An example of such a custom driver routine source code is shown in
In an alternate embodiment, a list of standard software driver source code routines and corresponding hardware-devices is maintained by the system synthesis tool 101. The system synthesis tool 101 searches the user's source code routines looking for matches with the standard software driver source code routines in the list. When a match is found, the system synthesis tool 101 determines the corresponding standard hardware device from the list.
Also in this alternate embodiment, the system synthesis tool 101 finds the custom hardware devices required by the source code by searching a list containing descriptions of custom software driver source code and corresponding custom devices. This list must be maintained by the user, because custom devices are designed specifically by the user. The system synthesis tool 101 searches the user's source code routines looking for matches with the custom software driver source code routines in the list. When a match is found, the system synthesis tool 101 determines the corresponding custom hardware device from the list.
The user takes the system hardware description 701 and uses third-party software tools 702 to produce a physical system 703. In the first and second embodiment described above, the software tools 702 consists of conventional logic synthesis tools, layout tools, and fabrication tools that take the HDL hardware system description 701 and produce a physical design 703 in the form of a semiconductor chip or multiple semiconductor chips. In the third embodiment described above, the system tools 702 consists of conventional schematic capture tools, netlist tools, layout tools, fabrication tools, and assembly tools that take the schematic hardware system description 701 and produce a physical design 703 in the form of a printed circuit board populated with semiconductor chips.
The software architecture also includes a device selection program 802. This program includes a hardware driver reader routine 808 that reads hardware driver source code files and determines the corresponding physical description for the hardware device from information in the driver source code. The physical description may be an HDL description, a schematic, a netlist, or another description that can be turned into a physical hardware device.
The software architecture also includes a physical description creation routine 803 that combines the processor physical description with the hardware device physical description to create a physical description of the entire system.
Various modifications and adaptations of the operations described here would be apparent to those skilled in the art based on the above disclosure. Many variations and modifications within the scope of the invention are therefore possible. The present invention is set forth by the following claims.
The present application is a continuation of U.S. patent application Ser. No. 11/683,672, filed Mar. 8, 2007 now U.S. Pat. No. 7,620,928, which is a continuation of U.S. patent application Ser. No. 10/604,156, filed Jun. 27, 2003, now U.S. Pat. No. 7,210,116, incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5651111 | McKeeman et al. | Jul 1997 | A |
5787450 | Diedrich et al. | Jul 1998 | A |
5862361 | Jain | Jan 1999 | A |
6077308 | Carter et al. | Jun 2000 | A |
7284210 | Baumgartner et al. | Oct 2007 | B2 |
20020183997 | Powell et al. | Dec 2002 | A1 |
20030084063 | DelMonaco et al. | May 2003 | A1 |
20030110477 | Wakabayashi et al. | Jun 2003 | A1 |
20030172055 | Prakash et al. | Sep 2003 | A1 |
20030196194 | Johns et al. | Oct 2003 | A1 |
20040010777 | Klein | Jan 2004 | A1 |
20040025150 | Heishi et al. | Feb 2004 | A1 |
20040064798 | Alpert et al. | Apr 2004 | A1 |
20040163072 | Levy | Aug 2004 | A1 |
20040237062 | Zeidman et al. | Nov 2004 | A1 |
20050010378 | Zeidman et al. | Jan 2005 | A1 |
20050149921 | Rollins | Jul 2005 | A1 |
20060130023 | Klein | Jun 2006 | A1 |
20060190907 | Allen et al. | Aug 2006 | A1 |
20080098349 | Lin et al. | Apr 2008 | A1 |
20080155497 | Chupa et al. | Jun 2008 | A1 |
20080263525 | Berg et al. | Oct 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100017777 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11683672 | Mar 2007 | US |
Child | 12586335 | US | |
Parent | 10604156 | Jun 2003 | US |
Child | 11683672 | US |