This application relates generally to medical devices and, more particularly, to devices and methods to stimulate nerves.
Neural stimulation therapy has been proposed to treat a number of conditions, such as eating disorders, allergies, sexual dysfunction, pain, migraines, depression, steep disorders, movement disorders, epilepsy, and the like. Neural stimulation has also been proposed as, or as part of cardiac therapies, such as therapies to treat or control heart rhythms, to improve contractility and reverse remodel a heart, to reduce injury after a myocardial infraction, to treat hypertension, and the like.
It is desirable to be able to stimulate a specific nerve, or specific nerve fiber(s) within a nerve so as to obtain a desired neural stimulation effect while avoiding the stimulation of other proximate nerves and corresponding unintended neural stimulation effect(s).
Various aspects relate to a device. Various device embodiments include at least a first and a second transducer, and a controller. The first transducer is adapted to be positioned to direct a first energy wave toward a neural target, and the second transducer is adapted to be positioned to direct a second energy wave toward the neural target. The controller is connected to the transducers to generate the first energy wave with a first predetermined phase and a first predetermined amplitude from the first transducer and to generate the second energy wave with a second predetermined phase and a second predetermined amplitude from the second transducer. The amplitudes are selected so that a neural stimulation threshold is reached only during constructive wave interference. The phases are selected so that the first and second energy waves constructively interfere at the neural target. Other aspects and embodiments are provided herein.
Various aspects relate to a system. Various system embodiments comprise a plurality of ultrasound transducers and a controller. Each ultrasound transducer is adapted to be positioned to direct an ultrasound signal toward a neural target. The controller is adapted to deliver an electrical signal to each of the plurality of ultrasound transducers to generate the ultrasound signal toward the neural target. The controller is adapted to control a phase of the electrical signal to each of the plurality of ultrasound transducers to cause resulting ultrasound signals from the plurality of ultrasound transducers to constructively interfere at the neural target and provide sufficient energy to stimulate the neural target.
Various aspects relate to a method for stimulating a neural target. According to various method embodiments, a first energy wave is generated from a first position toward the neural target. The first energy wave has a first phase and has a first predetermined amplitude insufficient to stimulate the neural target by itself A second energy wave is generated from a second position toward the neural target. The second energy wave has a second phase and has a second predetermined amplitude insufficient to stimulate the neural target by itself The first phase of the first energy wave and the second phase of the second energy wave are selected to provide constructive interference at the neural target for use in delivering an energy capable of stimulating the neural target.
This Summary is an overview of some of the teachings of the present application and not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details about the present subject matter are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which are not to be taken in a limiting sense. The scope of the present invention is defined by the appended claims and their equivalents.
The present subject matter directs two or more energy waveforms to a desired neural stimulation target. The energy from each waveform alone is not sufficient to stimulate the neural target, but the combination of energy waveforms at the neural stimulation target is greater than the neural stimulation threshold for the target. Examples of waveforms that may be used include acoustic waveforms such as ultrasound waveforms, as well as RF, microwave and light (e.g. infrared) waveforms. Ultrasound waveforms are described below. One of ordinary skill in the art will understand, upon reading and comprehending this disclosure, how to apply the teachings provided herein to focus other stimulation waveforms generated by corresponding transducers to a desired stimulation focal point. A brief overview of waveform interference is provided below.
When two or more waves simultaneously and independently travel through the same medium at the same time, their effects are superpositioned and result in wave interferences. Constructive interference occurs when the wave amplitudes reinforce each other and results in a wave with a greater amplitude; and destructive interference occurs when the wave amplitudes oppose each other and results in waves of reduced amplitude.
Nerves have been stimulated using ultrasound. It is believed that the ultrasound stimulation mechanically stimulates the neural structures through displacement of the medium. The ultrasound stimulation may also heat the tissue, which may also contribute to neural stimulation.
Some embodiments use at least two crystals to focus the energy, and some embodiments use at least three crystals to focus the energy. The energy from each crystal is not individually high enough to stimulate the nerve, but the combination of crystals is capable of stimulating the nerve when the energy wave from each constructively interfere.
Aspects of the present subject matter are directed to selective nerve stimulation. For example, the present subject matter provides stimulation waveforms toward the neural target using transducers located at various radial positions with respect to an imaginary axis that passes through the neural target. Positioning the transducers at radial positions with relatively wide angles, such as greater than or equal to 45 degrees, the energy waves are able to be focused with greater accuracy and selectivity. Additional selectivity can be achieved using three or more transducers radially positioned about the imaginary axis passing through a neural target. Each transducer produces a waveform with an energy, such that only a constructive interference of all waveforms at the focal point provides sufficient stimulation energy greater than a threshold to stimulate the neural target. The focal point of the energy beams can be adjusted to selectively stimulate parts of a nerve bundle. For example, the focal point can be changed by changing the phase of the energy, by physically adjusting the position or orientation of the crystals, or a combination of physically adjusting the orientation of the crystals or the phase of the energy.
