1. Field of the Invention
The present invention relates in general to a low voltage, low current, supply switching circuit, and in particular to a method and apparatus for selectively maintaining circuit power when higher supply voltages are present.
2. Description of the Related Art
Almost all modern electronics utilize memory or other circuits that require power even after system power is turned off. Such power is typically called backup power, and is used to maintain timekeeping and Random Access Memory (RAM) for such purposes as program storage and other data storage that may be needed when main power is restored. Backup power can also be used as a bridge for situations when main power is disabled for a short period of time to enable users to turn off devices in an orderly manner.
Typically, a battery or a small amount of current from the main supply that feeds a capacitor is used to provide this backup power. In mobile devices, where the device is not plugged into an electrical outlet, battery power is almost always used. As such, backup power requirements must include circuits that attempt to maximize the life of the battery used for backup power. Typically, a circuit is provided that switches the battery off, i.e., such that the battery is disconnected from the load, when the higher voltage main power supply is applied to the circuit.
As mobile devices, e.g., cellular telephones, Personal Data Assistants (PDAs), laptop computers, etc. are decreased in size and weight, smaller batteries are used, and therefore, such devices must also decrease power consumption. Further, such devices have added new features, e.g., call waiting in cellular telephones, internet access from PDAs, Global Positioning System (GPS) receivers used for location services in cellular telephones, laptop computers, and PDAs, etc. As such, the main circuitry, as well as circuitry that may need backup power, has increased, and, along with it, power consumption.
Typically, to decrease power consumption, supply voltages of the device are decreased. However, standard batteries are currently only available in pre-defined voltages (e.g. 1.5V, 3.0V). Therefore, it is possible that a desired decreased supply voltage falls in between two standard battery voltages, where only the higher voltage battery is usable in the design. This instance presents a problem for typical switching solutions, because the typical solution for switching the power may not turn the backup battery off when main power is applied.
It can be seen, then, that there is a need in the art for a method and apparatus that can provide backup power to electronic circuits on demand. It can also be seen that there is a need in the art for a method and apparatus that turns off the backup power supply whenever main power is on regardless of main power voltage. It can also be seen that there is a need in the art for a method and apparatus that can turn the backup power supply off even with additional circuitry attached to the backup circuits. It can also be seen that there is a need in the art for a method and apparatus for extending backup battery life in a device needing battery backup by automatically disconnecting the backup battery when the lower voltage main power source is activated.
To minimize the limitations in the prior art, and to minimize other limitations that will become apparent upon reading and understanding the present specification, the present invention discloses a method and apparatus for selectively maintaining circuit power when alternate higher voltage sources are present.
An apparatus in accordance with the invention comprises a field effect transistor, a first diode, a second diode, and an inverter. The field effect transistor is coupled to the secondary power source. The first diode is coupled between the field effect transistor and to a device to be powered, while the second diode is coupled between the primary power source and the device to be powered. The inverter is coupled to a gate of the field effect transistor, and maintains the field effect transistor in a pinched-off condition and prevents a current flow from the secondary power source when the primary power source is available.
It is an object of the present invention to provide a method and apparatus that can provide backup power to electronic circuits on demand. It is an object of the present invention to provide a method and apparatus that turns off the backup power supply whenever main power is on regardless of main power voltage. It is an object of the present invention to provide a method and apparatus that can turn the backup power supply off even with additional circuitry attached to the backup circuits. It is an object of the present invention to provide a method and apparatus for extending backup battery life in a device needing battery backup by automatically disconnecting the backup battery when the lower voltage main power source is activated.
Referring now to the drawings in which like reference numbers represent corresponding parts throughout:
In the following description of the preferred embodiment, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration, a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
Overview of the Related Art
The present disclosure indirectly detects the presence of a specified voltage source and automatically switches off an undesired voltage source. Given a voltage source at a given level, detecting a source at a lower potential is straightforward; however, disabling the higher voltage source, once the lower voltage source has been detected, is not. This is due to the fact that the switch is usually controlled by the detection, and the detection is controlled and powered by the higher potential. This disclosure makes use of the presence of the higher potential source, without draining any current from it, in combination with presence of the preferred voltage source to effectively break the current path from the higher potential source to the main circuit.