Various neural stimulation waveforms can be used. In a square waveform, for example, a pulse width and amplitude can be adjusted to minimize stimulation of surrounding fiber populations, and a duty cycle can be varied to increase or decrease rate of stimulation. An appropriate feedback signal that reflects a desired or undesired response can be used to determine whether the energy has been focused on a desired nerve bundle.
Thus, the present subject matter can be used to stimulate different fibers within the same nerve bundle to produce individual effects. Aspects of the present subject matter have the potential to provide neural stimulation that is selective in the number of axons stimulated. Selective nerve stimulation can be achieved without penetrating the nerve, without relatively complex stimulation waveforms, and without steering currents.
Two or more ultrasonic crystals are spaced radially around a nerve bundle. For example, three crystals can be spaced 60 degrees apart from each other with respect to an imaginary axis passing through a neural target. In order to selectively stimulate a particular bundle of fibers within the nerve, the energy and timing of the electrical pulses to the crystals are adjusted to cause constructive interference of the propagated ultrasonic energy to bring it above the threshold necessary for stimulation at the site of interest within the nerve. The pulse width and pulse amplitude can be adjusted to minimize stimulation of surrounding fiber populations and the duty-cycle can be increased or decreased to alter the rate of stimulation. Different sized fibers within the same bundle (e.g. motor or sensory) can be stimulated selectively to create individual effects. Thus, for example, motor nerves could be stimulated to cause a hand to close and sensory fibers could be stimulated to generate a corresponding feeling of pressure. The present subject matter could also be used for vagal stimulation to control remodeling, reduce hypertension, improve wound healing, etc. as well as for stimulation of motor nerves and sensory nerves in cases of paralysis.
Since physical contact with the target nerve is not necessary, the transducers can be positioned using a nerve cuff to surround only the nerve, or can be positioned to surround a larger, more stable structure such as the nerve and an adjacent vessel, or can be externally positioned. Examples of externally-positioned transducers include transducers placed around a neck to stimulate a nerve such as a vagus nerve, or transducers placed around a limb to stimulate a corresponding nerve in the limb. Such transducers can be incorporated in collars, bracelets, or patches, for example, for use in stimulating the neck, arm or leg. A desired fiber can be stimulated, regardless of the specific geometry and makeup of the nerve.
The present subject matter can be used wherever nerve stimulation is desired, as it is selective and controllable without requiring direct contact with the nerve. The transfer of ultrasonic energy to the nerve is efficient, such that a relatively small battery can be used in implantable devices.
The transducer generates an ultrasound beam. The shape of an ultrasound beam depends on the radius and resonant frequency of the transducer. The ultrasound beam initially converges through a near field region, and diverges through a far field region.
The direction of the sound waves can be adjusted through the use of a multi-element transducer, and by adjusting the phase offset of different elements of the transducer. A steered beam can leave the transducer at an angle by having elements on one end have a phase that lead elements of the other end. A focused beam can be generated by having the phase of the outer elements lead the inner elements.
Implantable Transducers (e.g. Nerve Cuffs)
Various embodiments provide implantable transducers. Some transducer embodiments can be positioned on leads. Some transducer embodiments can be implanted subcutaneously. Sonic transducer embodiments are implanted intravascularly. Some transducer embodiments include nerve cuff structures that include at least two transducers. Some transducer embodiments include nerve cuff structures that include three or more transducers. According to various embodiments, the transducers on the cuffs are oriented to direct/redirect stimulation energy to any area within the cuff. The cuffs can be constructed to circumscribe or at least partially circumscribe the nerve or the nerve and an adjacent stable structure such as an adjacent blood vessel. The term circumscribe is not intended to limit the cuff to a particular annular shape. In some embodiments, the transducers can be powered by and be in communication with an implantable device (e.g. can). Some transducer embodiments include power circuitry and communication circuitry for self-powering its own stimulation, and coordinating the stimulation with other transducers for a desired therapy.
Sonic intravascular device embodiments have a stent-like structure, with a shape-memory to fixate the device against the walls of the vessel without unacceptably obstructing blood flow in the vessel. Various shapes can be used for a stent-like structure, including helical shapes, cylindrical shapes, oval shapes and C-shapes. Some intravascular device embodiments are tethered to a controller via an intravascularly-fed lead, and some intravascular device embodiments are satellite devices. A satellite device is capable of operating autonomously or in a coordinated fashion with other satellites or a planet controller. Power and/or communication can be delivered via a wireless connection, such as an ultrasound or radiofrequency connection. Some intravascular device embodiments include one or more transducers positioned in a vessel or cavity, and are adapted to cooperate with other transducers to stimulate a target nerve. These other transducers can be positioned in the same vessel or cavity, another vessel or cavity, external to the body, on a nerve cuff, or otherwise positioned to deliver an energy wave toward the target nerve.
Various embodiments use external transducers to selectively stimulate a nerve with constructive interference from energy waves from the external transducers. As those of ordinary skill in the art will understand upon reading and comprehending this disclosure, a number of external placement devices, such as bracelets, belts or collars.
Examples of satellite transducers include subcutaneous transducers, nerve cuff transducers and intravascular transducers.
The illustrated device 2020 further includes neural stimulation circuitry 2028. Various embodiments of the device 2020 also includes sensor circuitry 2029. According to some embodiments, one or more leads are able to be connected to the sensor circuitry 2029 and neural stimulation circuitry 2028. Some embodiments use wireless connections between the sensor(s) and sensor circuitry, and some embodiments use wireless connections between the stimulator circuitry and transducers 2030. The neural stimulation circuitry 2028 is used to apply electrical stimulation pulses to transducers 2030 to provide desired neural stimulation to desired neural targets. In various embodiments, the sensor circuitry is used to detect and process nerve activity for use in determining when a desired neural target is being stimulated. In various embodiments, the sensor circuitry is used to detect and process surrogate parameters such as blood pressure, respiration, muscle tone, movement and the like, for use in determining when a desired neural target is being stimulated.
According to various embodiments, the stimulation circuitry 2028 includes modules to set or adjust any one or any combination of two or more of the following pulse features delivered to the transducers: the amplitude of the stimulation pulse, the frequency of the stimulation pulse, the burst frequency of the pulse, the wave morphology of the pulse, and the pulse width. The illustrated burst frequency pulse feature includes burst duration and duty cycle, which can be adjusted as part of a burst frequency pulse feature or can be adjusted separately. For example, a burst frequency can refer to the number of bursts per minute. Each of these bursts has a burst duration (an amount of time bursts of stimulation are provided) and a duty cycle (a ratio of time where stimulation is provided to total time). Thus, by way of example and not limitation, six bursts can be delivered during a one minute stimulation time (burst duration), where the length (pulse width) of each burst is five seconds and the time period between bursts is five seconds. In this example, the burst frequency is six bursts per minute, the stimulation time or burst duration is 60 seconds, and the duty cycle is 50% ((6 bursts×5 sec./burst)/60 seconds). Additionally, the duration of one or more bursts can be adjusted without reference to any steady burst frequency. For example, a single stimulation burst of a predetermined burst duration or a pattern of bursts of predetermined pulse width(s) and burst timing can be provided in response to a sensed signal. Furthermore, the duty cycle can be adjusted by adjusting the number of bursts and/or adjusting the duration of one or more bursts, without requiring the bursts to be delivered with a steady burst frequency. Examples of wave morphology include a square wave, triangle wave, sinusoidal wave, and waves with desired harmonic components to mimic white noise such as is indicative of naturally-occurring baroreflex stimulation. Additionally, various controller embodiments are capable of controlling a duration of the stimulation.
The CRM therapy section 2132 includes components, under the control of the controller, to stimulate a heart and/or sense cardiac signals using one or more electrodes. The CRM therapy section includes a pulse generator 2136 for use to provide an electrical signal through an electrode to stimulate a heart, and further includes sense circuitry 2137 to detect and process sensed cardiac signals. An interface 2138 is generally illustrated for use to communicate between the controller 2133 and the pulse generator 2136 and sense circuitry 2137. Three electrodes are illustrated as an example for use to provide CRM therapy. However, the present subject matter is not limited to a particular number of electrode sites. Each electrode may include its own pulse generator and sense circuitry. However, the present subject matter is not so limited. The pulse generating and sensing functions can be multiplexed to function with multiple electrodes.