System 100 comprises diode D1 102 and diode D2 104 with the cathodes of D1 102 and D2 104 connected to a common node 106, which is used to provide power to device 108. Voltage source V1 110 includes the main power supply, and voltage source V2 112 includes the backup supply. V1 110 is connected to the anode of D1 102 through switch 114, and voltage source V2 112 is connected to the anode of D2 104.
In this configuration, when switch 114 is open, the higher voltage source that feeds node 106 can be V2 112, since no voltage from V1 110 is present. As such, backup supply V2 112 can provide power to device 108. When switch 114 is closed, whichever voltage supply has a higher potential, either V1 110 or V2 112, can provide power. If V1 110 is the higher supply, then V2 112 cannot be providing power, and can therefore have an extended life. However, if V1 110 is a lower voltage than V2 112, then V2 can continue to supply power to device 108. Since the current trend is to reduce main power voltages below that of standard batteries, such a circuit in the related art is not acceptable for increasing battery (e.g. V2 112) life.
Specifics of the [Disclosure]
System 200 illustrates circuitry that comprises an N-channel Junction Field Effect Transistor (JFET) Q1 202 which is connected in series with the backup power supply V2 112. Such a transistor Q1 202 can have a fundamental characteristic such that the channel, i.e., the connection between the source and drain of Q1 202, is continuous and permits current flow in the absence of any gate voltage. Such a transistor is typically called a “normally on” or “depletion mode” FET.
A pinch-off condition, i.e., the disruption of current flow from source to drain, occurs when a voltage is applied at the gate of Q1 202 such that the voltage between the gate and the source of Q1 202, i.e., Vgs, reaches a specified negative voltage threshold. This threshold can be varied depending on the type of transistor used. In the pinch-off condition, the channel of the N-channel JFET prevents current flow.
When V2 112 is connected to the source of Q1 202 as shown in
To achieve a 0V condition at the gate of Q1 202, an inverter U1 204 can be used, which is powered by the output of the diodes D1 102 and D2 104. The inverter U1 is controlled by the presence of the main source, i.e., V1 110, because of switch 114. When switch 114 is closed, and current is flowing from V1 110, U1 204 receives a positive voltage, at input 206, which then provides a negative or zero voltage at output 208 of U1 204 and thus to the gate of Q1 202, pinching-off Q1 202 and shutting off the current flow through Q1 202. This prevents current flow, and therefore power drain from V2 112, regardless of the voltage potentials of V1 110 and V2 112.
As alternatives to an n-channel depletion mode FET described herein, p-channel FET devices, or enhancement mode devices of either charge carrier can be used. For example, a p-channel enhancement mode FET can be substituted for Q1 202 as shown in
The only constraints on Q1 202 is that Q1 202 draw much less current than is being sent to the device 108 when V2 112 is being used i.e., when Q1 202 is in the “on” condition, and that Q1 202's leakage current in the “off” condition, i.e., pinch-off, is so small as to not seriously affect V2 112's storage time. There are also other devices, other than the enhancement and depletion mode JFET that can perform the function of Q1 202, e.g., Metal-Oxide Semiconductor Field Effect Transistors (MOSFETs), Insulated Gate Field Effect Transistors (IGFETs), etc., that may or may not require the presence of U1 204 or other circuitry. The present disclosure is not limited to the use of a transistor Q1 as described herein.
Reset IC U2 300 allows the system 200 of the present disclosure to allow for cleaner transitions between V1 110 and V2 112 when V1 110 is turned on.
Applications of the Present Invention
In cellular telephones, PDAs, and laptop computers, many functions can be saved during powerdown or low power conditions. Many new functions, such as adding larger startup capabilities, GPS capabilities, etc. may require more memory to save additional data, clock timing, etc. which place additional burdens on the backup power supply.
In a GPS receiver, certain constant functions can be maintained even when the unit is turned off. Such functions include backup memory, time-keeping, etc. Maintaining such functions even when the system power, i.e., V1 110, is turned off, enable quicker position solutions after power up if the functions are maintained during power down states. Since many devices are now using low voltage main supplies, e.g., 1.8 volts, which are lower than the 3 volt batteries used for backup power, the present disclosure allows for the additional circuitry to be maintained even in a power down state while still preserving battery life.
Conclusion
By automatically disconnecting the backup battery of low power products in the presence of a preferred voltage supply source, the above disclosed apparatus allows low voltage products to maximize their backup battery lifetime when the backup battery voltage exceeds the supply voltage.
An apparatus in accordance with the disclosure comprises a field effect transistor, a first diode, a second diode, and an inverter. The field effect transistor is coupled to the secondary power source. The first diode is coupled between the field effect transistor and to a device to be powered, while the second diode is coupled between the primary power source and the device to be powered. The inverter is coupled to a gate of the field effect transistor, and maintains the field effect transistor in a pinched-off condition and prevents a current flow from the secondary power source when the primary power source is available.
The foregoing description of the preferred embodiment of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention not be limited by this detailed description, but by the claims appended hereto.
This application claims priority under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 60/264,533, filed Jan. 26, 2001, entitled “METHOD AND APPARATUS FOR SELECTIVELY MAINTAINING CIRCUIT POWER WHEN HIGHER VOLTAGES ARE PRESENT,” by Allan Uy et al, which application is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4426712 | Gorski-Popiel | Jan 1984 | A |
4445118 | Taylor et al. | Apr 1984 | A |
4463357 | MacDoran | Jul 1984 | A |
4578678 | Hurd | Mar 1986 | A |
4667203 | Counselman, III | May 1987 | A |
4701934 | Jasper | Oct 1987 | A |
4754465 | Trimble | Jun 1988 | A |
4785463 | Janc et al. | Nov 1988 | A |
4788450 | Wagner | Nov 1988 | A |
4809005 | Counselman, III | Feb 1989 | A |
4821294 | Thomas, Jr. | Apr 1989 | A |
4857985 | Miller | Aug 1989 | A |
4890233 | Ando et al. | Dec 1989 | A |
4894662 | Counselman | Jan 1990 | A |
4998111 | Ma et al. | Mar 1991 | A |
5014066 | Counselman, III | May 1991 | A |
5036329 | Ando | Jul 1991 | A |
5043736 | Darnell et al. | Aug 1991 | A |
5108334 | Eschenbach et al. | Apr 1992 | A |
5187396 | Armstrong et al. | Feb 1993 | A |
5202829 | Geier | Apr 1993 | A |
5225842 | Brown et al. | Jul 1993 | A |
5293170 | Lorenz et al. | Mar 1994 | A |
5311195 | Mathis et al. | May 1994 | A |
5323164 | Endo | Jun 1994 | A |
5343209 | Sennott et al. | Aug 1994 | A |
5345244 | Gildea et al. | Sep 1994 | A |
5347536 | Meehan | Sep 1994 | A |
5379224 | Brown et al. | Jan 1995 | A |
5402347 | McBurney et al. | Mar 1995 | A |
5416712 | Geier et al. | May 1995 | A |
5420593 | Niles | May 1995 | A |
5440313 | Osterdock et al. | Aug 1995 | A |
5450344 | Woo et al. | Sep 1995 | A |
5504684 | Lau et al. | Apr 1996 | A |
5592173 | Lau et al. | Jan 1997 | A |
5598041 | Willis | Jan 1997 | A |
5625668 | Loomis et al. | Apr 1997 | A |
5663734 | Krasner | Sep 1997 | A |
5663735 | Eshenbach | Sep 1997 | A |
5781156 | Krasner | Jul 1998 | A |
5784626 | Odaohara | Jul 1998 | A |
5786789 | Janky | Jul 1998 | A |
5812087 | Krasner | Sep 1998 | A |