The NS therapy section 2131 includes components, under the control of the controller, to stimulate a neural stimulation target and/or sense parameters associated with nerve activity or surrogates of nerve activity such as blood pressure and respiration. Three interfaces 2139 are illustrated for use to provide neural stimulation. However, the present subject matter is not limited to a particular number interfaces, or to any particular stimulating or sensing functions. Pulse generators 2140 are used to provide electrical pulses to transducer or transducers for use to stimulate a neural stimulation target. According to various embodiments, the pulse generator includes circuitry to set, and in some embodiments change, the amplitude of the stimulation pulse, the frequency of the stimulation pulse, the burst frequency of the pulse, and the morphology of the pulse such as a square wave, triangle wave, sinusoidal wave, and waves with desired harmonic components to mimic white noise or other signals. Sense circuits 2141 are used to detect and process signals from a sensor, such as a sensor of nerve activity, blood pressure, respiration, and the like. The interfaces 2139 are generally illustrated for use to communicate between the controller 2133 and the pulse generator 2140 and sense circuitry 2141. Each interface, for example, may be used to control a separate lead. Various embodiments of the NS therapy section only include a pulse generator to stimulate neural targets such a vagus nerve.
Various embodiments of the present subject matter use the neural stimulation device as an IMD within an advanced patient management (APM) system.
In various embodiments, at least one 1MD 2220 provides internal data such as heart rhythm, breathing, activity, and stimulation parameters, and timing. In various embodiments. IMD-provided data includes parameters sensed by the IMD and/or parameters provided by interrogating the IMD to obtain device performance status. The illustrated system also includes one or more external data source(s) 2243 that provide health-related parameters. The external health-related parameters supplement the internal parameters and/or provide a diagnostic context to the internal health-related parameters. Examples of external source(s) of health data include: external sensing devices such as body temperature thermometers, blood pressure monitors, and the like; room temperature thermometers, light sensors and the like; databases such as patient history databases that are found hospitals or clinics and that may include information such as medical test results and family history; a web server database (a database accessible through a global communication network—e.g. Internet) that may include information regarding environment, medication interaction, and the like; databases and/or user inputs regarding mental/emotional and diet parameter types; and other external data sources capable of providing health-related parameters.
The illustrated system also includes a user input 2244 through which a user is able to input additional health-related parameters for use by a wellness monitoring device (WMD) 2245. In various embodiments, the user input includes a touch screen on a PDA or other device, a keyboard and mouse on a computer, and the like. In various embodiments, a patient is able to input additional health-related parameters for use by the wellness monitoring device. In various embodiments, a clinician is able to input additional health-related parameters for use by the WMD. The WMD 2245 is illustrated by dotted line, and includes one or more devices. In various embodiments, the at least one IMD communicates wirelessly with at least one WMD, as shown by communication link 2246. In various embodiments that include multiple WMDs, the WMDs are able to communicate with each other, as shown via communication link 2247. In various embodiments, the WMD(s) includes portable devices that are external to the body of patient such as a PDA, (variously referred to as a personal digital, or data, assistant), a portable telephone (including a cellular telephone or a cordless telephone), a pager (one way or two way), a handheld, palm-top, laptop, portable or notebook computer, or other such battery operated portable communication device. In various embodiments, the WMD(s) includes programmers. In various embodiments, the WMD(s) includes various non-portable devices such as larger computers or computer enterprise systems. In various embodiments of the present subject matter, the WMD (which includes one or more devices) includes a display on which parameter trends are capable of being displayed. Some WMD embodiments provide analysis of internal and external (both voluntary and involuntary) parameters. In various embodiments, the WMD includes computer and programming that conducts data analysis suitable for use in managing patient health and medical care.
One of ordinary skill in the art will understand that, the modules and other circuitry shown and described herein can be implemented using software, hardware, and combinations of software and hardware. As such, the illustrated modules and circuitry are intended to encompass software implementations, hardware implementations, and software and hardware implementations.
The methods illustrated in this disclosure are not intended to be exclusive of other methods within the scope of the present subject matter. Those of ordinary skill in the art will understand, upon reading and comprehending this disclosure, other methods within the scope of the present subject matter. The above-identified embodiments, and portions of the illustrated embodiments, are not necessarily mutually exclusive. These embodiments, or portions thereof, can be combined.
In various embodiments, the methods provided above are implemented as a computer data signal embodied in a carrier wave or propagated signal, that represents a sequence of instructions which, when executed by a processor cause the processor to perform the respective method. In various embodiments, methods provided above are implemented as a set of instructions contained on a computer-accessible medium capable of directing a processor to perform the respective method. In various embodiments, the medium is a magnetic medium, an electronic medium, or an optical medium.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiment shown. This application is intended to cover adaptations or variations of the present subject matter. It is to be understood that the above description is intended to be illustrative, and not restrictive. Combinations of the above embodiments as well as combinations of portions of the above embodiments in other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the present subject matter should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application is a continuation of U.S. application Ser. No. 11/276,066, filed Feb. 13, 2006, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11276066 | Feb 2006 | US |
Child | 14694462 | US |