5825327 | Krasner | Oct 1998 | A |
5828694 | Schipper | Oct 1998 | A |
5831574 | Krasner | Nov 1998 | A |
5841396 | Krasner | Nov 1998 | A |
5845203 | LaDue | Dec 1998 | A |
5854605 | Gildea | Dec 1998 | A |
5874914 | Krasner | Feb 1999 | A |
5877724 | Davis | Mar 1999 | A |
5877725 | Kalafus | Mar 1999 | A |
5883594 | Lau | Mar 1999 | A |
5884214 | Krasner | Mar 1999 | A |
5889474 | LaDue | Mar 1999 | A |
5903654 | Milton et al. | May 1999 | A |
5907809 | Molnar et al. | May 1999 | A |
5917444 | Loomis et al. | Jun 1999 | A |
5920283 | Shaheen et al. | Jul 1999 | A |
5923703 | Pon et al. | Jul 1999 | A |
5926131 | Sakumoto et al. | Jul 1999 | A |
5936572 | Loomis et al. | Aug 1999 | A |
5943363 | Hanson et al. | Aug 1999 | A |
5945944 | Krasner | Aug 1999 | A |
5963582 | Stansell, Jr. | Oct 1999 | A |
5977909 | Harrison et al. | Nov 1999 | A |
5982324 | Watters et al. | Nov 1999 | A |
5987016 | He | Nov 1999 | A |
5999124 | Sheynblat | Dec 1999 | A |
6002362 | Gudat | Dec 1999 | A |
6002363 | Krasner | Dec 1999 | A |
6009551 | Sheynblat | Dec 1999 | A |
6016119 | Krasner | Jan 2000 | A |
6041222 | Horton et al. | Mar 2000 | A |
6047017 | Cahn et al. | Apr 2000 | A |
6052081 | Krasner | Apr 2000 | A |
6061018 | Sheynblat | May 2000 | A |
6064336 | Krasner | May 2000 | A |
6104338 | Krasner | Aug 2000 | A |
6104340 | Krasner | Aug 2000 | A |
6107960 | Krasner | Aug 2000 | A |
6111540 | Krasner | Aug 2000 | A |
6131067 | Girerd et al. | Oct 2000 | A |
6133871 | Krasner | Oct 2000 | A |
6133873 | Krasner | Oct 2000 | A |
6133874 | Krasner | Oct 2000 | A |
6137192 | Staffiere | Oct 2000 | A |
6150980 | Krasner | Nov 2000 | A |
6185427 | Krasner | Feb 2001 | B1 |
6208290 | Krasner | Mar 2001 | B1 |
6208291 | Krasner | Mar 2001 | B1 |
6215441 | Moeglein | Apr 2001 | B1 |
6215442 | Sheynblat | Apr 2001 | B1 |
6236354 | Krasner | May 2001 | B1 |
6239742 | Krasner | May 2001 | B1 |
6259399 | Krasner | Jul 2001 | B1 |
6272430 | Krasner | Aug 2001 | B1 |
6289041 | Krasner | Sep 2001 | B1 |
6307504 | Sheynblat | Oct 2001 | B1 |
6313786 | Sheynblat | Nov 2001 | B1 |
6314308 | Sheynblat | Nov 2001 | B1 |
6377209 | Krasner | Apr 2002 | B1 |
6408196 | Sheynblat | Jun 2002 | B2 |
6411254 | Moeglein | Jun 2002 | B1 |
6411892 | Van Diggelen | Jun 2002 | B1 |
6417801 | Van Diggelen | Jul 2002 | B1 |
6420906 | Kohda | Jul 2002 | B1 |
6421002 | Krasner | Jul 2002 | B2 |
6429814 | Van Diggelen et al. | Aug 2002 | B1 |
6433731 | Sheynblat | Aug 2002 | B1 |
6453237 | Fuchs et al. | Sep 2002 | B1 |
6462434 | Winick et al. | Oct 2002 | B1 |
6462926 | Zaretsky et al. | Oct 2002 | B1 |
6484097 | Fuchs et al. | Nov 2002 | B2 |
6487499 | Fuchs et al. | Nov 2002 | B1 |
6510387 | Fuchs et al. | Jan 2003 | B2 |
6542821 | Krasner | Apr 2003 | B2 |
6583757 | Krasner | Jun 2003 | B2 |
6597311 | Sheynblat | Jul 2003 | B2 |
Number | Date | Country |
---|---|---|
0511741 | Nov 1992 | EP |
2115195 | Jan 1983 | GB |
58-105632 | Jun 1983 | JP |
7-36035 | May 1986 | JP |
4-326079 | Nov 1992 | JP |
WO 9011652 | Oct 1990 | WO |
Number | Date | Country | |
---|---|---|---|
60264533 | Jan 2001 | US |